|
a |
|
b/baseline.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"# GI Tract Segmentation Competition" |
|
|
8 |
] |
|
|
9 |
}, |
|
|
10 |
{ |
|
|
11 |
"cell_type": "markdown", |
|
|
12 |
"metadata": {}, |
|
|
13 |
"source": [ |
|
|
14 |
"# Load And Prepare" |
|
|
15 |
] |
|
|
16 |
}, |
|
|
17 |
{ |
|
|
18 |
"cell_type": "markdown", |
|
|
19 |
"metadata": {}, |
|
|
20 |
"source": [ |
|
|
21 |
"## Imports" |
|
|
22 |
] |
|
|
23 |
}, |
|
|
24 |
{ |
|
|
25 |
"cell_type": "code", |
|
|
26 |
"execution_count": 1, |
|
|
27 |
"metadata": { |
|
|
28 |
"ExecuteTime": { |
|
|
29 |
"end_time": "2022-06-28T03:46:47.438209Z", |
|
|
30 |
"start_time": "2022-06-28T03:46:44.722879Z" |
|
|
31 |
} |
|
|
32 |
}, |
|
|
33 |
"outputs": [], |
|
|
34 |
"source": [ |
|
|
35 |
"from fastai.vision.all import *\n", |
|
|
36 |
"import matplotlib.patches as mpatches\n", |
|
|
37 |
"import albumentations as A\n", |
|
|
38 |
"import cv2\n", |
|
|
39 |
"import pynvml\n", |
|
|
40 |
"from scipy.spatial.distance import directed_hausdorff\n", |
|
|
41 |
"import timm\n", |
|
|
42 |
"import segmentation_models_pytorch as smp\n", |
|
|
43 |
"\n", |
|
|
44 |
"\n", |
|
|
45 |
"# !cp kaggle.json /home/kgeorgio/.kaggle\n", |
|
|
46 |
"# !kaggle competitions download -c uw-madison-gi-tract-image-segmentation\n" |
|
|
47 |
] |
|
|
48 |
}, |
|
|
49 |
{ |
|
|
50 |
"cell_type": "markdown", |
|
|
51 |
"metadata": {}, |
|
|
52 |
"source": [ |
|
|
53 |
"## Load CSV" |
|
|
54 |
] |
|
|
55 |
}, |
|
|
56 |
{ |
|
|
57 |
"cell_type": "code", |
|
|
58 |
"execution_count": 2, |
|
|
59 |
"metadata": { |
|
|
60 |
"ExecuteTime": { |
|
|
61 |
"end_time": "2022-06-28T03:46:47.672193Z", |
|
|
62 |
"start_time": "2022-06-28T03:46:47.439755Z" |
|
|
63 |
}, |
|
|
64 |
"pycharm": { |
|
|
65 |
"name": "#%%\n" |
|
|
66 |
} |
|
|
67 |
}, |
|
|
68 |
"outputs": [], |
|
|
69 |
"source": [ |
|
|
70 |
"train_df = pd.read_csv('dataset/train.csv', low_memory=False)\n", |
|
|
71 |
"train_df = train_df.pivot(index='id', columns='class', values='segmentation').reset_index()" |
|
|
72 |
] |
|
|
73 |
}, |
|
|
74 |
{ |
|
|
75 |
"cell_type": "code", |
|
|
76 |
"execution_count": 3, |
|
|
77 |
"metadata": { |
|
|
78 |
"ExecuteTime": { |
|
|
79 |
"end_time": "2022-06-28T03:46:47.739865Z", |
|
|
80 |
"start_time": "2022-06-28T03:46:47.730425Z" |
|
|
81 |
}, |
|
|
82 |
"pycharm": { |
|
|
83 |
"name": "#%%\n" |
|
|
84 |
} |
|
|
85 |
}, |
|
|
86 |
"outputs": [ |
|
|
87 |
{ |
|
|
88 |
"data": { |
|
|
89 |
"text/html": [ |
|
|
90 |
"<div>\n", |
|
|
91 |
"<style scoped>\n", |
|
|
92 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
93 |
" vertical-align: middle;\n", |
|
|
94 |
" }\n", |
|
|
95 |
"\n", |
|
|
96 |
" .dataframe tbody tr th {\n", |
|
|
97 |
" vertical-align: top;\n", |
|
|
98 |
" }\n", |
|
|
99 |
"\n", |
|
|
100 |
" .dataframe thead th {\n", |
|
|
101 |
" text-align: right;\n", |
|
|
102 |
" }\n", |
|
|
103 |
"</style>\n", |
|
|
104 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
105 |
" <thead>\n", |
|
|
106 |
" <tr style=\"text-align: right;\">\n", |
|
|
107 |
" <th>class</th>\n", |
|
|
108 |
" <th>id</th>\n", |
|
|
109 |
" <th>large_bowel</th>\n", |
|
|
110 |
" <th>small_bowel</th>\n", |
|
|
111 |
" <th>stomach</th>\n", |
|
|
112 |
" </tr>\n", |
|
|
113 |
" </thead>\n", |
|
|
114 |
" <tbody>\n", |
|
|
115 |
" <tr>\n", |
|
|
116 |
" <th>0</th>\n", |
|
|
117 |
" <td>case101_day20_slice_0001</td>\n", |
|
|
118 |
" <td>NaN</td>\n", |
|
|
119 |
" <td>NaN</td>\n", |
|
|
120 |
" <td>NaN</td>\n", |
|
|
121 |
" </tr>\n", |
|
|
122 |
" <tr>\n", |
|
|
123 |
" <th>1</th>\n", |
|
|
124 |
" <td>case101_day20_slice_0002</td>\n", |
|
|
125 |
" <td>NaN</td>\n", |
|
|
126 |
" <td>NaN</td>\n", |
|
|
127 |
" <td>NaN</td>\n", |
|
|
128 |
" </tr>\n", |
|
|
129 |
" <tr>\n", |
|
|
130 |
" <th>2</th>\n", |
|
|
131 |
" <td>case101_day20_slice_0003</td>\n", |
|
|
132 |
" <td>NaN</td>\n", |
|
|
133 |
" <td>NaN</td>\n", |
|
|
134 |
" <td>NaN</td>\n", |
|
|
135 |
" </tr>\n", |
|
|
136 |
" <tr>\n", |
|
|
137 |
" <th>3</th>\n", |
|
|
138 |
" <td>case101_day20_slice_0004</td>\n", |
|
|
139 |
" <td>NaN</td>\n", |
|
|
140 |
" <td>NaN</td>\n", |
|
|
141 |
" <td>NaN</td>\n", |
|
|
142 |
" </tr>\n", |
|
|
143 |
" <tr>\n", |
|
|
144 |
" <th>4</th>\n", |
|
|
145 |
" <td>case101_day20_slice_0005</td>\n", |
|
|
146 |
" <td>NaN</td>\n", |
|
|
147 |
" <td>NaN</td>\n", |
|
|
148 |
" <td>NaN</td>\n", |
|
|
149 |
" </tr>\n", |
|
|
150 |
" </tbody>\n", |
|
|
151 |
"</table>\n", |
|
|
152 |
"</div>" |
|
|
153 |
], |
|
|
154 |
"text/plain": [ |
|
|
155 |
"class id large_bowel small_bowel stomach\n", |
|
|
156 |
"0 case101_day20_slice_0001 NaN NaN NaN\n", |
|
|
157 |
"1 case101_day20_slice_0002 NaN NaN NaN\n", |
|
|
158 |
"2 case101_day20_slice_0003 NaN NaN NaN\n", |
|
|
159 |
"3 case101_day20_slice_0004 NaN NaN NaN\n", |
|
|
160 |
"4 case101_day20_slice_0005 NaN NaN NaN" |
|
|
161 |
] |
|
|
162 |
}, |
|
|
163 |
"execution_count": 3, |
|
|
164 |
"metadata": {}, |
|
|
165 |
"output_type": "execute_result" |
|
|
166 |
} |
|
|
167 |
], |
|
|
168 |
"source": [ |
|
|
169 |
"train_df.head()" |
|
|
170 |
] |
|
|
171 |
}, |
|
|
172 |
{ |
|
|
173 |
"cell_type": "code", |
|
|
174 |
"execution_count": 4, |
|
|
175 |
"metadata": { |
|
|
176 |
"ExecuteTime": { |
|
|
177 |
"end_time": "2022-06-28T03:46:47.950258Z", |
|
|
178 |
"start_time": "2022-06-28T03:46:47.742286Z" |
|
|
179 |
}, |
|
|
180 |
"pycharm": { |
|
|
181 |
"name": "#%%\n" |
|
|
182 |
} |
|
|
183 |
}, |
|
|
184 |
"outputs": [ |
|
|
185 |
{ |
|
|
186 |
"name": "stdout", |
|
|
187 |
"output_type": "stream", |
|
|
188 |
"text": [ |
|
|
189 |
"dataset/train/case101/case101_day26/scans/slice_0121_266_266_1.50_1.50.png\n", |
|
|
190 |
"dataset/train/case101/case101_day26/scans/slice_0081_266_266_1.50_1.50.png\n", |
|
|
191 |
"dataset/train/case101/case101_day26/scans/slice_0065_266_266_1.50_1.50.png\n", |
|
|
192 |
"dataset/train/case101/case101_day26/scans/slice_0068_266_266_1.50_1.50.png\n", |
|
|
193 |
"dataset/train/case101/case101_day26/scans/slice_0059_266_266_1.50_1.50.png\n", |
|
|
194 |
"dataset/train/case101/case101_day26/scans/slice_0064_266_266_1.50_1.50.png\n", |
|
|
195 |
"dataset/train/case101/case101_day26/scans/slice_0002_266_266_1.50_1.50.png\n", |
|
|
196 |
"dataset/train/case101/case101_day26/scans/slice_0088_266_266_1.50_1.50.png\n", |
|
|
197 |
"dataset/train/case101/case101_day26/scans/slice_0098_266_266_1.50_1.50.png\n", |
|
|
198 |
"dataset/train/case101/case101_day26/scans/slice_0074_266_266_1.50_1.50.png\n", |
|
|
199 |
"dataset/train/case101/case101_day26/scans/slice_0021_266_266_1.50_1.50.png\n", |
|
|
200 |
"...\n", |
|
|
201 |
"And 38486 more lines.\n" |
|
|
202 |
] |
|
|
203 |
} |
|
|
204 |
], |
|
|
205 |
"source": [ |
|
|
206 |
"path = Path('dataset/train')\n", |
|
|
207 |
"\n", |
|
|
208 |
"fnames = get_image_files(path)\n", |
|
|
209 |
"\n", |
|
|
210 |
"for ind, file_name in enumerate(fnames):\n", |
|
|
211 |
" print(file_name)\n", |
|
|
212 |
" if ind>9:\n", |
|
|
213 |
" print('...')\n", |
|
|
214 |
" break\n", |
|
|
215 |
"print(f\"And {len(fnames)-10} more lines.\")" |
|
|
216 |
] |
|
|
217 |
}, |
|
|
218 |
{ |
|
|
219 |
"cell_type": "markdown", |
|
|
220 |
"metadata": {}, |
|
|
221 |
"source": [ |
|
|
222 |
"# Functions" |
|
|
223 |
] |
|
|
224 |
}, |
|
|
225 |
{ |
|
|
226 |
"cell_type": "code", |
|
|
227 |
"execution_count": 5, |
|
|
228 |
"metadata": {}, |
|
|
229 |
"outputs": [], |
|
|
230 |
"source": [ |
|
|
231 |
"def get_slice_id(fname):\n", |
|
|
232 |
" return fname.parts[3] + '_' + fname.parts[5][:10]\n", |
|
|
233 |
"\n", |
|
|
234 |
"\n", |
|
|
235 |
"def rle_decode(mask_rle, shape, color=1):\n", |
|
|
236 |
" \"\"\" TBD\n", |
|
|
237 |
"\n", |
|
|
238 |
" Args:\n", |
|
|
239 |
" mask_rle (str): run-length as string formated (start length)\n", |
|
|
240 |
" shape (tuple of ints): (height,width) of array to return \n", |
|
|
241 |
"\n", |
|
|
242 |
" Returns: \n", |
|
|
243 |
" Mask (np.array)\n", |
|
|
244 |
" - 1 indicating mask\n", |
|
|
245 |
" - 0 indicating background\n", |
|
|
246 |
"\n", |
|
|
247 |
" \"\"\"\n", |
|
|
248 |
" # Split the string by space, then convert it into a integer array\n", |
|
|
249 |
" s = np.array(mask_rle.split(), dtype=int)\n", |
|
|
250 |
"\n", |
|
|
251 |
" # Every even value is the start, every odd value is the \"run\" length\n", |
|
|
252 |
" starts = s[0::2] - 1\n", |
|
|
253 |
" lengths = s[1::2]\n", |
|
|
254 |
" ends = starts + lengths\n", |
|
|
255 |
"\n", |
|
|
256 |
" # The image image is actually flattened since RLE is a 1D \"run\"\n", |
|
|
257 |
" if len(shape) == 3:\n", |
|
|
258 |
" h, w, d = shape\n", |
|
|
259 |
" img = np.zeros((h * w, d), dtype=np.float32)\n", |
|
|
260 |
" else:\n", |
|
|
261 |
" h, w = shape\n", |
|
|
262 |
" img = np.zeros((h * w,), dtype=np.float32)\n", |
|
|
263 |
"\n", |
|
|
264 |
" # The color here is actually just any integer you want!\n", |
|
|
265 |
" for lo, hi in zip(starts, ends):\n", |
|
|
266 |
" img[lo: hi] = color\n", |
|
|
267 |
"\n", |
|
|
268 |
" # Don't forget to change the image back to the original shape\n", |
|
|
269 |
" return img.reshape(shape)\n", |
|
|
270 |
"\n", |
|
|
271 |
"\n", |
|
|
272 |
"def label_func(fname):\n", |
|
|
273 |
" # First we need to get the slice row\n", |
|
|
274 |
" slice_id = get_slice_id(fname)\n", |
|
|
275 |
" slice_row = train_df.query('id == @slice_id')\n", |
|
|
276 |
"\n", |
|
|
277 |
" # Then we need to extract the slice width and height which are provided in the fname last part\n", |
|
|
278 |
" # Typically the height is the first part of a dimension, but for some reason the slices have\n", |
|
|
279 |
" # widths provided first\n", |
|
|
280 |
" w, h = map(lambda x: int(x), fname.parts[-1].split('_')[2:4])\n", |
|
|
281 |
"\n", |
|
|
282 |
" # Create mask array (It needs to have 3 channels but fastai will only keep the first one anyways)\n", |
|
|
283 |
" mask = np.zeros((h, w, 3), dtype=np.uint8)\n", |
|
|
284 |
"\n", |
|
|
285 |
" # If the segmentation mask is str\n", |
|
|
286 |
" # Each mask should have it's own code (color) where fastai will use them for identification\n", |
|
|
287 |
" if isinstance(slice_row['large_bowel'].item(), str):\n", |
|
|
288 |
" mask[:, :, 0] = rle_decode(slice_row['large_bowel'].item(), shape=(h, w), color=255)\n", |
