Diff of /baseline.ipynb [000000] .. [bc293e]

Switch to unified view

a b/baseline.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "markdown",
5
   "metadata": {},
6
   "source": [
7
    