|
|
289 |
"\n", |
|
|
290 |
" if isinstance(slice_row['small_bowel'].item(), str):\n", |
|
|
291 |
" mask[:, :, 1] = rle_decode(slice_row['small_bowel'].item(), shape=(h, w), color=255)\n", |
|
|
292 |
"\n", |
|
|
293 |
" if isinstance(slice_row['stomach'].item(), str):\n", |
|
|
294 |
" mask[:, :, 2] = rle_decode(slice_row['stomach'].item(), shape=(h, w), color=255)\n", |
|
|
295 |
"\n", |
|
|
296 |
" return mask\n", |
|
|
297 |
"\n", |
|
|
298 |
"\n", |
|
|
299 |
"# This was the code available in fastai\n", |
|
|
300 |
"@ToTensor\n", |
|
|
301 |
"def encodes(self, o: PILMask): return o._tensor_cls(image2tensor(o)[0])\n", |
|
|
302 |
"\n", |
|
|
303 |
"\n", |
|
|
304 |
"# And this is how we customize it to suit our needs\n", |
|
|
305 |
"@ToTensor\n", |
|
|
306 |
"def encodes(self, o: PILMask): return o._tensor_cls(image2tensor(o))\n", |
|
|
307 |
"\n", |
|
|
308 |
"\n", |
|
|
309 |
"@typedispatch\n", |
|
|
310 |
"def show_batch(x: TensorImage, y: TensorMask, samples, ctxs=None, max_n=6, nrows=None, ncols=2,\n", |
|
|
311 |
" figsize=None, **kwargs):\n", |
|
|
312 |
" if figsize is None: figsize = (ncols * 3, max_n // ncols * 3)\n", |
|
|
313 |
" if ctxs is None: ctxs = get_grid(max_n, nrows=nrows, ncols=ncols, figsize=figsize)\n", |
|
|
314 |
" for i, ctx in enumerate(ctxs):\n", |
|
|
315 |
" x_i = x[i] / x[i].max()\n", |
|
|
316 |
" show_image(x_i, ctx=ctx, cmap='gray', **kwargs)\n", |
|
|
317 |
" show_image(y[i], ctx=ctx, cmap='Spectral_r', alpha=0.35, **kwargs)\n", |
|
|
318 |
" red_patch = mpatches.Patch(color='red', label='large_bowel')\n", |
|
|
319 |
" green_patch = mpatches.Patch(color='green', label='small_bowel')\n", |
|
|
320 |
" blue_patch = mpatches.Patch(color='blue', label='stomach')\n", |
|
|
321 |
" ctx.legend(handles=[red_patch, green_patch, blue_patch], fontsize=figsize[0] / 2)\n", |
|
|
322 |
"\n", |
|
|
323 |
"\n", |
|
|
324 |
"def pad_img(img, up_size=None):\n", |
|
|
325 |
" if up_size is None:\n", |
|
|
326 |
" return img\n", |
|
|
327 |
" shape0 = np.array(img.shape[:2])\n", |
|
|
328 |
" resize = np.array(up_size)\n", |
|
|
329 |
" if np.any(shape0 != resize):\n", |
|
|
330 |
" diff = resize - shape0\n", |
|
|
331 |
" pad0 = diff[0]\n", |
|
|
332 |
" pad1 = diff[1]\n", |
|
|
333 |
" pady = [pad0 // 2, pad0 // 2 + pad0 % 2]\n", |
|
|
334 |
" padx = [pad1 // 2, pad1 // 2 + pad1 % 2]\n", |
|
|
335 |
" img = np.pad(img, [pady, padx])\n", |
|
|
336 |
" img = img.reshape((*resize))\n", |
|
|
337 |
" return img\n", |
|
|
338 |
"\n", |
|
|
339 |
"\n", |
|
|
340 |
"def unpad_img(img, up_size, org_size):\n", |
|
|
341 |
" shape0 = np.array(org_size)\n", |
|
|
342 |
" resize = np.array(up_size)\n", |
|
|
343 |
" if np.any(shape0 != resize):\n", |
|
|
344 |
" diff = resize - shape0\n", |
|
|
345 |
" pad0 = diff[0]\n", |
|
|
346 |
" pad1 = diff[1]\n", |
|
|
347 |
" pady = [pad0 // 2, pad0 // 2 + pad0 % 2]\n", |
|
|
348 |
" padx = [pad1 // 2, pad1 // 2 + pad1 % 2]\n", |
|
|
349 |
" img = img[pady[0]:-pady[1], padx[0]:-padx[1], :]\n", |
|
|
350 |
" img = img.reshape((*shape0, 3))\n", |
|
|
351 |
" return img\n", |
|
|
352 |
"\n", |
|
|
353 |
"\n", |
|
|
354 |
"def load_image(fname, up_size=None):\n", |
|
|
355 |
" img = np.array(Image.open(fname))\n", |
|
|
356 |
" img = np.interp(img, [np.min(img), np.max(img)], [0, 255])\n", |
|
|
357 |
" return pad_img(img, up_size)\n", |
|
|
358 |
"\n", |
|
|
359 |
"\n", |
|
|
360 |
"def get_25D_image(row, up_size=None):\n", |
|
|
361 |
" if up_size:\n", |
|
|
362 |
" imgs = np.zeros((*up_size, len(row['fnames'])))\n", |
|
|
363 |
" else:\n", |
|
|
364 |
" imgs = np.zeros((row['slice_h'], row['slice_w'], len(row['fnames'])))\n", |
|
|
365 |
"\n", |
|
|
366 |
" for i, fname in enumerate(row['fnames']):\n", |
|
|
367 |
" img = load_image(fname, up_size)\n", |
|
|
368 |
" imgs[..., i] += img\n", |
|
|
369 |
" return imgs.astype(np.uint8)\n", |
|
|
370 |
"\n", |
|
|
371 |
"\n", |
|
|
372 |
"def get_mask(row, up_size=None):\n", |
|
|
373 |
" if up_size:\n", |
|
|
374 |
" mask = np.zeros((*up_size, 3))\n", |
|
|
375 |
" else:\n", |
|
|
376 |
" mask = np.zeros((row['slice_h'], row['slice_w'], 3))\n", |
|
|
377 |
"\n", |
|
|
378 |
" if isinstance(row['large_bowel'], str):\n", |
|
|
379 |
" mask[..., 0] += pad_img(\n", |
|
|
380 |
" rle_decode(row['large_bowel'], shape=(row['slice_h'], row['slice_w']), color=255), up_size)\n", |
|
|
381 |
" if isinstance(row['small_bowel'], str):\n", |
|
|
382 |
" mask[..., 1] += pad_img(\n", |
|
|
383 |
" rle_decode(row['small_bowel'], shape=(row['slice_h'], row['slice_w']), color=255), up_size)\n", |
|
|
384 |
" if isinstance(row['stomach'], str):\n", |
|
|
385 |
" mask[..., 2] += pad_img(\n", |
|
|
386 |
" rle_decode(row['stomach'], shape=(row['slice_h'], row['slice_w']), color=255), up_size)\n", |
|
|
387 |
"\n", |
|
|
388 |
" return mask.astype(np.uint8)\n", |
|
|
389 |
"\n", |
|
|
390 |
"\n", |
|
|
391 |
"def get_train_aug(img_size, crop=0.9, p=0.4):\n", |
|
|
392 |
" crop_size = round(img_size[0] * crop)\n", |
|
|
393 |
" return A.Compose([\n", |
|
|
394 |
" A.RandomCrop(height=crop_size, width=crop_size, always_apply=True),\n", |
|
|
395 |
" A.HorizontalFlip(p=p),\n", |
|
|
396 |
" A.OneOf([\n", |
|
|
397 |
" A.GridDistortion(num_steps=5, distort_limit=0.05, p=1.0),\n", |
|
|
398 |
" A.ElasticTransform(alpha=1, sigma=50, alpha_affine=50, p=1.0)\n", |
|
|
399 |
" ], p=p),\n", |
|
|
400 |
" A.CoarseDropout(\n", |
|
|
401 |
" max_holes=8, min_holes=8,\n", |
|
|
402 |
" max_height=crop_size // 10, max_width=crop_size // 10,\n", |
|
|
403 |
" min_height=4, min_width=4, mask_fill_value=0, p=0.2 * p),\n", |
|
|
404 |
" A.ShiftScaleRotate(\n", |
|
|
405 |
" shift_limit=0.0625, scale_limit=0.2, rotate_limit=25,\n", |
|
|
406 |
" interpolation=cv2.INTER_AREA, p=p),\n", |
|
|
407 |
" A.HorizontalFlip(p=0.5 * p),\n", |
|
|
408 |
" A.OneOf([\n", |
|
|
409 |
" A.MotionBlur(p=0.2 * p),\n", |
|
|
410 |
" A.MedianBlur(blur_limit=3, p=0.1 * p),\n", |
|
|
411 |
" A.Blur(blur_limit=3, p=0.1 * p),\n", |
|
|
412 |
" ], p=0.2 * p),\n", |
|
|
413 |
" A.GaussNoise(var_limit=0.001, p=0.2 * p),\n", |
|
|
414 |
" A.OneOf([\n", |
|
|
415 |
" A.OpticalDistortion(p=0.3 * p),\n", |
|
|
416 |
" A.GridDistortion(p=0.1 * p),\n", |
|
|
417 |
" A.PiecewiseAffine(p=0.3 * p),\n", |
|
|
418 |
" ], p=0.2 * p),\n", |
|
|
419 |
" A.OneOf([\n", |
|
|
420 |
" A.Sharpen(p=0.2 * p),\n", |
|
|
421 |
" A.Emboss(p=0.2 * p),\n", |
|
|
422 |
" A.RandomBrightnessContrast(p=0.2 * p),\n", |
|
|
423 |
" ]),\n", |
|
|
424 |
" ])\n", |
|
|
425 |
"\n", |
|
|
426 |
"\n", |
|
|
427 |
"def get_test_aug(img_size, crop=0.9):\n", |
|
|
428 |
" crop_size = round(crop * img_size[0])\n", |
|
|
429 |
" return A.Compose([\n", |
|
|
430 |
" A.CenterCrop(height=crop_size, width=crop_size),\n", |
|
|
431 |
" ])\n", |
|
|
432 |
"\n", |
|
|
433 |
"\n", |
|
|
434 |
"class AlbumentationsTransform(ItemTransform, RandTransform):\n", |
|
|
435 |
" split_idx, order = None, 2\n", |
|
|
436 |
"\n", |
|
|
437 |
" def __init__(self, train_aug, valid_aug):\n", |
|
|
438 |
" store_attr()\n", |
|
|
439 |
"\n", |
|
|
440 |
" def before_call(self, b, split_idx):\n", |
|
|
441 |
" self.idx = split_idx\n", |
|
|
442 |
"\n", |
|
|
443 |
" def encodes(self, x):\n", |
|
|
444 |
" if len(x) > 1:\n", |
|
|
445 |
" img, mask = x\n", |
|
|
446 |
" if self.idx == 0:\n", |
|
|
447 |
" aug = self.train_aug(image=np.array(img), mask=np.array(mask))\n", |
|
|
448 |
" else:\n", |
|
|
449 |
" aug = self.valid_aug(image=np.array(img), mask=np.array(mask))\n", |
|
|
450 |
" return PILImage.create(aug[\"image\"]), PILMask.create(aug[\"mask\"])\n", |
|
|
451 |
" else:\n", |
|
|
452 |
" img = x[0]\n", |
|
|
453 |
" aug = self.valid_aug(image=np.array(img))\n", |
|
|
454 |
" return PILImage.create(aug[\"image\"])\n" |
|
|
455 |
] |
|
|
456 |
}, |
|
|
457 |
{ |
|
|
458 |
"cell_type": "markdown", |
|
|
459 |
"metadata": {}, |
|
|
460 |
"source": [ |
|
|
461 |
"# Preprocess" |
|
|
462 |
] |
|
|
463 |
}, |
|
|
464 |
{ |
|
|
465 |
"cell_type": "markdown", |
|
|
466 |
"metadata": {}, |
|
|
467 |
"source": [ |
|
|
468 |
"## Split name metada into different columns" |
|
|
469 |
] |
|
|
470 |
}, |
|
|
471 |
{ |
|
|
472 |
"cell_type": "code", |
|
|
473 |
"execution_count": 6, |
|
|
474 |
"metadata": { |
|
|
475 |
"ExecuteTime": { |
|
|
476 |
"end_time": "2022-06-28T03:46:48.134095Z", |
|
|
477 |
"start_time": "2022-06-28T03:46:47.951449Z" |
|
|
478 |
}, |
|
|
479 |
"pycharm": { |
|
|
480 |
"name": "#%%\n" |
|
|
481 |
} |
|
|
482 |
}, |
|
|
483 |
"outputs": [], |
|
|
484 |
"source": [ |
|
|
485 |
"train_df['partial_fname'] = train_df.id\n", |
|
|
486 |
"fname_df = pd.DataFrame({'partial_fname': [f'{fname.parts[-3]}_slice_{fname.parts[-1][6:10]}' for fname in fnames],\n", |
|
|
487 |
" 'fname': fnames})\n", |
|
|
488 |
"\n", |
|
|
489 |
"train_df = train_df.merge(fname_df, on='partial_fname').drop('partial_fname', axis=1)\n", |
|
|
490 |
"\n", |
|
|
491 |
"train_df['case_id'] = train_df.id.apply(lambda x: x.split('_')[0])\n", |
|
|
492 |
"train_df['day_num'] = train_df.id.apply(lambda x: x.split('_')[1])\n", |
|
|
493 |
"\n", |
|
|
494 |
"train_df['slice_w'] = train_df[\"fname\"].apply(lambda x: int(str(x)[:-4].rsplit(\"_\",4)[1]))\n", |
|
|
495 |
"train_df['slice_h'] = train_df[\"fname\"].apply(lambda x: int(str(x)[:-4].rsplit(\"_\",4)[2]))" |
|
|
496 |
] |
|
|
497 |
}, |
|
|
498 |
{ |
|
|
499 |
"cell_type": "markdown", |
|
|
500 |
"metadata": {}, |
|
|
501 |
"source": [ |
|
|
502 |
"## Add Fnames" |
|
|
503 |
] |
|
|
504 |
}, |
|
|
505 |
{ |
|
|
506 |
"cell_type": "code", |
|
|
507 |
"execution_count": 7, |
|
|
508 |
"metadata": { |
|
|
509 |
"ExecuteTime": { |
|
|
510 |
"end_time": "2022-06-28T03:46:48.186750Z", |
|
|
511 |
"start_time": "2022-06-28T03:46:48.135151Z" |
|
|
512 |
}, |
|
|
513 |
"pycharm": { |
|
|
514 |
"name": "#%%\n" |
|
|
515 |
} |
|
|
516 |
}, |
|
|
517 |
"outputs": [], |
|
|
518 |
"source": [ |
|
|
519 |
"channels = 3\n", |
|
|
520 |
"stride = 2\n", |
|
|
521 |
"for j, i in enumerate(range(-1*(channels-channels//2-1), channels//2+1)):\n", |
|
|
522 |
" method = 'ffill'\n", |
|
|
523 |
" if i <= 0: method = 'bfill'\n", |
|
|
524 |
" train_df[f'fname_{j:02}'] = train_df.groupby(['case_id', 'day_num'])['fname'].shift(stride*-i).fillna(method=method)\n", |
|
|
525 |
" \n", |
|
|
526 |
"train_df['fnames'] = train_df[[f'fname_{j:02d}' for j in range(channels)]].values.tolist()" |
|
|
527 |
] |
|
|
528 |
}, |
|
|
529 |
{ |
|
|
530 |
"cell_type": "markdown", |
|
|
531 |
"metadata": { |
|
|
532 |
"pycharm": { |
|
|
533 |
"name": "#%%\n" |
|
|
534 |
} |
|
|
535 |
}, |
|
|
536 |
"source": [ |
|
|
537 |
"# Training" |
|
|
538 |
] |
|
|
539 |
}, |
|
|
540 |
{ |
|
|
541 |
"cell_type": "markdown", |
|
|
542 |
"metadata": { |
|
|
543 |
"pycharm": { |
|
|
544 |
"name": "#%%\n" |
|
|
545 |
} |
|
|
546 |
}, |
|
|
547 |
"source": [ |
|
|
548 |
"## Metrics" |
|
|
549 |
] |
|
|
550 |
}, |
|
|
551 |
{ |
|
|
552 |
"cell_type": "code", |
|
|
553 |
"execution_count": 8, |
|
|
554 |
"metadata": { |
|
|
555 |
"ExecuteTime": { |
|
|
556 |
"end_time": "2022-06-28T03:46:49.086943Z", |
|
|
557 |
"start_time": "2022-06-28T03:46:49.086930Z" |
|
|
558 |
} |
|
|
559 |
}, |
|
|
560 |
"outputs": [], |
|
|
561 |
"source": [ |
|
|
562 |
"def dice_coeff_adj(inp, targ):\n", |
|
|
563 |
" inp = np.where(sigmoid(inp).cpu().detach().numpy() > 0.5, 1, 0)\n", |
|
|
564 |
" targ = targ.cpu().detach().numpy()\n", |
|
|
565 |
" eps = 1e-5\n", |
|
|
566 |
" dice_scores = []\n", |
|
|
567 |
" for i in range(targ.shape[0]):\n", |
|
|
568 |
" dice_i = []\n", |
|
|
569 |
" for j in range(targ.shape[1]):\n", |
|
|
570 |
" if inp[i, j].sum() == targ[i, j].sum() == 0:\n", |
|
|
571 |
" continue\n", |
|
|
572 |
" I = (targ[i, j] * inp[i, j]).sum()\n", |
|
|
573 |
" U = targ[i, j].sum() + inp[i, j].sum()\n", |
|
|
574 |
" dice_i.append((2.*I)/(U+eps))\n", |
|
|
575 |
" if dice_i:\n", |
|
|
576 |
" dice_scores.append(np.mean(dice_i))\n", |
|
|
577 |
" \n", |
|
|
578 |
" if dice_scores:\n", |
|
|
579 |
" return np.mean(dice_scores)\n", |
|
|
580 |
" else:\n", |
|
|
581 |
" return 0\n", |
|
|
582 |
" \n", |
|
|
583 |
" \n", |
|
|
584 |
"def hd_dist_per_slice(inp, targ, seed): \n", |
|
|
585 |
" inp = np.argwhere(inp) / np.array(inp.shape)\n", |
|
|
586 |
" targ = np.argwhere(targ) / np.array(targ.shape)\n", |
|
|
587 |
" haussdorf_dist = 1 - directed_hausdorff(inp, targ, seed)[0]\n", |
|
|
588 |
" return haussdorf_dist if haussdorf_dist > 0 else 0\n", |
|
|
589 |
"\n", |
|
|
590 |
"def hd_dist_adj(inp, targ, seed=42):\n", |
|
|
591 |
" inp = np.where(sigmoid(inp).cpu().detach().numpy() > 0.5, 1, 0)\n", |
|
|
592 |
" targ = targ.cpu().detach().numpy()\n", |
|
|
593 |
" hd_scores = []\n", |
|
|
594 |
" for i in range(targ.shape[0]):\n", |
|
|
595 |
" hd_i = []\n", |
|
|
596 |
" for j in range(targ.shape[1]):\n", |
|
|
597 |
" if inp[i, j].sum() == targ[i, j].sum() == 0:\n", |
|
|
598 |
" continue\n", |
|
|
599 |
" hd_i.append(hd_dist_per_slice(inp[i, j], targ[i, j], seed))\n", |
|
|
600 |
" if hd_i:\n", |
|
|
601 |
" hd_scores.append(np.mean(hd_i))\n", |
|
|
602 |
" if hd_scores:\n", |
|
|
603 |
" return np.mean(hd_scores)\n", |
|
|
604 |
" else:\n", |
|
|
605 |
" return 0\n", |
|
|
606 |
"\n", |
|
|
607 |
"def custom_metric_adj(inp, targ, seed=42):\n", |
|
|
608 |
" hd_score_per_batch = hd_dist_adj(inp, targ, seed)\n", |
|
|
609 |
" dice_score_per_batch = dice_coeff_adj(inp, targ)\n", |
|
|
610 |
" \n", |
|
|
611 |
" return 0.4*dice_score_per_batch + 0.6*hd_score_per_batch" |
|
|
612 |
] |
|
|
613 |
}, |
|
|
614 |
{ |
|
|
615 |
"cell_type": "markdown", |
|
|
616 |
"metadata": {}, |
|
|
617 |
"source": [ |
|
|
618 |
"## Loss Functions" |
|
|
619 |
] |
|
|
620 |
}, |
|
|
621 |
{ |
|
|
622 |
"cell_type": "code", |
|
|
623 |
"execution_count": 9, |
|
|
624 |
"metadata": { |
|
|
625 |
"ExecuteTime": { |
|
|
626 |
"end_time": "2022-06-28T03:46:49.088279Z", |
|
|
627 |
"start_time": "2022-06-28T03:46:49.088271Z" |
|
|
628 |
} |
|
|
629 |
}, |
|
|
630 |
"outputs": [], |
|
|
631 |
"source": [ |
|
|
632 |
"class DiceBCEModule(Module):\n", |
|
|
633 |
" def __init__(self, eps:float=1e-5, from_logits=True):\n", |
|
|
634 |
" store_attr()\n", |
|
|
635 |
" \n", |
|
|
636 |
" def forward(self, inp:Tensor, targ:Tensor) -> Tensor:\n", |
|
|
637 |
" inp = inp.view(-1)\n", |
|
|
638 |
" targ = targ.view(-1)\n", |
|
|
639 |
" \n", |
|
|
640 |
" if self.from_logits: \n", |
|
|
641 |
" bce_loss = nn.BCEWithLogitsLoss()(inp, targ)\n", |
|
|
642 |
" inp = torch.sigmoid(inp)\n", |
|
|
643 |
" \n", |
|
|
644 |
" \n", |
|
|
645 |
" intersection = (inp * targ).sum() \n", |
|
|
646 |
" dice = (2.*intersection + self.eps)/(inp.sum() + targ.sum() + self.eps) \n", |
|
|
647 |
" \n", |
|
|
648 |
" return 0.5*(1 - dice) + 0.5*bce_loss\n", |
|
|
649 |
"\n", |
|
|
650 |
"\n", |
|
|
651 |
"class DiceBCELoss(BaseLoss):\n", |
|
|
652 |
" def __init__(self, *args, eps:float=1e-5, from_logits=True, thresh=0.5, **kwargs):\n", |
|
|
653 |
" super().__init__(DiceBCEModule, *args, eps=eps, from_logits=from_logits, flatten=False, is_2d=True, floatify=True, **kwargs)\n", |
|
|
654 |
" self.thresh = thresh\n", |
|
|
655 |
" \n", |
|
|
656 |
" def decodes(self, x:Tensor) -> Tensor:\n", |
|
|
657 |
" \"Converts model output to target format\"\n", |
|
|
658 |
" return (x>self.thresh).long()\n", |
|
|
659 |
"\n", |
|
|
660 |
" def activation(self, x:Tensor) -> Tensor:\n", |
|
|
661 |
" \"`nn.BCEWithLogitsLoss`'s fused activation function applied to model output\"\n", |
|
|
662 |
" return torch.sigmoid(x)\n", |
|
|
663 |
"\n", |
|
|
664 |
"# Source: https://www.kaggle.com/code/thedrcat/focal-multilabel-loss-in-pytorch-explained/notebook\n", |
|
|
665 |
"def focal_binary_cross_entropy(logits, targets, gamma=2, n=3):\n", |
|
|
666 |
" p = torch.sigmoid(logits)\n", |
|
|
667 |
" p = torch.where(targets >= 0.5, p, 1-p)\n", |
|
|
668 |
" logp = - torch.log(torch.clamp(p, 1e-4, 1-1e-4))\n", |
|
|
669 |
" loss = logp*((1-p)**gamma)\n", |
|
|
670 |
" loss = n*loss.mean()\n", |
|
|
671 |
" return loss\n", |
|
|
672 |
"\n", |
|
|
673 |
"class DiceFocalModule(Module):\n", |
|
|
674 |
" def __init__(self, eps:float=1e-5, from_logits=True, ws=[0.5, 0.5], gamma=2, n=3):\n", |
|
|
675 |
" store_attr()\n", |
|
|
676 |
" \n", |
|
|
677 |
" def forward(self, inp:Tensor, targ:Tensor) -> Tensor:\n", |
|
|
678 |
" inp = inp.view(-1)\n", |
|
|
679 |
" targ = targ.view(-1)\n", |
|
|
680 |
" \n", |
|
|
681 |
" if self.from_logits: \n", |
|
|
682 |
" focal_loss = focal_binary_cross_entropy(inp, targ, self.gamma, self.n)\n", |
|
|
683 |
" inp = torch.sigmoid(inp)\n", |
|
|
684 |
" \n", |
|
|
685 |
" \n", |
|
|
686 |
" intersection = (inp * targ).sum() \n", |
|
|
687 |
" dice = (2.*intersection + self.eps)/(inp.sum() + targ.sum() + self.eps) \n", |
|
|
688 |
" \n", |
|
|
689 |
" return self.ws[0]*(1 - dice) + self.ws[1]*focal_loss\n", |
|
|
690 |
" \n", |
|
|
691 |
"class DiceFocalLoss(BaseLoss):\n", |
|
|
692 |
" def __init__(self, *args, eps:float=1e-5, from_logits=True, ws=[0.5, 0.5], gamma=2, n=3, thresh=0.5, **kwargs):\n", |
|
|
693 |
" super().__init__(DiceFocalModule, *args, eps=eps, from_logits=from_logits, ws=ws, gamma=gamma, n=n, flatten=False, is_2d=True, floatify=True, **kwargs)\n", |
|
|
694 |
" self.thresh = thresh\n", |
|
|
695 |
" \n", |
|
|
696 |
" def decodes(self, x:Tensor) -> Tensor:\n", |
|
|
697 |
" \"Converts model output to target format\"\n", |
|
|
698 |
" return (x>self.thresh).long()\n", |
|
|
699 |
"\n", |
|
|
700 |
" def activation(self, x:Tensor) -> Tensor:\n", |
|
|
701 |
" \"`nn.BCEWithLogitsLoss`'s fused activation function applied to model output\"\n", |
|
|
702 |
" return torch.sigmoid(x)\n", |
|
|
703 |
"\n", |
|
|
704 |
"class FocalTverskyLossModule(Module):\n", |
|
|
705 |
" def __init__(self, eps:float=1e-5, from_logits=True, alpha=0.3, beta=0.7, gamma=3/4):\n", |
|
|
706 |
" store_attr()\n", |
|
|
707 |
" \n", |
|
|
708 |
" def forward(self, inp:Tensor, targ:Tensor) -> Tensor:\n", |
|
|
709 |
" inp = inp.view(-1)\n", |
|
|
710 |
" targ = targ.view(-1)\n", |
|
|
711 |
" \n", |
|
|
712 |
" if self.from_logits: \n", |
|
|
713 |
" inp = torch.sigmoid(inp)\n", |
|
|
714 |
" \n", |
|
|
715 |
" inp_0, inp_1 = inp, 1 - inp\n", |
|
|
716 |
" targ_0, targ_1 = targ, 1 - targ\n", |
|
|
717 |
" \n", |
|
|
718 |
" num = (inp_0 * targ_0).sum() \n", |
|
|
719 |
" denom = num + (self.alpha * (inp_0 * targ_1).sum()) + (self.beta * (inp_1 * targ_0).sum()) + self.eps\n", |
|
|
720 |
" loss = 1 - (num / denom)\n", |
|
|
721 |
" return loss**self.gamma \n", |
|
|
722 |
" \n", |
|
|
723 |
"class FocalTverskyLoss(BaseLoss):\n", |
|
|
724 |
" def __init__(self, *args, eps:float=1e-5, from_logits=True, alpha=0.3, beta=0.7, gamma=3/4, thresh=0.5, **kwargs):\n", |
|
|
725 |
" super().__init__(FocalTverskyLossModule, *args, eps=eps, from_logits=from_logits, alpha=alpha, beta=beta, gamma=gamma, flatten=False, is_2d=True, floatify=True, **kwargs)\n", |
|
|
726 |
" self.thresh = thresh\n", |
|
|
727 |
" \n", |
|
|
728 |
" def decodes(self, x:Tensor) -> Tensor:\n", |
|
|
729 |
" \"Converts model output to target format\"\n", |
|
|
730 |
" return (x>self.thresh).long()\n", |
|
|
731 |
"\n", |
|
|
732 |
" def activation(self, x:Tensor) -> Tensor:\n", |
|
|
733 |
" \"`nn.BCEWithLogitsLoss`'s fused activation function applied to model output\"\n", |
|
|
734 |
" return torch.sigmoid(x)\n", |
|
|
735 |
"\n", |
|
|
736 |
"def focal_binary_cross_entropy(logits, targets, gamma=2, n=3):\n", |
|
|
737 |
" p = torch.sigmoid(logits)\n", |
|
|
738 |
" p = torch.where(targets >= 0.5, p, 1-p)\n", |
|
|
739 |
" logp = - torch.log(torch.clamp(p, 1e-4, 1-1e-4))\n", |
|
|
740 |
" loss = logp*((1-p)**gamma)\n", |
|
|
741 |
" loss = n*loss.mean()\n", |
|
|
742 |
" return loss\n", |
|
|
743 |
"\n", |
|
|
744 |
"class ComboModule(Module):\n", |
|
|
745 |
" def __init__(self, eps:float=1e-5, from_logits=True, ws=[2, 3, 1], gamma=2, n=3):\n", |
|
|
746 |
" store_attr()\n", |
|
|
747 |
" \n", |
|
|
748 |
" def forward(self, inp:Tensor, targ:Tensor) -> Tensor:\n", |
|
|
749 |
" inp = inp.view(-1)\n", |
|
|
750 |
" targ = targ.view(-1)\n", |
|
|
751 |
" \n", |
|
|
752 |
" if self.from_logits: \n", |
|
|
753 |
" focal_loss = focal_binary_cross_entropy(inp, targ, self.gamma, self.n)\n", |
|
|
754 |
" bce_loss = nn.BCEWithLogitsLoss()(inp, targ)\n", |
|
|
755 |
" inp = torch.sigmoid(inp)\n", |
|
|
756 |
" \n", |
|
|
757 |
" intersection = (inp * targ).sum() \n", |
|
|
758 |
" dice = (2.*intersection + self.eps)/(inp.sum() + targ.sum() + self.eps) \n", |
|
|
759 |
" \n", |
|
|
760 |
" return self.ws[0]*(1 - dice) + self.ws[1]*focal_loss + self.ws[2]*bce_loss\n", |
|
|
761 |
" \n", |
|
|
762 |
"class ComboLoss(BaseLoss):\n", |
|
|
763 |
" def __init__(self, *args, eps:float=1e-5, from_logits=True, ws=[2, 3, 1], gamma=2, n=3, thresh=0.5, **kwargs):\n", |
|
|
764 |
" super().__init__(ComboModule, *args, eps=eps, from_logits=from_logits, ws=ws, gamma=gamma, n=n, flatten=False, is_2d=True, floatify=True, **kwargs)\n", |
|
|
765 |
" self.thresh = thresh\n", |
|
|
766 |
" \n", |
|
|
767 |
" def decodes(self, x:Tensor) -> Tensor:\n", |
|
|
768 |
" \"Converts model output to target format\"\n", |
|
|
769 |
" return (x>self.thresh).long()\n", |
|
|
770 |
"\n", |
|
|
771 |
" def activation(self, x:Tensor) -> Tensor:\n", |
|
|
772 |
" \"`nn.BCEWithLogitsLoss`'s fused activation function applied to model output\"\n", |
|
|
773 |
" return torch.sigmoid(x)" |
|
|
774 |
] |
|
|
775 |
}, |
|
|
776 |
{ |
|
|
777 |
"cell_type": "markdown", |
|
|
778 |
"metadata": {}, |
|
|
779 |
"source": [ |
|
|
780 |
"## Set up CUDA" |
|
|
781 |
] |
|
|
782 |
}, |
|
|
783 |
{ |
|
|
784 |
"cell_type": "code", |
|
|
785 |
"execution_count": 10, |
|
|
786 |
"metadata": {}, |
|
|
787 |
"outputs": [ |
|
|
788 |
{ |
|
|
789 |
"name": "stdout", |
|
|
790 |
"output_type": "stream", |
|
|
791 |
"text": [ |
|
|
792 |
"device_name: GeForce RTX 2080 Ti\n", |
|
|
793 |
"device_capability: (7, 5)\n", |
|
|
794 |
"device_properties: _CudaDeviceProperties(name='GeForce RTX 2080 Ti', major=7, minor=5, total_memory=11019MB, multi_processor_count=68)\n", |
|
|
795 |
"current_device: 0\n", |
|
|
796 |
"\n", |
|
|
797 |
"Available Device IDs: (0, 1, 2, 3)\n", |
|
|
798 |
"Device 0: 10620 MB free\n", |
|
|
799 |
"Device 1: 7899 MB free\n", |
|
|
800 |
"Device 2: 16274 MB free\n", |
|
|
801 |
"Device 3: 9241 MB free\n" |
|
|
802 |
] |
|
|
803 |
} |
|
|
804 |
], |
|
|
805 |
"source": [ |
|
|
806 |
"# Select Cuda GPU device\n", |
|
|
807 |
"def get_memory_free_MiB(gpu_index):\n", |
|
|
808 |
" pynvml.nvmlInit()\n", |
|
|
809 |
" handle = pynvml.nvmlDeviceGetHandleByIndex(int(gpu_index))\n", |
|
|
810 |
" mem_info = pynvml.nvmlDeviceGetMemoryInfo(handle)\n", |
|
|
811 |
" return mem_info.free // 1024 ** 2\n", |
|
|
812 |
"\n", |
|
|
813 |
"device_count = torch.cuda.device_count()\n", |
|
|
814 |
"current_device = torch.cuda.current_device()\n", |
|
|
815 |
"device_name = torch.cuda.get_device_name(current_device)\n", |
|
|
816 |
"device_capability = torch.cuda.get_device_capability(current_device)\n", |
|
|
817 |
"device_properties = torch.cuda.get_device_properties(current_device)\n", |
|
|
818 |
"is_available = torch.cuda.is_available()\n", |
|
|
819 |
"device_cuda = torch.device(\"cuda\")\n", |
|
|
820 |
"devices_tup = tuple(range(device_count))\n", |
|
|
821 |
"\n", |
|
|
822 |
"print('device_name: {device_name}'.format(device_name=device_name))\n", |
|
|
823 |
"print('device_capability: {device_capability}'.format(device_capability=device_capability))\n", |
|
|
824 |
"print('device_properties: {device_properties}'.format(device_properties=device_properties))\n", |
|
|
825 |
"print('current_device: {current_device}'.format(current_device=current_device))\n", |
|
|
826 |
"print(\"\\nAvailable Device IDs: \", devices_tup)\n", |
|
|
827 |
"\n", |
|
|
828 |
"for device_id in devices_tup:\n", |
|
|
829 |
" print(f\"Device {device_id}: {get_memory_free_MiB(device_id)} MB free\")" |
|
|
830 |
] |
|
|
831 |
}, |
|
|
832 |
{ |
|
|
833 |
"cell_type": "code", |
|
|
834 |
"execution_count": 11, |
|
|
835 |
"metadata": {}, |
|
|
836 |
"outputs": [ |
|
|
837 |
{ |
|
|
838 |
"name": "stdout", |
|
|
839 |
"output_type": "stream", |
|
|
840 |
"text": [ |
|
|
841 |
"\n", |
|
|
842 |
"Successfully selected device 2\n" |
|
|
843 |
] |
|
|
844 |
} |
|
|
845 |
], |
|
|
846 |
"source": [ |
|
|
847 |
"device_id = 2\n", |
|
|
848 |
"torch.backends.cudnn.benchmark = True\n", |
|
|
849 |
"\n", |
|
|
850 |
"if device_id is not None:\n", |
|
|
851 |
" torch.cuda.set_device(device_id)\n", |
|
|
852 |
" current_device = torch.cuda.current_device()\n", |
|
|
853 |
" if current_device == device_id:\n", |
|
|
854 |
" print(f\"\\nSuccessfully selected device {device_id}\")\n", |
|
|
855 |
" else:\n", |
|
|
856 |
" print(f\"Error: Couldn't change device from {current_device} to {device_id}\")\n" |
|
|
857 |
] |
|
|
858 |
}, |
|
|
859 |
{ |
|
|
860 |
"cell_type": "markdown", |
|
|
861 |
"metadata": {}, |
|
|
862 |
"source": [ |
|
|
863 |
"## Baseline train using SMP" |
|
|
864 |
] |
|
|
865 |
}, |
|
|
866 |
{ |
|
|
867 |
"cell_type": "code", |
|
|
868 |
"execution_count": 12, |
|
|
869 |
"metadata": { |
|
|
870 |
"ExecuteTime": { |
|
|
871 |
"end_time": "2022-06-28T03:46:49.089093Z", |
|
|
872 |
"start_time": "2022-06-28T03:46:49.089085Z" |
|
|
873 |
} |
|
|
874 |
}, |
|
|
875 |
"outputs": [], |
|
|
876 |
"source": [ |
|
|
877 |
"def build_model(encoder_name, in_c=3, classes=3, weights=\"imagenet\"):\n", |
|
|
878 |
" model = smp.Unet(\n", |
|
|
879 |
" encoder_name=encoder_name, \n", |
|
|
880 |
" encoder_weights=weights, \n", |
|
|
881 |
" in_channels=in_c, \n", |
|
|
882 |
" classes=classes, \n", |
|
|
883 |
" activation=None\n", |
|
|
884 |
" )\n", |
|
|
885 |
" return model\n", |
|
|
886 |
"\n", |
|
|
887 |
"# Split any of model parameters from smp into encoder and decoder, \n", |
|
|
888 |
"# so that we can freeze and unfreeze encoder layers.\n", |
|
|
889 |
"def smp_splitter(model):\n", |
|
|
890 |
" model_layers = list(model.children())\n", |
|
|
891 |
" encoder_params = params(model_layers[0])\n", |
|
|
892 |
" decoder_params = params(model_layers[1]) + params(model_layers[2])\n", |
|
|
893 |
" return L(encoder_params, decoder_params)" |
|
|
894 |
] |
|
|
895 |
}, |
|
|
896 |
{ |
|
|
897 |
"cell_type": "code", |
|
|
898 |
"execution_count": 13, |
|
|
899 |
"metadata": {}, |
|
|
900 |
"outputs": [ |
|
|
901 |
{ |
|
|
902 |
"name": "stderr", |
|
|
903 |
"output_type": "stream", |
|
|
904 |
"text": [ |
|
|
905 |
"/home/kgeorgio/miniconda3/envs/gi-tract/lib/python3.7/site-packages/torch/_tensor.py:575: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.\n", |
|
|
906 |
"To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at /opt/conda/conda-bld/pytorch_1631630742027/work/aten/src/ATen/native/BinaryOps.cpp:467.)\n", |
|
|
907 |
" return torch.floor_divide(self, other)\n" |
|
|
908 |
] |
|
|
909 |
} |
|
|
910 |
], |
|
|
911 |
"source": [ |
|
|
912 |
"dev_df = train_df.sample(frac=0.2)\n", |
|
|
913 |
"up_size = (320, 384)\n", |
|
|
914 |
"tfms = [[partial(get_25D_image, up_size=up_size), PILImage.create],\n", |
|
|
915 |
" [partial(get_mask, up_size=up_size), PILMask.create]] # the pipeline\n", |
|
|
916 |
"\n", |
|
|
917 |
"splits = RandomSplitter()(dev_df)\n", |
|
|
918 |
"# https://docs.fast.ai/tutorial.albumentations.html\n", |
|
|
919 |
"albu_aug = AlbumentationsTransform(get_train_aug(up_size), \n", |
|
|
920 |
" get_test_aug(up_size))\n", |
|
|
921 |
" \n", |
|
|
922 |
"# https://docs.fast.ai/data.core.html#Datasets\n", |
|
|
923 |
"dsets = Datasets(train_df, tfms, splits=splits)\n", |
|
|
924 |
"# https://docs.fast.ai/data.load.html#DataLoader\n", |
|
|
925 |
"dls = dsets.dataloaders(bs=16, \n", |
|
|
926 |
" after_item=[albu_aug, ToTensor], \n", |
|
|
927 |
" after_batch=[IntToFloatTensor(div_mask=255), \n", |
|
|
928 |
" Normalize.from_stats(*imagenet_stats)],\n", |
|
|
929 |
" device=device_id)\n", |
|
|
930 |
"# https://smp.readthedocs.io/en/latest/encoders.html\n", |
|
|
931 |
"model = build_model('efficientnet-b0', in_c=3, classes=3, weights=\"imagenet\")\n", |
|
|
932 |
"model = model.cuda(device_id)\n", |
|
|
933 |
"metrics = [\n", |
|
|
934 |
" dice_coeff_adj, \n", |
|
|
935 |
" hd_dist_adj, \n", |
|
|
936 |
" custom_metric_adj\n", |
|
|
937 |
" ]\n", |
|
|
938 |
"loss_func = ComboLoss()\n", |
|
|
939 |
"splitter = smp_splitter" |
|
|
940 |
] |
|
|
941 |
}, |
|
|
942 |
{ |
|
|
943 |
"cell_type": "code", |
|
|
944 |
"execution_count": 14, |
|
|
945 |
"metadata": { |
|
|
946 |
"ExecuteTime": { |
|
|
947 |
"end_time": "2022-06-28T03:46:49.091707Z", |
|
|
948 |
"start_time": "2022-06-28T03:46:49.091699Z" |
|
|
949 |
} |
|
|
950 |
}, |
|
|
951 |
"outputs": [ |
|
|
952 |
{ |
|
|
953 |
"data": { |
|
|
954 |
"text/html": [ |
|
|
955 |
"\n", |
|
|
956 |
"<style>\n", |
|
|
957 |
" /* Turns off some styling */\n", |
|
|
958 |
" progress {\n", |
|
|
959 |
" /* gets rid of default border in Firefox and Opera. */\n", |
|
|
960 |
" border: none;\n", |
|
|
961 |
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n", |
|
|
962 |
" background-size: auto;\n", |
|
|
963 |
" }\n", |
|
|
964 |
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n", |
|
|
965 |
" background: #F44336;\n", |
|
|
966 |
" }\n", |
|
|
967 |
"</style>\n" |
|
|
968 |
], |
|
|
969 |
"text/plain": [ |
|
|
970 |
"<IPython.core.display.HTML object>" |
|
|
971 |
] |
|
|
972 |
}, |
|
|
973 |
"metadata": {}, |
|
|
974 |
"output_type": "display_data" |
|
|
975 |
}, |
|
|
976 |
{ |
|
|
977 |
"data": { |
|
|
978 |
"text/html": [ |
|
|
979 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
980 |
" <thead>\n", |
|
|
981 |
" <tr style=\"text-align: left;\">\n", |
|
|
982 |
" <th>epoch</th>\n", |
|
|
983 |
" <th>train_loss</th>\n", |
|
|
984 |
" <th>valid_loss</th>\n", |
|
|
985 |
" <th>dice_coeff_adj</th>\n", |
|
|
986 |
" <th>hd_dist_adj</th>\n", |
|
|
987 |
" <th>custom_metric_adj</th>\n", |
|
|
988 |
" <th>time</th>\n", |
|
|
989 |
" </tr>\n", |
|
|
990 |
" </thead>\n", |
|
|
991 |
" <tbody>\n", |
|
|
992 |
" <tr>\n", |
|
|
993 |
" <td>0</td>\n", |
|
|
994 |
" <td>1.383521</td>\n", |
|
|
995 |
" <td>1.162622</td>\n", |
|
|
996 |
" <td>0.383626</td>\n", |
|
|
997 |
" <td>0.797801</td>\n", |
|
|
998 |
" <td>0.632131</td>\n", |
|
|
999 |
" <td>01:41</td>\n", |
|
|
1000 |
" </tr>\n", |
|
|
1001 |
" </tbody>\n", |
|
|
1002 |
"</table>" |
|
|
1003 |
], |
|
|
1004 |
"text/plain": [ |
|
|
1005 |
"<IPython.core.display.HTML object>" |
|
|
1006 |
] |
|
|
1007 |
}, |
|
|
1008 |
"metadata": {}, |
|
|
1009 |
"output_type": "display_data" |
|
|
1010 |
}, |
|
|
1011 |
{ |
|
|
1012 |
"data": { |
|
|
1013 |
"text/html": [ |
|
|
1014 |
"\n", |
|
|
1015 |
"<style>\n", |
|
|
1016 |
" /* Turns off some styling */\n", |
|
|
1017 |
" progress {\n", |
|
|
1018 |
" /* gets rid of default border in Firefox and Opera. */\n", |
|
|
1019 |
" border: none;\n", |
|
|
1020 |
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n", |
|
|
1021 |
" background-size: auto;\n", |
|
|
1022 |
" }\n", |
|
|
1023 |
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n", |
|
|
1024 |
" background: #F44336;\n", |
|
|
1025 |
" }\n", |
|
|
1026 |
"</style>\n" |
|
|
1027 |
], |
|
|
1028 |
"text/plain": [ |
|
|
1029 |
"<IPython.core.display.HTML object>" |
|
|
1030 |
] |
|
|
1031 |
}, |
|
|
1032 |
"metadata": {}, |
|
|
1033 |
"output_type": "display_data" |
|
|
1034 |
}, |
|
|
1035 |
{ |
|
|
1036 |
"data": { |
|
|
1037 |
"text/html": [ |
|
|
1038 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
1039 |
" <thead>\n", |
|
|
1040 |
" <tr style=\"text-align: left;\">\n", |
|
|
1041 |
" <th>epoch</th>\n", |
|
|
1042 |
" <th>train_loss</th>\n", |
|
|
1043 |
" <th>valid_loss</th>\n", |
|
|
1044 |
" <th>dice_coeff_adj</th>\n", |
|
|
1045 |
" <th>hd_dist_adj</th>\n", |
|
|
1046 |
" <th>custom_metric_adj</th>\n", |
|
|
1047 |
" <th>time</th>\n", |
|
|
1048 |
" </tr>\n", |
|
|
1049 |
" </thead>\n", |
|
|
1050 |
" <tbody>\n", |
|
|
1051 |
" <tr>\n", |
|
|
1052 |
" <td>0</td>\n", |
|
|
1053 |
" <td>0.814299</td>\n", |
|
|
1054 |
" <td>0.605600</td>\n", |
|
|
1055 |
" <td>0.621061</td>\n", |
|
|
1056 |
" <td>0.814855</td>\n", |
|
|
1057 |
" <td>0.737338</td>\n", |
|
|
1058 |
" <td>01:59</td>\n", |
|
|
1059 |
" </tr>\n", |
|
|
1060 |
" </tbody>\n", |
|
|
1061 |
"</table>" |
|
|
1062 |
], |
|
|
1063 |
"text/plain": [ |
|
|
1064 |
"<IPython.core.display.HTML object>" |
|
|
1065 |
] |
|
|
1066 |
}, |
|
|
1067 |
"metadata": {}, |
|
|
1068 |
"output_type": "display_data" |
|
|
1069 |
} |
|
|
1070 |
], |
|
|
1071 |
"source": [ |
|
|
1072 |
"# https://docs.fast.ai/learner.html#Learner\n", |
|
|
1073 |
"learn = Learner(dls, \n", |
|
|
1074 |
" model,\n", |
|
|
1075 |
" metrics=metrics, \n", |
|
|
1076 |
" loss_func=loss_func, \n", |
|
|
1077 |
" splitter=splitter).to_fp16()\n", |
|
|
1078 |
"\n", |
|
|
1079 |
"#https://docs.fast.ai/callback.schedule.html#Learner.fine_tune\n", |
|
|
1080 |
"learn.freeze()\n", |
|
|
1081 |
"learn.fine_tune(1, 1e-2)\n", |
|
|
1082 |
"learn.export('test_model.pkl')" |
|
|
1083 |
] |
|
|
1084 |
}, |
|
|
1085 |
{ |
|
|
1086 |
"cell_type": "markdown", |
|
|
1087 |
"metadata": { |
|
|
1088 |
"pycharm": { |
|
|
1089 |
"name": "#%%\n" |
|
|
1090 |
} |
|
|
1091 |
}, |
|
|
1092 |
"source": [ |
|
|
1093 |
"## Use DynamicUnet" |
|
|
1094 |
] |
|
|
1095 |
}, |
|
|
1096 |
{ |
|
|
1097 |
"cell_type": "code", |
|
|
1098 |
"execution_count": 15, |
|
|
1099 |
"metadata": {}, |
|
|
1100 |
"outputs": [], |
|
|
1101 |
"source": [ |
|
|
1102 |
"def timm_model_sizes(encoder, img_size):\n", |
|
|
1103 |
" sizes = []\n", |
|
|
1104 |
" for layer in encoder.feature_info:\n", |
|
|
1105 |
" sizes.append(torch.Size([1, layer['num_chs'], img_size[0]//layer['reduction'], img_size[1]//layer['reduction']]))\n", |
|
|
1106 |
" return sizes\n", |
|
|
1107 |
"\n", |
|
|
1108 |
"\n", |
|
|
1109 |
"def get_timm_output_layers(encoder):\n", |
|
|
1110 |
" outputs = []\n", |
|
|
1111 |
" for layer in encoder.feature_info:\n", |
|
|
1112 |
" # Converts 'blocks.0.0' to ['blocks', '0', '0']\n", |
|
|
1113 |
" attrs = layer['module'].split('.')\n", |
|
|
1114 |
" output_layer = getattr(encoder, attrs[0])[int(attrs[1])][int(attrs[2])]\n", |
|
|
1115 |
" outputs.append(output_layer)\n", |
|
|
1116 |
" return outputs\n", |
|
|
1117 |
"\n", |
|
|
1118 |
"\n", |
|
|
1119 |
"class DynamicTimmUnet(SequentialEx):\n", |
|
|
1120 |
" \"Create a U-Net from a given architecture in timm.\"\n", |
|
|
1121 |
" def __init__(self, encoder, n_out, img_size, blur=False, blur_final=True, self_attention=False,\n", |
|
|
1122 |
" y_range=None, last_cross=True, bottle=False, act_cls=defaults.activation,\n", |
|
|
1123 |
" init=nn.init.kaiming_normal_, norm_type=None, **kwargs):\n", |
|
|
1124 |
" imsize = img_size\n", |
|
|
1125 |
" sizes = timm_model_sizes(encoder, img_size)\n", |
|
|
1126 |
" sz_chg_idxs = list(reversed(range(len(sizes))))\n", |
|
|
1127 |
" outputs = list(reversed(get_timm_output_layers(encoder)))\n", |
|
|
1128 |
" self.sfs = hook_outputs(outputs, detach=False)\n", |
|
|
1129 |
" \n", |
|
|
1130 |
" # cut encoder\n", |
|
|
1131 |
" encoder = nn.Sequential(*list(encoder.children()))[:-5]\n", |
|
|
1132 |
" \n", |
|
|
1133 |
" x = dummy_eval(encoder, imsize).detach()\n", |
|
|
1134 |
"\n", |
|
|
1135 |
" ni = sizes[-1][1]\n", |
|
|
1136 |
" middle_conv = nn.Sequential(ConvLayer(ni, ni*2, act_cls=act_cls, norm_type=norm_type, **kwargs),\n", |
|
|
1137 |
" ConvLayer(ni*2, ni, act_cls=act_cls, norm_type=norm_type, **kwargs)).eval()\n", |
|
|
1138 |
" x = middle_conv(x)\n", |
|
|
1139 |
" layers = [encoder, BatchNorm(ni), nn.ReLU(), middle_conv]\n", |
|
|
1140 |
"\n", |
|
|
1141 |
" for i,idx in enumerate(sz_chg_idxs):\n", |
|
|
1142 |
" not_final = i!=len(sz_chg_idxs)-1\n", |
|
|
1143 |
" up_in_c, x_in_c = int(x.shape[1]), int(sizes[idx][1])\n", |
|
|
1144 |
" do_blur = blur and (not_final or blur_final)\n", |
|
|
1145 |
" sa = self_attention and (i==len(sz_chg_idxs)-3)\n", |
|
|
1146 |
" unet_block = UnetBlock(up_in_c, x_in_c, self.sfs[i], final_div=not_final, blur=do_blur, self_attention=sa,\n", |
|
|
1147 |
" act_cls=act_cls, init=init, norm_type=norm_type, **kwargs).eval()\n", |
|
|
1148 |
" layers.append(unet_block)\n", |
|
|
1149 |
" x = unet_block(x)\n", |
|
|
1150 |
"\n", |
|
|
1151 |
" ni = x.shape[1]\n", |
|
|
1152 |
" if imsize != sizes[0][-2:]: layers.append(PixelShuffle_ICNR(ni, act_cls=act_cls, norm_type=norm_type))\n", |
|
|
1153 |
" layers.append(ResizeToOrig())\n", |
|
|
1154 |
" if last_cross:\n", |
|
|
1155 |
" layers.append(MergeLayer(dense=True))\n", |
|
|
1156 |
" ni += in_channels(encoder)\n", |
|
|
1157 |
" layers.append(ResBlock(1, ni, ni//2 if bottle else ni, act_cls=act_cls, norm_type=norm_type, **kwargs))\n", |
|
|
1158 |
" layers += [ConvLayer(ni, n_out, ks=1, act_cls=None, norm_type=norm_type, **kwargs)]\n", |
|
|
1159 |
" apply_init(nn.Sequential(layers[3], layers[-2]), init)\n", |
|
|
1160 |
" #apply_init(nn.Sequential(layers[2]), init)\n", |
|
|
1161 |
" if y_range is not None: layers.append(SigmoidRange(*y_range))\n", |
|
|
1162 |
" layers.append(ToTensorBase())\n", |
|
|
1163 |
" super().__init__(*layers)\n", |
|
|
1164 |
"\n", |
|
|
1165 |
" def __del__(self):\n", |
|
|
1166 |
" if hasattr(self, \"sfs\"): self.sfs.remove()\n", |
|
|
1167 |
" \n", |
|
|
1168 |
" \n", |
|
|
1169 |
"def dynamic_unet_splitter(model):\n", |
|
|
1170 |
" return L(model[0], model[1:]).map(params)" |
|
|
1171 |
] |
|
|
1172 |
}, |
|
|
1173 |
{ |
|
|
1174 |
"cell_type": "code", |
|
|
1175 |
"execution_count": 16, |
|
|
1176 |
"metadata": {}, |
|
|
1177 |
"outputs": [ |
|
|
1178 |
{ |
|
|
1179 |
"data": { |
|
|
1180 |
"text/html": [ |
|
|
1181 |
"\n", |
|
|
1182 |
"<style>\n", |
|
|
1183 |
" /* Turns off some styling */\n", |
|
|
1184 |
" progress {\n", |
|
|
1185 |
" /* gets rid of default border in Firefox and Opera. */\n", |
|
|
1186 |
" border: none;\n", |
|
|
1187 |
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n", |
|
|
1188 |
" background-size: auto;\n", |
|
|
1189 |
" }\n", |
|
|
1190 |
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n", |
|
|
1191 |
" background: #F44336;\n", |
|
|
1192 |
" }\n", |
|
|
1193 |
"</style>\n" |
|
|
1194 |
], |
|
|
1195 |
"text/plain": [ |
|
|
1196 |
"<IPython.core.display.HTML object>" |
|
|
1197 |
] |
|
|
1198 |
}, |
|
|
1199 |
"metadata": {}, |
|
|
1200 |
"output_type": "display_data" |
|
|
1201 |
}, |
|
|
1202 |
{ |
|
|
1203 |
"data": { |
|
|
1204 |
"text/html": [], |
|
|
1205 |
"text/plain": [ |
|
|
1206 |
"<IPython.core.display.HTML object>" |
|
|
1207 |
] |
|
|
1208 |
}, |
|
|
1209 |
"metadata": {}, |
|
|
1210 |
"output_type": "display_data" |
|
|
1211 |
}, |
|
|
1212 |
{ |
|
|
1213 |
"data": { |
|
|
1214 |
"text/plain": [ |
|
|
1215 |
"SuggestedLRs(valley=0.00013182566908653826)" |
|
|
1216 |
] |
|
|
1217 |
}, |
|
|
1218 |
"execution_count": 16, |
|
|
1219 |
"metadata": {}, |
|
|
1220 |
"output_type": "execute_result" |
|
|
1221 |
}, |
|
|
1222 |
{ |
|
|
1223 |
"data": { |
|
|
1224 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtpklEQVR4nO3deXxcdbn48c8zk8m+NUu3pCVt09J9syBYkNqC7AVFQC+uPxSRe0FQ4cq9ioD7dYGLioKieEXBWlDKorIWFBDbQlvpQps0aZtumSTNMpM9eX5/zKSEkKRJO2fOLM/79ZpXZ845c87z7bTzzHc536+oKsYYY5KXx+0AjDHGuMsSgTHGJDlLBMYYk+QsERhjTJKzRGCMMUnOEoExxiS5FLcDGK2ioiItKytzOwxjjIkrGzZsqFPV4sH2xV0iKCsrY/369W6HYYwxcUVEdg+1z5qGjDEmyVkiMMaYJGeJwBhjklzc9REMpquri5qaGtrb290OxTXp6emUlpbi8/ncDsUYE2cSIhHU1NSQk5NDWVkZIuJ2OFGnqtTX11NTU8OUKVPcDscYE2cSommovb2dwsLCpEwCACJCYWFhUteIjDHHLiESAZC0SaBPspffmESmqjy2aT/7G9scOX/CJIJ4kp2dDUB1dTVz5851ORpjTKw70NTOtQ++znPbax05f3Imgs2r4I65cGt+6M/Nq9yOyBhjhrSzNgDA9LHZjpw/+RLB5lXw2HXQtBfQ0J+PXXdcyeDLX/4yP/nJT468vvXWW/nGN77BihUrWLx4MfPmzePRRx8d9hw9PT3ceOONnHTSScyfP5977rkHgI9//OP86U9/OnLcFVdccdRzGWMSy85DLQBMH5fjyPmTLxE8ezt0DWhn62oLbT9Gl19+OatWvZVIVq1axSc+8Qn++Mc/8tprr/H888/zxS9+keGWBb3vvvvIy8tj3bp1rFu3jp///OdUVVVx5ZVXcv/99wPQ1NTEyy+/zPnnn3/MsRpj4k9FbYDCrFQKslIdOX9CDB8dlaaa0W0fgUWLFlFbW8v+/fvx+/2MGTOG8ePHc8MNN/Diiy/i8XjYt28fhw4dYvz48YOe46mnnmLz5s2sXr06FE5TEzt37uT9738/11xzDX6/n4cffphLLrmElJTk+9iMSWY7awOUO9QsBMmYCPJKw81Cg2w/DpdeeimrV6/m4MGDXH755fz2t7/F7/ezYcMGfD4fZWVlww7vVFV+9KMfcfbZZ79j38c//nEeeOABHnroIX71q18dV5zGmPiiquw41MJFCyc6do3kaxpacQv4Mt6+zZcR2n4cLr/8ch566CFWr17NpZdeSlNTE2PHjsXn8/H888+ze/eQE/8BcPbZZ/PTn/6Urq4uAHbs2EEwGATgk5/8JHfeeScAs2fPPq44jTHxpbalg5b2bqaPdaZ/AJKxRjD/stCfz94eag7KKw0lgb7tx2jOnDm0tLRQUlLChAkTuOKKK7jwwguZN28eS5YsYebMmcO+/9Of/jTV1dUsXrwYVaW4uPhIJ/G4ceOYNWsWF1988XHFaIyJPzsPOTtiCECG68CMRUuWLNGB6xFs27aNWbNmuRSR81pbW5k3bx6vvfYaeXl5Qx6X6H8PxiSjX71UxW2PbWXdf59JcU7aMZ9HRDao6pLB9iVf01CceeaZZ5g1axbXXnvtsEnAGJOYdtYGyM/0UZTtzIghSMamoThz5plnHrV/wRiTuCoOBZg+NtvRaWSsRmCMMTFKVdlR20K5gx3FkECJIN76OiIt2ctvTCKqD3bS2NrlaEcxJEgiSE9Pp76+Pmm/DPvWI0hPT3c7FGNMBB0ZMTTO2UTgeB+BiHiB9cA+Vb1giGMuAVYDJ6nq+sGOGU5paSk1NTX4/f7jCzaO9a1QZoxJHBW14TmGHG4aikZn8eeBbUDuYDtFJCd8zKvHegGfz2crcxljEs7O2gA5aSmMyz32YaMj4WjTkIiUAucDvxjmsK8D3wVseS1jjOln56EA5eOcHTEEztcI7gRuAgat14jIYmCSqj4hIjc6HMuwenqV1/ccpqouSEOwk4ZgJ/XBTnp7ldIxGZSOyTzy57i8NNJSvG97v6rSEOxkV10Qj8CJ43PJTrPRucaYY7ezNsDymcWOX8exbyoRuQCoVdUNIrJskP0e4IfAJ0dwrquAqwAmT54csRi7enp5pbKev2w5yFNbDlIX6DyyLy3FQ2FWKiLCnza20TugH7ooO40JeemMy02jLtDJLn+A5vbutx1TVpjJrAm5lI/NJjsthcxULxmpKaSmePC3dFBzuJV9h9vY19hGZqqXKUVZTC3OZkpRFvkZPg63dlIX6KQ+0ElrVzflxdnMLcmjfGw2Pm/kKnO9vUpjWxcNwQ46unspyEplTGYq6b53JrvOnl56ewc/T9+PlhSPkBLB+IxJRoeDndQFOhzvHwBnawRLgZUich6QDuSKyAOq+tHw/hxgLrA2XO0ZD6wRkZUDO4xV9V7gXghNMXEswVT6A6yramBPQyu7G1rZU99KVV2QQEc3male3jdzLOfOHc/8knwKslPJSvUeqY519fRysKmdvYdbqTncxoHGdg42t7G/sZ2aw20UZKVy4YKJTC3OZmpxFt09yrYDzUcef9lykMEGNGWmeikdk0FJfgbBzh6e2+5n1frBp8P2eYWuntBJ0lI8zByfw5isVHxeD6leDylewesRBMEjoS9lQVA0/HcIvQqtnd0EOrppbu8m0N5FY2sXh1s735HoALJSveRm+Ojs7qWtq4f2rp5BjxtMZqqXvAwfuek+8jJ8ZKenkJ2W8taf/R/pKWSkevF5PPi8oSTi8woeEUTAI6HnmalecsLvt0RjEl2FPzRiqNzhEUPgYCJQ1ZuBmwHCNYIv9UsCqGoTUNT3WkTWho8Z9aihkXh22yG+9eR2UjxC6ZgMJhdmsWhyPqdPL+b06UXv+PXbn8/rYVJBJpMKMkd8vbNmjzvyvLdXaevqobWzh9bObjq6eynOTiM/0/eOtr/m9i6q/EGa2roozE6lKDuNMZmpeD1CVV2QLfubeGNfE1sPNNMQ7KSzu5fuXqWrp5funr4vfaVXQVEEOfJLve/LNDs9hdz0FCbmpZOfmUphViqF2aFFL9JSPDQEQ8mhIdhJc1sXqSkeMnxeMlK9pPu8eD3vbK/U8PVUobtHaW7vormti+b2LprauqhtaaeqroeW9m5a2rvo6B6iWjFCmalexmSG4g7Fn0ZxThrjctIYn5fOuNx0xuelMzYnfdB4jYl1O/pWJXP4HgJwYYoJEbkdWK+qa6J53UsWl3Lu3AlMyEuP+q9Jj0fISkshKy0FGL73Pzfdx4JJ+YPuKx+bTfnYbC5aWBL5IKOsu6eXYEcPLR1dBDq6ae3sobtH6e7ppTOc1Ho1VJ9RVXp6IdjZfSSRtLR309jaRV2gA3+gg20HWqgLdNA9oMqS6vWEE38mkwsyGZuTRm64ppKTnkJBViqTCzIpCDcDGhMrdh4KkJXqpSQ/4+gHH6eoJAJVXQusDT8fdOJ/VV3mZAyF2WkUOnkBMyopXg95mR7yMn0RO2dvr9LQ2snBpnYONbdzoCnUdLenIciehlY27D5My4B+nD5ZqV4mFYSSxZSirLcexVkUZ6dZkjBRVxFelSwa//ZsWItJGB6PUJSdRlF2GnNLBp+ptbO7l5b2Lprbu2lu68Lf0sHew63srm9lb0Mru+qCrH3TT2fPW01XxTlpLJqUz6LJY1g0OZ8FpflkpA7dlGhMJOysbeG0cudHDIElApNkUlM8odph9tBNdD29yv7GNnbVBdnlD/CvmiZe39vIU1sPAaHO+tOnF3HmrHEsnzWWsTk2tYeJrKa2Lg41dzg+tUQfSwTGDOD1yJHBAWfMeOsXWUOwk417D/Pijjqe3nqIZ7bVArBocj4rF0zk/PkTLCmYiKiodX5Vsv4sERgzQgVZqSyfOY7lM8fxtQtns/1gC89sPcSTbxzktse28vXHt7K0vIgLF0zk1KmFlI7JsL4Fc0z65hgqt0RgTOwSEWZNyGXWhFyuXTGdnYdaWLNpP2s27eem1ZsByM/0Ma8kj7kleZxWXsQpUwttKKsZkYraAKkpHkrHjHzI+vFIiDWLjYkVqsrWA81s3NvIG/ua2FzTxJsHW+juVcbmpHHhgolctHAi80ryrLZghvT/7l/H/sY2/nL9eyN2zuHWLLYagTERJCLMmZjHnIlvjVpq7+rhue21/On1ffzmld3c9/cqZo7P4Svnz+a0tufg2duhqQbySmHFLTD/MhdLYGJBRW2A+aXRW6PcEoExDkv3eTlv3gTOmzeBptYunnzjAD9dW8mqX/2Ak9LuI007Qgc27YXHrgs9t2SQtNq7eth7uJUPLIrejaM2YYsxUZSX6eMjJ0/mqRveyzdyHnkrCfTpagvVEEzSqqoLohq9jmKwGoExrkj3eUnvODT4zqbBJx40yaFv6Oi04uglAqsRGOOWvMGXFu3Njf+5pMyxq/QHEIGpxVlRu6YlAmPcsuIW8L19QrFWTeUO/QiNrZ1DvMkkuoraAJPGZA47I3KkWSIwxi3zL4ML74K8SYBA3iR2vvtb3NPwLj587z/wt3Qc9RQm8VT6g0yLYm0ArI/AGHfNv+xtI4QWAPdN93PV/23gs79Zz0NXnUpqiv1eSxY9vcouf4DTyqM7V7L9CzMmxpw+vZjvXTqf1/Y08q0nt7kdjomi/Y1tdHT3RrWjGCwRGBOTLpg/kU8tLeP+l6t5bNN+t8MxUdI3YiiaQ0fBEoExMevmc2fxrhPG8J8Pbz4yCZlJbG4MHQVLBMbErNQUDz/5t8Vk+Lxc/cBrBDsGX13NJI5Kf4DCrFTGZKVG9bqWCIyJYePz0rnrI4vY5Q9w08ObibdJIs3oVNQGmBblZiGwRGBMzFtaXsSNZ8/kic0HuHttpdvhGAdV+gNRbxYCSwTGxIWrz5jKygUT+d5f3+SpLQfdDsc4oD7QweHWrqh3FIMlAmPigojwPx+az/zSPG74/UbePGidx4mm0h8EiPrNZGCJwJi4ke7zcu/HlpCZlsKn/28dh4M2DUUicWvoKFgiMCaujM9L596PvYtDzR1c89vX6O7pdTskEyEVtQEyfF4m5mUc/eAIs0RgTJxZNHkM3/rAPF7ZVc89L+5yOxwTIZX+AFOLs/C4sK61JQJj4tAli0s4f94E7nxmB9sONLsdjomAitqAK81CYInAmLgkInz94rnkZaTyhVWb6Oy2JqJ41tbZw77GNleGjkIUEoGIeEXkdRF5fJB9XxCRrSKyWUSeFZETnI7HmERRkJXKtz84j20Hmrnr2Z1uh2OOQ6XfvY5iiE6N4PPAUFMovg4sUdX5wGrgf6IQjzEJ46zZ4/jQu0q5e20Fr+857HY45hj1JYKErBGISClwPvCLwfar6vOq2hp++Q9g8LX7jDFDuuXC2YzPTeeLf9hEe1eP2+GYY1BZG8AjUFaU6cr1na4R3AncBIykAfNK4M+ORmNMAspN9/E/H1rALn+Q7/x5u9vhmGNQ4Q8wuSCTtJToLU/Zn2OJQEQuAGpVdcMIjv0osAT43hD7rxKR9SKy3u/3RzhSY+LfadOL+OR7QusXvLDD/o/Em8raoGv9A+BsjWApsFJEqoGHgOUi8sDAg0TkTOC/gZWqOugirap6r6ouUdUlxcXFDoZsTPz68rkzmTEumy/9YRMNdtdx3Oju6aWqLujKrKN9HEsEqnqzqpaqahnwYeA5Vf1o/2NEZBFwD6EkUOtULMYkg3SflzsvX0RTaxf/9ci/bMrqOLH3cBudPdFfnrK/qN9HICK3i8jK8MvvAdnAH0Rko4isiXY8xiSS2RNz+dLZM/jLloP8YUON2+GYEah0cY6hPinRuIiqrgXWhp/f0m/7mdG4vjHJ5NOnTeX57X5uW7OFd08p4ITC6M9maUauwuWho2B3FhuTcDwe4QeXLcDrEa5+4DVa2rvcDskMo6I2QHFOGnkZPtdisERgTAKamJ/Bj/9tMTsPtXD1AxtsCooYVukPUO5ibQAsERiTsN47o5jvXjKflyrquWn1Jnp7rfM41qiqq5PN9YlKH4Exxh2XvKuUg83tfO+vbzIuL52bz53ldkimH39LBy3t3a6sStafJQJjEtw1y6ZxsKmde17YxfjcdD61dIrbIZmwiiOTzeW4Goc1DRmT4ESEW1fO4azZ4/jGE9vYXNPodkgmLBaGjoIlAmOSgtcjfP9DCyjMSuWm1Zut8zhGVNQGyE5LYVxumqtxWCIwJknkZfr45gfmsf1gC3evrXA7HANU+oNMK85CJPrLU/ZnicCYJHLW7HFctHAiP36uwpa4jAEVtQFXbyTrY4nAmCTztQvnkJ/p46bVm+nusSYit7S0d3Gwud3Vyeb6WCIwJskUZKVy+0Vz+de+Ju792y63w0lalf4g4H5HMVgiMCYpnTdvAufOHc+dT++kui7odjhJqW/EkDUNGWNcc9vKOYjAT9dWuh1KUqrwB0jxCCcUurM8ZX+WCIxJUmNz07n8pEk88noN+xvb3A4n6VTUBigrysLndf9r2P0IjDGu+ewZ01CFe1+0voJoq/QHXJ9aoo8lAmOSWEl+Bh9YVMKD/9yDv2XQlWKNAzq7e9ld3xoTHcVgicCYpHf1sml09vTyy5eq3A4laeyuD9LTq5YIjDGxYVpxNufNm8BvXtlNU6stYhMNlTGwKll/lgiMMfz7snICHd38+pVqt0NJChUxNHQULBEYYwgter9i5lh++VIVwY5ut8NJeBW1ASbkpZOVFhsrAVgiMMYA8O/Ly2ls7eLBf+5xO5SEV+kPxkz/AFgiMMaELZ48hlOmFvCLv1XZNNUOUtXw0FFLBMaYGHT1GdM42NzOoxv3uR1KwjrQ1E5rZ09MTDbXxxKBMeaIM2YUM3N8Dve+uMsWu3fIWyOGYuNmMrBEYIzpR0S4+oxp7KwN8Nz2WrfDSUixsjxlf5YIjDFvc/78CZTkZ/CzF2wyOidU+oPkpKdQnO3u8pT9WSIwxryNz+vh06dPYf3uw6yvbnA7nITT11Hs9vKU/TmeCETEKyKvi8jjg+xLE5Hfi0iFiLwqImVOx2OMObrLT5pEfqaPn71gk9FFWqyNGILo1Ag+D2wbYt+VwGFVLQfuAL4bhXiMMUeRmZrCx08t45lth6iobXE7nITR3N7FoeYOpo2NnY5icDgRiEgpcD7wiyEOuQj4dfj5amCFxFJ9yZgk9olTTyDd57FaQQTt6lueMslqBHcCNwFD3Z1SAuwFUNVuoAkodDgmY8wIFGan8ZGTJ/PIazXsPGS1gkg4sjxlDI0YAgcTgYhcANSq6oYInOsqEVkvIuv9fn8EojPGjMS1y6eTlZrCd/683e1QEkJleHnKyQXuL0/Z34gSgYhkiYgn/HyGiKwUEd9R3rYUWCki1cBDwHIReWDAMfuASeHzpgB5QP3AE6nqvaq6RFWXFBcXjyRkY0wEFGSlcs37ynl2ey0vV9a5HU7cq/QHOKEwMyaWp+xvpNG8CKSLSAnwFPAx4P7h3qCqN6tqqaqWAR8GnlPVjw44bA3wifDzD4WPsdsZjYkhn1paxsS8dL715Da72/g4VfqDMTdiCEaeCERVW4EPAner6qXAnGO5oIjcLiIrwy/vAwpFpAL4AvDlYzmnMcY56T4vN55zIm/sa+bRTTYH0bHq6umlui62Zh3tM+JEICKnAlcAT4S3eUd6EVVdq6oXhJ/foqprws/bVfVSVS1X1ZNV1YYnGBODLlpQwtySXL7/1x20d/W4HU5c2tPQSnevxnWN4HrgZuCPqrpFRKYCzzsWlTEmpng8wn+dO4t9jW3c/3K12+HEpVgdMQQjTASq+oKqrlTV74Y7jetU9TqHYzPGxJD3lBexfOZYfvJcBY2tnW6HE3cqw/cQTI2hWUf7jHTU0O9EJFdEsoA3gK0icqOzoRljYs1N55xIS0c3v3yp2u1Q4k6lP8DYnDRy04824DL6Rto0NFtVm4GLgT8DUwiNHDLGJJGZ43M5e844fvVSFc3tXW6HE1cq/YGY7CiGkScCX/i+gYuBNaraBdg4MmOS0LXLp9PS3s2vrVYwYqpKZW3sTTbXZ6SJ4B6gGsgCXhSRE4Bmp4IyxsSuuSV5rJg5lvteqiLQ0e12OHHBH+igub07plYl62+kncV3qWqJqp6nIbuB9zkcmzEmRl27YjqNrV385pXdbocSFyprQx3FsThiCEbeWZwnIj/sm+9HRH5AqHZgjElCCyfl894Zxfzib7to7bRawdG8tU5xHCcC4JdAC3BZ+NEM/MqpoIwxse+65eXUBzv53at73A4l5lX6A2SmepmQl+52KIMaaSKYpqpfU9Vd4cdtwFQnAzPGxLYlZQWcOrWQe17cZXcbH0XfHEOxutzKSBNBm4ic1vdCRJYCbc6EZIyJF9etmI6/pYOH/mm1guGERgzFbmv6SBPB1cBPRKQ6PK30j4HPOhaVMSYunDK1gJOnFHD32kqrFQyhrbOHfY1tMds/ACMfNbRJVRcA84H5qroIWO5oZMaYmCci3HDmDGpbOnjQagWDOtJRHKMjhmCUK5SpanP4DmMITRttjElyp04r5N1WKxhSVV3szjHU53iWyYnNXg9jTNRdf+YM/C0dNoJoEH2JoKwwMROBTTFhjAFCtYJTphbw0xesVjBQdV2QiXnppPtGvIRL1A2bCESkRUSaB3m0ABOjFKMxJg701Qp+a7WCt9lVF2RKDDcLwVESgarmqGruII8cVU2JVpDGmNh3ytRCTp1ayE/XVtLWabWCPtX1wZhuFoLjaxoyxpi3uf7M6dQFOnjgHzYHEcDhYCeNrV1MKbJEYIxJEu+eWsjp04u467md1AU63A7HdVX1oY5iSwTGmKTytQvn0N7Vw7ef3O52KK6r8lsiMMYkofKx2Xz69Kk8/FoN66ob3A7HVdX1QbweYVJBptuhDMsSgTEm4q5dXs7EvHS++qc36O7pdTsc1+yqCzJpTAY+b2x/1cZ2dMaYuJSZmsItF85m+8EWfp3Ei9dU1wUpi/FmIbBEYIxxyNlzxnPGjGLueHoHh5rb3Q4n6lSVqrpgzPcPgCUCY4xDRITbVs6hs7uXbz6xze1wos7f0kFrZ48lAmNMcisryuLqM6ayZtN+/rGr3u1wompXXXyMGAIHE4GIpIvIP0Vkk4hsEZHbBjlmsog8LyKvi8hmETnPqXiMMe743LJySvIzuHXNlqTqOK6Og8nm+jhZI+gAlofXMVgInCMipww45ivAqvD6Bh8G7nYwHmOMCzJSvXz1gllsP9iSVPMQVdUFSU3xMDE/w+1QjsqxRKAhgfBLX/gxcMZSBXLDz/OA/U7FY4xxz9lzxnNaeRE/eOpN6pPkjuOquiAnFGTi9cT+jP2O9hGIiFdENgK1wNOq+uqAQ24FPioiNcCTwLVOxmOMcYeIcOvK2bR29vC9v77pdjhRES8jhsDhRKCqPaq6ECgFThaRuQMO+Qhwv6qWAucBvxGRd8QkIleJyHoRWe/3+50M2RjjkPKxOXxqaRm/X7+XzTWNbofjqJ5eZXd9qyWC/lS1EXgeOGfAriuBVeFjXgHSgaJB3n+vqi5R1SXFxcUOR2uMccp1K6ZTlJ3GLY9uobc3cde22t/YRmdPryUCESkWkfzw8wzgLGDgLFR7gBXhY2YRSgT2k9+YBJWT7uPL58xk495GnvjXAbfDccyR5SmTPREAE4DnRWQzsI5QH8HjInK7iKwMH/NF4DMisgl4EPikqibuzwRjDB9YVML0sdn86LmdCVsrqA5PPz01ThKBY6uMqepmYNEg22/p93wrsNSpGIwxscfjEa5dMZ3rHnydv2w5yHnzJrgdUsTt8gfJSvVSnJPmdigjYncWG2Oi7vx5E5hanMVdzyZmraC6PjTZnEjsDx0FSwTGGBd4PcK1y8vZfrCFp7cdcjuciKuKk1lH+1giMMa44sL5EykrzOSuZ3eSSF2Dnd291Bxui5v+AbBEYIxxSYrXw7+/r5wt+5t5dlut2+FEzN7DrfT0alzMMdTHEoExxjUXLyphckEmdz2XOLWCvsnmphRbIjDGmKPyeT38+/umsbmmibVvJsYtRH33EEyxGoExxozMBxaVUpKfwR3P7EiIWkFVXZC8DB9jslLdDmXELBEYY1yVmuLhuhXlbK5pSoi+gr6ho/HEEoExxnUfXFzKCYWZ/PDpHXF/X0F1XStTCjPdDmNULBEYY1zn83q4bvl0th5o5qmtB90O55i1d/Wwv6nNagTGGHMsLlo4kanFWdzxdPzebbynoRXV+FinuD9LBMaYmJDi9fD5FdN581BL3M5MWhVH6xT3Z4nAGBMzLpw/kRnjsrnzmR30xGGtoDrOpp/uY4nAGBMzPB7hhjNnUOkPsmbTPrfDGbXq+iAFWankZfjcDmVULBEYY2LK2XPGM2tCLnc8vZPO7l63wxmVqrogZXE2YggsERhjYozHI9x09onsaWjloXV73A5nVKrrWuOuWQgsERhjYtCyE4t595QC7np2J8GObrfDGZG2zh4ONrfH1dQSfSwRGGNijojwn+fOpC7QyS/+VuV2OCPStzyl1QiMMSZCFk8ewzlzxnPvi5XUBTrcDueojsw6aonAGGMi50tnn0hbVw8/fq7C7VCOqspqBMYYE3nlY7O5/KRJ/PbV3eypb3U7nGFV1wUpyk4jOy3F7VBGzRKBMSamfX7FDLwe4QdPv+l2KMOqrmtlSlH8DR0FSwTGmBg3Pi+dTy2dwqMb97O5ptHtcIZUVR+Mu6kl+lgiMMbEvM8tm0ZRdiq3PbY1JhevCXR042/piMv+AbBEYIyJA7npPm48+0Q27D7Mmk373Q7nHeJ5xBBYIjDGxIkPvWsScybm8p0/b6e1M7ZuMjtyD4E1DRljjHO8HuFrF87hQFM797ywy+1w3uatWUets/htRCRdRP4pIptEZIuI3DbEcZeJyNbwMb9zKh5jTPw7eUoBF8yfwM9eqGRfY5vb4RxRVdfKuNw0MlPjb+goOFsj6ACWq+oCYCFwjoic0v8AEZkO3AwsVdU5wPUOxmOMSQA3nzcLgG8/uc3lSN5SHccjhsDBRKAhgfBLX/gxsLv/M8BPVPVw+D21TsVjjEkMJfkZfPaMaTy++QCv7qp3Oxwg1DQUrx3F4HAfgYh4RWQjUAs8raqvDjhkBjBDRF4SkX+IyDlOxmOMSQxXnzGVkvwMvvroG3T1uLtmQXN7F/XBTk6wGsHgVLVHVRcCpcDJIjJ3wCEpwHRgGfAR4Ocikj/wPCJylYisF5H1fr/fyZCNMXEgMzWFW1fOYcehAPf93d3ZSd8aOhqfHcUQpVFDqtoIPA8M/MVfA6xR1S5VrQJ2EEoMA99/r6ouUdUlxcXFjsdrjIl9Z80ex1mzx3HnMzvY2+DePERVcbpOcX9Ojhoq7vt1LyIZwFnA9gGH/YlQbQARKSLUVBRb48KMMTHr1pVzEITbHtviWgzVdaEkdEKBJYLBTACeF5HNwDpCfQSPi8jtIrIyfMxfgXoR2UqoxnCjqsZG748xJuaV5Gdww1nTeWZbLU9tOehKDNX1QSbkpZOR6nXl+pHg2KBXVd0MLBpk+y39nivwhfDDGGNG7VNLp/Dwhn3cumYLS8uLyIryNNChBevjtzYAdmexMSbO+bwevvmBuexvaueHT++I+vX3NLTG7R3FfSwRGGPi3pKyAq5492R++VIV/6xqiNp1m9u7aAh2MjmO+wfAEoExJkH813mzmDQmky/9YRPBjuhMSte3atoJhVYjMMYY12WlpfD9Sxew93Ar34zS9BO7w4lgcoElAmOMiQknTyngM6dP5Xev7mHtm87PWLO7IXQPgdUIjDEmhnzhrBnMGJfNfz68mabWLkevtae+lcKsVHLSfY5ex2mWCIwxCSXd5+WHly2kPtDJVx99w9Fr7a5vZXKc1wbAEoExJgHNLcnj8yums2bTfh7duM+x6+xpaOWEOO8fAEsExpgE9bll01hywhi+8sc3HJmLqKO7h/1NbUyO85vJwBKBMSZBpXg93HH5QgBu+P1GuiM8XXXN4TZUsRqBMcbEskkFmXz94rms332Yn66tjOi5E+UeArBEYIxJcBcvKuHihRO589mdvLbncMTOu7s+NHTUOouNMSYO3H7xXMbnpnP9QxtpaY/MkNLdDa1kpnopzk6LyPncZInAGJPwctN9/O+HF7KvsY0vP/IvQhMfH5899a1MLshERCIQobssERhjksKSsgK+9P4TeWLzAf7vld3Hfb7dDa1xP7VEH0sExpik8dn3TmXFzLF844mtvH4c/QW9vRqefjr+h46CJQJjTBLxeIQfXLaAsTnp/MfvXudwsPOYznOopZ3O7l6rERhjTDzKz0zl7isW42/p4AurNtLbO/r+gt0JNHQULBEYY5LQgkn5fOWCWTz/pp//ePA1quuCo3r/kXsI4nxBmj7RXdzTGGNixMdOOYGGYCc/e6GSp7Yc4tIlk7huRTkT8jKO+t7dDUFSPMLE/PQoROo8qxEYY5KSiHD9mTN48cb3ccW7J7N6w17O+N5a7l5bcdT37q5vpWRMBinexPgKTYxSGGPMMRqbm85tF83luS8u430nFvM/f3mTF3f4h33P7vrEGToKlgiMMQYIzUv0vx9eRPnY8KI2bUPfgby7PpgwHcVgicAYY44ILWqzgNqWDm5/bOugxzS2dtLc3p0wHcVgicAYY95mfmk+1yybxsOv1fD01kPv2H9kwXqrERhjTOK6dvl0Zk3I5eZH/vWOm852NyTWPQRgicAYY94hNcXDDy5dQFNbJ1959I23TVK3p2/6aessPjoRSReRf4rIJhHZIiK3DXPsJSKiIrLEqXiMMWY0Zk/M5fozZ/DE5gPc/Mi/6AqvcLa7vpWxOWlkpibObVhOlqQDWK6qARHxAX8XkT+r6j/6HyQiOcDngVcdjMUYY0btmmXTaO/q4UfPVbCvsY27r1jM7obWhGoWAgdrBBoSCL/0hR+DTerxdeC7QLtTsRhjzLEQEb74/hP57iXzeLmynkt/9goVtQEmJ9CIIXC4j0BEvCKyEagFnlbVVwfsXwxMUtUnnIzDGGOOx+UnTeb+T53EvsNtNAQ7rUYwGqrao6oLgVLgZBGZ27dPRDzAD4EvHu08InKViKwXkfV+//B3/BljjBNOn17MHz53KqeVF7Fi1li3w4koicSSbSO6kMgtQKuqfj/8Og+oBPqaj8YDDcBKVV0/1HmWLFmi69cPudsYY8wgRGSDqg46IMfJUUPFIpIffp4BnAVs79uvqk2qWqSqZapaBvyDoyQBY4wxkedk09AE4HkR2QysI9RH8LiI3C4iKx28rjHGmFFwbPioqm4GFg2y/ZYhjl/mVCzGGGOGZncWG2NMkrNEYIwxSc4SgTHGJDlLBMYYk+QsERhjTJKL2g1lkSIifmB3+GUe0NRvd//Xgz0vAuqO4/IDr3csxw22b7hyDHzd97z/tmiU63jLNHCb05/VUDGM5phIfVb9n7v9b3Ck20fzWUF8/BtMhs9q4Ov+3xf5qlo8aASqGrcP4N6hXg/2HFgfyesdy3GD7RuuHMOUpf82x8t1vGUayecTyc8qWuWKt3+DI90+ms8qWuWyz+rYy3W0WOK9aeixYV4P9TyS1zuW4wbbN1w5Br5+bIhjjsdIznW8ZRq4zenPaqTnisZnNdJYRuJ4/w2OdLt9VsfPjc9q4OsRfV/EXdPQ8RCR9TrEXBvxLBHLlYhlAitXPEnEMg0l3msEo3Wv2wE4JBHLlYhlAitXPEnEMg0qqWoExhhj3inZagTGGGMGsERgjDFJzhKBMcYkOUsEYSJyuoj8TER+ISIvux1PpIiIR0S+KSI/EpFPuB1PJIjIMhH5W/jzWuZ2PJEkIlnhZVkvcDuWSBCRWeHPabWIfM7teCJFRC4WkZ+LyO9F5P1ux3O8EiIRiMgvRaRWRN4YsP0cEXlTRCpE5MvDnUNV/6aqVwOPA792Mt6RikS5gIsIrRndBdQ4FetIRahMSmiJ03RioEwQsXIB/CewypkoRydC/6+2hf9fXQYsdTLekYpQuf6kqp8BrgYudzLeaEiIUUMi8l5CXwz/p6pzw9u8wA5CS2TWEFol7SOAF/j2gFP8P1WtDb9vFXClqrZEKfwhRaJc4cdhVb1HRFar6oeiFf9gIlSmOlXtFZFxwA9V9YpoxT+UCJVrAVBIKMHVqerj0Yl+cJH6fxVekfBzwG9U9XfRin8oEf6++AHwW1V9LUrhO8KxFcqiSVVfFJGyAZtPBipUdReAiDwEXKSq3wYGrXaLyGSgKRaSAESmXCJSA3SGX/Y4GO6IROqzCjsMpDkS6ChF6LNaBmQBs4E2EXlSVXudjHs4kfqsVHUNsEZEngBcTwQR+qwE+A7w53hPApAgiWAIJcDefq9rgHcf5T1XAr9yLKLIGG25HgF+JCKnAy86GdhxGFWZROSDwNlAPvBjRyM7PqMql6r+N4CIfJJwrcfR6I7NaD+rZcAHCSXsJ50M7DiN9v/VtcCZQJ6IlKvqz5wMzmmJnAhGTVW/5nYMkaaqrYQSXMJQ1UcIJbiEpKr3ux1DpKjqWmCty2FEnKreBdzldhyRkhCdxUPYB0zq97o0vC3eJWK5ErFMkJjlSsQyQeKWa0QSORGsA6aLyBQRSQU+DKxxOaZISMRyJWKZIDHLlYhlgsQt14gkRCIQkQeBV4ATRaRGRK5U1W7gP4C/AtuAVaq6xc04RysRy5WIZYLELFcilgkSt1zHIyGGjxpjjDl2CVEjMMYYc+wsERhjTJKzRGCMMUnOEoExxiQ5SwTGGJPkLBEYY0ySs0RgEoKIBKJ8vYisWSGhtRWaRGSjiGwXke+P4D0Xi8jsSFzfGLBEYMygRGTYebhU9T0RvNzfVHUhsAi4QESONm//xYRmKDUmIiwRmIQlItNE5C8iskFCK5rNDG+/UEReFZHXReSZ8LoGiMitIvIbEXkJ+E349S9FZK2I7BKR6/qdOxD+c1l4/+rwL/rfhqcoRkTOC2/bICJ3iciw6wuoahuwkdBMmIjIZ0RknYhsEpGHRSRTRN4DrAS+F65FTBuqnMaMlCUCk8juBa5V1XcBXwLuDm//O3CKqi4CHgJu6vee2cCZqvqR8OuZhKa8Phn4moj4BrnOIuD68HunAktFJB24Bzg3fP3iowUrImOA6bw1XfgjqnqSqi4gNO3Blar6MqE5cG5U1YWqWjlMOY0ZEZuG2iQkEckG3gP8IfwDHd5axKYU+L2ITABSgap+b10T/mXe5wlV7QA6RKQWGMc7l8f8p6rWhK+7ESgjtALWLlXtO/eDwFVDhHu6iGwilATuVNWD4e1zReQbhNZdyCY0D85oymnMiFgiMInKAzSG294H+hGhJS7XhBdOubXfvuCAYzv6Pe9h8P8zIzlmOH9T1QtEZArwDxFZpaobgfuBi1V1U3ixmmWDvHe4chozItY0ZBKSqjYDVSJyKYSWFhSRBeHdebw11/wnHArhTWBqvyURj7rAebj28B1CC9gD5AAHws1R/ddlbgnvO1o5jRkRSwQmUWSGpxTue3yB0JfnleFmly3AReFjbyXUlLIBqHMimHDz0jXAX8LXaQGaRvDWnwHvDSeQrwKvAi8B2/sd8xBwY7izexpDl9OYEbFpqI1xiIhkq2ogPIroJ8BOVb3D7biMGchqBMY45zPhzuMthJqj7nE3HGMGZzUCY4xJclYjMMaYJGeJwBhjkpwlAmOMSXKWCIwxJslZIjDGmCRnicAYY5Lc/wcltH5GZboWDgAAAABJRU5ErkJggg==\n", |
|
|
1225 |
"text/plain": [ |
|
|
1226 |
"<Figure size 432x288 with 1 Axes>" |
|
|
1227 |
] |
|
|
1228 |
}, |
|
|
1229 |
"metadata": { |
|
|
1230 |
"needs_background": "light" |
|
|
1231 |
}, |
|
|
1232 |
"output_type": "display_data" |
|
|
1233 |
} |
|
|
1234 |
], |
|
|
1235 |
"source": [ |
|
|
1236 |
"dls = dsets.dataloaders(bs=16, after_item=[albu_aug, ToTensor],\n", |
|
|
1237 |
" after_batch=[IntToFloatTensor(div_mask=255), \n", |
|
|
1238 |
" Normalize.from_stats(*imagenet_stats)])\n", |
|
|
1239 |
"img_size = [round(0.9*320) for _ in range(2)]\n", |
|
|
1240 |
"\n", |
|
|
1241 |
"encoder = timm.create_model('efficientnet_b0', pretrained=True)\n", |
|
|
1242 |
"\n", |
|
|
1243 |
"# Let's use self attentions and Mish activation function \n", |
|
|
1244 |
"model = DynamicTimmUnet(encoder, 3, img_size, self_attention=True, act_cls=Mish)\n", |
|
|
1245 |
"\n", |
|
|
1246 |
"# We'll also use ranger optimizer with is RAdam with Lookahead\n", |
|
|
1247 |
"learn = Learner(dls, model, metrics=metrics, loss_func=loss_func, splitter=dynamic_unet_splitter, opt_func=ranger).to_fp16()\n", |
|
|
1248 |
"learn.freeze()\n", |
|
|
1249 |
"learn.lr_find()" |
|
|
1250 |
] |
|
|
1251 |
}, |
|
|
1252 |
{ |
|
|
1253 |
"cell_type": "code", |
|
|
1254 |
"execution_count": 17, |
|
|
1255 |
"metadata": {}, |
|
|
1256 |
"outputs": [ |
|
|
1257 |
{ |
|
|
1258 |
"data": { |
|
|
1259 |
"text/html": [ |
|
|
1260 |
"\n", |
|
|
1261 |
"<style>\n", |
|
|
1262 |
" /* Turns off some styling */\n", |
|
|
1263 |
" progress {\n", |
|
|
1264 |
" /* gets rid of default border in Firefox and Opera. */\n", |
|
|
1265 |
" border: none;\n", |
|
|
1266 |
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n", |
|
|
1267 |
" background-size: auto;\n", |
|
|
1268 |
" }\n", |
|
|
1269 |
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n", |
|
|
1270 |
" background: #F44336;\n", |
|
|
1271 |
" }\n", |
|
|
1272 |
"</style>\n" |
|
|
1273 |
], |
|
|
1274 |
"text/plain": [ |
|
|
1275 |
"<IPython.core.display.HTML object>" |
|
|
1276 |
] |
|
|
1277 |
}, |
|
|
1278 |
"metadata": {}, |
|
|
1279 |
"output_type": "display_data" |
|
|
1280 |
}, |
|
|
1281 |
{ |
|
|
1282 |
"data": { |
|
|
1283 |
"text/html": [ |
|
|
1284 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
1285 |
" <thead>\n", |
|
|
1286 |
" <tr style=\"text-align: left;\">\n", |
|
|
1287 |
" <th>epoch</th>\n", |
|
|
1288 |
" <th>train_loss</th>\n", |
|
|
1289 |
" <th>valid_loss</th>\n", |
|
|
1290 |
" <th>dice_coeff_adj</th>\n", |
|
|
1291 |
" <th>hd_dist_adj</th>\n", |
|
|
1292 |
" <th>custom_metric_adj</th>\n", |
|
|
1293 |
" <th>time</th>\n", |
|
|
1294 |
" </tr>\n", |
|
|
1295 |
" </thead>\n", |
|
|
1296 |
" <tbody>\n", |
|
|
1297 |
" <tr>\n", |
|
|
1298 |
" <td>0</td>\n", |
|
|
1299 |
" <td>0.991883</td>\n", |
|
|
1300 |
" <td>0.699887</td>\n", |
|
|
1301 |
" <td>0.562718</td>\n", |
|
|
1302 |
" <td>0.762979</td>\n", |
|
|
1303 |
" <td>0.682874</td>\n", |
|
|
1304 |
" <td>02:08</td>\n", |
|
|
1305 |
" </tr>\n", |
|
|
1306 |
" </tbody>\n", |
|
|
1307 |
"</table>" |
|
|
1308 |
], |
|
|
1309 |
"text/plain": [ |
|
|
1310 |
"<IPython.core.display.HTML object>" |
|
|
1311 |
] |
|
|
1312 |
}, |
|
|
1313 |
"metadata": {}, |
|
|
1314 |
"output_type": "display_data" |
|
|
1315 |
} |
|
|
1316 |
], |
|
|
1317 |
"source": [ |
|
|
1318 |
"# Let's also use flat cosine annealing lr shceduler\n", |
|
|
1319 |
"lr = 1e-3\n", |
|
|
1320 |
"learn.fit_flat_cos(1, lr)" |
|
|
1321 |
] |
|
|
1322 |
}, |
|
|
1323 |
{ |
|
|
1324 |
"cell_type": "code", |
|
|
1325 |
"execution_count": 18, |
|
|
1326 |
"metadata": { |
|
|
1327 |
"scrolled": true |
|
|
1328 |
}, |
|
|
1329 |
"outputs": [ |
|
|
1330 |
{ |
|
|
1331 |
"data": { |
|
|
1332 |
"text/html": [ |
|
|
1333 |
"\n", |
|
|
1334 |
"<style>\n", |
|
|
1335 |
" /* Turns off some styling */\n", |
|
|
1336 |
" progress {\n", |
|
|
1337 |
" /* gets rid of default border in Firefox and Opera. */\n", |
|
|
1338 |
" border: none;\n", |
|
|
1339 |
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n", |
|
|
1340 |
" background-size: auto;\n", |
|
|
1341 |
" }\n", |
|
|
1342 |
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n", |
|
|
1343 |
" background: #F44336;\n", |
|
|
1344 |
" }\n", |
|
|
1345 |
"</style>\n" |
|
|
1346 |
], |
|
|
1347 |
"text/plain": [ |
|
|
1348 |
"<IPython.core.display.HTML object>" |
|
|
1349 |
] |
|
|
1350 |
}, |
|
|
1351 |
"metadata": {}, |
|
|
1352 |
"output_type": "display_data" |
|
|
1353 |
}, |
|
|
1354 |
{ |
|
|
1355 |
"data": { |
|
|
1356 |
"text/html": [ |
|
|
1357 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
1358 |
" <thead>\n", |
|
|
1359 |
" <tr style=\"text-align: left;\">\n", |
|
|
1360 |
" <th>epoch</th>\n", |
|
|
1361 |
" <th>train_loss</th>\n", |
|
|
1362 |
" <th>valid_loss</th>\n", |
|
|
1363 |
" <th>dice_coeff_adj</th>\n", |
|
|
1364 |
" <th>hd_dist_adj</th>\n", |
|
|
1365 |
" <th>custom_metric_adj</th>\n", |
|
|
1366 |
" <th>time</th>\n", |
|
|
1367 |
" </tr>\n", |
|
|
1368 |
" </thead>\n", |
|
|
1369 |
" <tbody>\n", |
|
|
1370 |
" <tr>\n", |
|
|
1371 |
" <td>0</td>\n", |
|
|
1372 |
" <td>0.805488</td>\n", |
|
|
1373 |
" <td>0.588406</td>\n", |
|
|
1374 |
" <td>0.645035</td>\n", |
|
|
1375 |
" <td>0.856163</td>\n", |
|
|
1376 |
" <td>0.771712</td>\n", |
|
|
1377 |
" <td>02:24</td>\n", |
|
|
1378 |
" </tr>\n", |
|
|
1379 |
" <tr>\n", |
|
|
1380 |
" <td>1</td>\n", |
|
|
1381 |
" <td>0.660503</td>\n", |
|
|
1382 |
" <td>0.477541</td>\n", |
|
|
1383 |
" <td>0.698127</td>\n", |
|
|
1384 |
" <td>0.851142</td>\n", |
|
|
1385 |
" <td>0.789936</td>\n", |
|
|
1386 |
" <td>02:23</td>\n", |
|
|
1387 |
" </tr>\n", |
|
|
1388 |
" </tbody>\n", |
|
|
1389 |
"</table>" |
|
|
1390 |
], |
|
|
1391 |
"text/plain": [ |
|
|
1392 |
"<IPython.core.display.HTML object>" |
|
|
1393 |
] |
|
|
1394 |
}, |
|
|
1395 |
"metadata": {}, |
|
|
1396 |
"output_type": "display_data" |
|
|
1397 |
} |
|
|
1398 |
], |
|
|
1399 |
"source": [ |
|
|
1400 |
"# Let's unfreeze the encoder layers and train with discriminative learning rates.\n", |
|
|
1401 |
"learn.unfreeze()\n", |
|
|
1402 |
"learn.fit_flat_cos(2, slice(lr/400, lr/4))" |
|
|
1403 |
] |
|
|
1404 |
}, |
|
|
1405 |
{ |
|
|
1406 |
"cell_type": "markdown", |
|
|
1407 |
"metadata": {}, |
|
|
1408 |
"source": [ |
|
|
1409 |
"# Inference" |
|
|
1410 |
] |
|
|
1411 |
}, |
|
|
1412 |
{ |
|
|
1413 |
"cell_type": "code", |
|
|
1414 |
"execution_count": 25, |
|
|
1415 |
"metadata": {}, |
|
|
1416 |
"outputs": [], |
|
|
1417 |
"source": [ |
|
|
1418 |
"def create_df(df, fnames):\n", |
|
|
1419 |
" df = df.copy()\n", |
|
|
1420 |
" df = df.pivot(index='id', columns='class', values='segmentation').reset_index()\n", |
|
|
1421 |
" \n", |
|
|
1422 |
" df['partial_fname'] = df.id\n", |
|
|
1423 |
" fname_df = pd.DataFrame({'partial_fname': [f'{fname.parts[-3]}_slice_{fname.parts[-1][6:10]}' for fname in fnames],\n", |
|
|
1424 |
" 'fname': fnames})\n", |
|
|
1425 |
"\n", |
|
|
1426 |
" df = df.merge(fname_df, on='partial_fname').drop('partial_fname', axis=1)\n", |
|
|
1427 |
"\n", |
|
|
1428 |
" df['case_id'] = df.id.apply(lambda x: x.split('_')[0])\n", |
|
|
1429 |
" df['day_num'] = df.id.apply(lambda x: x.split('_')[1])\n", |
|
|
1430 |
"\n", |
|
|
1431 |
" df['slice_w'] = df[\"fname\"].apply(lambda x: int(str(x)[:-4].rsplit(\"_\",4)[1]))\n", |
|
|
1432 |
" df['slice_h'] = df[\"fname\"].apply(lambda x: int(str(x)[:-4].rsplit(\"_\",4)[2]))\n", |
|
|
1433 |
" \n", |
|
|
1434 |
" channels = 3\n", |
|
|
1435 |
" stride = 2\n", |
|
|
1436 |
" for j, i in enumerate(range(-1*(channels-channels//2-1), channels//2+1)):\n", |
|
|
1437 |
" method = 'ffill'\n", |
|
|
1438 |
" if i <= 0: method = 'bfill'\n", |
|
|
1439 |
" df[f'fname_{j:02}'] = df.groupby(['case_id', 'day_num'])['fname'].shift(stride*-i).fillna(method=method)\n", |
|
|
1440 |
"\n", |
|
|
1441 |
" df['fnames'] = df[[f'fname_{j:02d}' for j in range(channels)]].values.tolist()\n", |
|
|
1442 |
" \n", |
|
|
1443 |
" return df\n", |
|
|
1444 |
"\n", |
|
|
1445 |
"def mask2rle(mask):\n", |
|
|
1446 |
" \"\"\"\n", |
|
|
1447 |
" img: numpy array, 1 - mask, 0 - background\n", |
|
|
1448 |
" Returns run length as string formated\n", |
|
|
1449 |
" \"\"\"\n", |
|
|
1450 |
" mask = np.array(mask)\n", |
|
|
1451 |
" pixels = mask.flatten()\n", |
|
|
1452 |
" pad = np.array([0])\n", |
|
|
1453 |
" pixels = np.concatenate([pad, pixels, pad])\n", |
|
|
1454 |
" runs = np.where(pixels[1:] != pixels[:-1])[0] + 1\n", |
|
|
1455 |
" runs[1::2] -= runs[::2]\n", |
|
|
1456 |
"\n", |
|
|
1457 |
" return \" \".join(str(x) for x in runs)\n", |
|
|
1458 |
"\n", |
|
|
1459 |
"def resize_img_to_org_size(img, org_size):\n", |
|
|
1460 |
" shape0 = np.array(img.shape[:2])\n", |
|
|
1461 |
" diff = org_size - shape0\n", |
|
|
1462 |
" if np.any(diff < 0):\n", |
|
|
1463 |
" img = pad_img_nc(img, (320, 384))\n", |
|
|
1464 |
" resized = unpad_img_nc(img, org_size)\n", |
|
|
1465 |
" else:\n", |
|
|
1466 |
" resized = pad_img_nc(img, org_size)\n", |
|
|
1467 |
" return resized\n", |
|
|
1468 |
"\n", |
|
|
1469 |
"def get_rle_masks(preds, df):\n", |
|
|
1470 |
" rle_masks = []\n", |
|
|
1471 |
" for pred, width, height in zip(preds, df['slice_w'], df['slice_h']):\n", |
|
|
1472 |
" upsized_mask = resize_img_to_org_size(pred, (height, width))\n", |
|
|
1473 |
" for i in range(3):\n", |
|
|
1474 |
" rle_mask = mask2rle(upsized_mask[:, :, i])\n", |
|
|
1475 |
" rle_masks.append(rle_mask)\n", |
|
|
1476 |
" return rle_masks\n", |
|
|
1477 |
"\n", |
|
|
1478 |
"def unpad_img_nc(img, org_size):\n", |
|
|
1479 |
" shape0 = np.array(org_size)\n", |
|
|
1480 |
" resize = np.array(img.shape[:2])\n", |
|
|
1481 |
" if np.any(shape0!=resize):\n", |
|
|
1482 |
" diff = resize - shape0\n", |
|
|
1483 |
" pad0 = diff[0]\n", |
|
|
1484 |
" pad1 = diff[1]\n", |
|
|
1485 |
" pady = [pad0//2, pad0//2 + pad0%2]\n", |
|
|
1486 |
" padx = [pad1//2, pad1//2 + pad1%2]\n", |
|
|
1487 |
" \n", |
|
|
1488 |
" if pady[0] != 0:\n", |
|
|
1489 |
" img = img[pady[0]:-pady[1], :, :]\n", |
|
|
1490 |
" \n", |
|
|
1491 |
" if padx[0] != 0:\n", |
|
|
1492 |
" img = img[:, padx[0]:-padx[1], :]\n", |
|
|
1493 |
" \n", |
|
|
1494 |
" img = img.reshape((*shape0, img.shape[-1]))\n", |
|
|
1495 |
" return img\n", |
|
|
1496 |
"\n", |
|
|
1497 |
"def pad_img_nc(img, up_size=None):\n", |
|
|
1498 |
" if up_size is None:\n", |
|
|
1499 |
" return img\n", |
|
|
1500 |
" shape0 = np.array(img.shape[:2])\n", |
|
|
1501 |
" resize = np.array(up_size)\n", |
|
|
1502 |
" if np.any(shape0!=resize):\n", |
|
|
1503 |
" diff = resize - shape0\n", |
|
|
1504 |
" pad0 = diff[0]\n", |
|
|
1505 |
" pad1 = diff[1]\n", |
|
|
1506 |
" pady = [pad0//2, pad0//2 + pad0%2]\n", |
|
|
1507 |
" padx = [pad1//2, pad1//2 + pad1%2]\n", |
|
|
1508 |
" padz = [0, 0]\n", |
|
|
1509 |
" img = np.pad(img, [pady, padx, padz])\n", |
|
|
1510 |
" img = img.reshape((*resize, img.shape[-1]))\n", |
|
|
1511 |
" return img\n", |
|
|
1512 |
"\n", |
|
|
1513 |
"def get_rle_masks(preds, df):\n", |
|
|
1514 |
" rle_masks = []\n", |
|
|
1515 |
" for pred, width, height in zip(preds, df['slice_w'], df['slice_h']):\n", |
|
|
1516 |
" upsized_mask = resize_img_to_org_size(pred, (height, width))\n", |
|
|
1517 |
" for i in range(3):\n", |
|
|
1518 |
" rle_mask = mask2rle(upsized_mask[:, :, i])\n", |
|
|
1519 |
" rle_masks.append(rle_mask)\n", |
|
|
1520 |
" return rle_masks" |
|
|
1521 |
] |
|
|
1522 |
}, |
|
|
1523 |
{ |
|
|
1524 |
"cell_type": "code", |
|
|
1525 |
"execution_count": 22, |
|
|
1526 |
"metadata": {}, |
|
|
1527 |
"outputs": [], |
|
|
1528 |
"source": [ |
|
|
1529 |
"data_path = 'dataset/'\n", |
|
|
1530 |
"\n", |
|
|
1531 |
"train_path = Path(data_path+'train')\n", |
|
|
1532 |
"test_path = Path(data_path+'test')\n", |
|
|
1533 |
"\n", |
|
|
1534 |
"train_fnames = get_image_files(train_path)\n", |
|
|
1535 |
"test_fnames = get_image_files(test_path)\n", |
|
|
1536 |
"\n", |
|
|
1537 |
"sample_submission = pd.read_csv(data_path+'sample_submission.csv')\n", |
|
|
1538 |
"\n", |
|
|
1539 |
"if sample_submission.shape[0] > 0: \n", |
|
|
1540 |
" test = sample_submission.copy()\n", |
|
|
1541 |
"else:\n", |
|
|
1542 |
" test_fnames = train_fnames\n", |
|
|
1543 |
" test_path = train_path\n", |
|
|
1544 |
" train = pd.read_csv('dataset/train.csv', low_memory=False)\n", |
|
|
1545 |
" test = train.copy()\n", |
|
|
1546 |
" test = test.sample(frac=1.0, random_state=42)\n", |
|
|
1547 |
"\n", |
|
|
1548 |
"test_df = create_df(test, test_fnames)\n" |
|
|
1549 |
] |
|
|
1550 |
}, |
|
|
1551 |
{ |
|
|
1552 |
"cell_type": "code", |
|
|
1553 |
"execution_count": 23, |
|
|
1554 |
"metadata": {}, |
|
|
1555 |
"outputs": [], |
|
|
1556 |
"source": [ |
|
|
1557 |
"learn = load_learner('test_model.pkl')\n", |
|
|
1558 |
"# Sample the test set demonstartion purposes\n", |
|
|
1559 |
"test_df = test_df.sample(frac=0.1)\n", |
|
|
1560 |
"bs = learn.dls.bs\n", |
|
|
1561 |
"test_dl = learn.dls.test_dl(test_df, bs=bs, shuffle=False).to('cuda')" |
|
|
1562 |
] |
|
|
1563 |
}, |
|
|
1564 |
{ |
|
|
1565 |
"cell_type": "code", |
|
|
1566 |
"execution_count": 26, |
|
|
1567 |
"metadata": {}, |
|
|
1568 |
"outputs": [ |
|
|
1569 |
{ |
|
|
1570 |
"name": "stderr", |
|
|
1571 |
"output_type": "stream", |
|
|
1572 |
"text": [ |
|
|
1573 |
"100%|██████████████████████████████████████████████████████████████████████████████████| 241/241 [00:50<00:00, 4.81it/s]\n" |
|
|
1574 |
] |
|
|
1575 |
} |
|
|
1576 |
], |
|
|
1577 |
"source": [ |
|
|
1578 |
"from tqdm import tqdm\n", |
|
|
1579 |
"import gc\n", |
|
|
1580 |
"\n", |
|
|
1581 |
"learn.model = learn.model.cuda()\n", |
|
|
1582 |
"learn.model.eval()\n", |
|
|
1583 |
"masks = []\n", |
|
|
1584 |
"\n", |
|
|
1585 |
"with torch.no_grad():\n", |
|
|
1586 |
" for i, b in enumerate(tqdm(test_dl)):\n", |
|
|
1587 |
" b.to('cuda')\n", |
|
|
1588 |
" b_preds = (sigmoid(learn.model(b)) > 0.5).permute(0, 2, 3, 1).cpu().detach().numpy().astype(np.uint8)\n", |
|
|
1589 |
"\n", |
|
|
1590 |
" masks.extend(get_rle_masks(b_preds, test_df.iloc[i*bs:i*bs+bs]))\n", |
|
|
1591 |
"\n", |
|
|
1592 |
" # test_preds[i*bs:i*bs+bs] = b_preds\n", |
|
|
1593 |
" del b_preds\n", |
|
|
1594 |
" torch.cuda.empty_cache()\n", |
|
|
1595 |
" gc.collect()" |
|
|
1596 |
] |
|
|
1597 |
}, |
|
|
1598 |
{ |
|
|
1599 |
"cell_type": "markdown", |
|
|
1600 |
"metadata": {}, |
|
|
1601 |
"source": [ |
|
|
1602 |
"# Submission" |
|
|
1603 |
] |
|
|
1604 |
}, |
|
|
1605 |
{ |
|
|
1606 |
"cell_type": "code", |
|
|
1607 |
"execution_count": 27, |
|
|
1608 |
"metadata": {}, |
|
|
1609 |
"outputs": [], |
|
|
1610 |
"source": [ |
|
|
1611 |
"def get_case_id(fname):\n", |
|
|
1612 |
" return fname.parts[3] + '_' + fname.parts[5][:10]" |
|
|
1613 |
] |
|
|
1614 |
}, |
|
|
1615 |
{ |
|
|
1616 |
"cell_type": "code", |
|
|
1617 |
"execution_count": 28, |
|
|
1618 |
"metadata": {}, |
|
|
1619 |
"outputs": [], |
|
|
1620 |
"source": [ |
|
|
1621 |
"from itertools import chain\n", |
|
|
1622 |
"\n", |
|
|
1623 |
"submission = pd.DataFrame({\n", |
|
|
1624 |
" 'id': chain.from_iterable([[get_case_id(fname)]*3 for fname in test_df['fname']]),\n", |
|
|
1625 |
" 'class': chain.from_iterable([['large_bowel', 'small_bowel', 'stomach'] for _ in test_df['fname']]),\n", |
|
|
1626 |
" 'predicted': masks,\n", |
|
|
1627 |
" })\n", |
|
|
1628 |
" \n", |
|
|
1629 |
"\n", |
|
|
1630 |
"# Merge with sample submission to preserve order to slices during scoring and avoid 0 scores\n", |
|
|
1631 |
"if sample_submission.shape[0] > 0:\n", |
|
|
1632 |
" del sample_submission['segmentation']\n", |
|
|
1633 |
" submission = sample_submission.merge(submission, on=['id', 'class'])\n", |
|
|
1634 |
"\n", |
|
|
1635 |
"submission.to_csv('submission.csv', index=False)" |
|
|
1636 |
] |
|
|
1637 |
}, |
|
|
1638 |
{ |
|
|
1639 |
"cell_type": "code", |
|
|
1640 |
"execution_count": null, |
|
|
1641 |
"metadata": {}, |
|
|
1642 |
"outputs": [], |
|
|
1643 |
"source": [] |
|
|
1644 |
} |
|
|
1645 |
], |
|
|
1646 |
"metadata": { |
|
|
1647 |
"kernelspec": { |
|
|
1648 |
"display_name": "Python 3 (ipykernel)", |
|
|
1649 |
"language": "python", |
|
|
1650 |
"name": "python3" |
|
|
1651 |
}, |
|
|
1652 |
"language_info": { |
|
|
1653 |
"codemirror_mode": { |
|
|
1654 |
"name": "ipython", |
|
|
1655 |
"version": 3 |
|
|
1656 |
}, |
|
|
1657 |
"file_extension": ".py", |
|
|
1658 |
"mimetype": "text/x-python", |
|
|
1659 |
"name": "python", |
|
|
1660 |
"nbconvert_exporter": "python", |
|
|
1661 |
"pygments_lexer": "ipython3", |
|
|
1662 |
"version": "3.7.11" |
|
|
1663 |
}, |
|
|
1664 |
"toc": { |
|
|
1665 |
"base_numbering": 1, |
|
|
1666 |
"nav_menu": {}, |
|
|
1667 |
"number_sections": true, |
|
|
1668 |
"sideBar": true, |
|
|
1669 |
"skip_h1_title": false, |
|
|
1670 |
"title_cell": "Table of Contents", |
|
|
1671 |
"title_sidebar": "Contents", |
|
|
1672 |
"toc_cell": false, |
|
|
1673 |
"toc_position": {}, |
|
|
1674 |
"toc_section_display": true, |
|
|
1675 |
"toc_window_display": false |
|
|
1676 |
} |
|
|
1677 |
}, |
|
|
1678 |
"nbformat": 4, |
|
|
1679 |
"nbformat_minor": 1 |
|
|
1680 |
} |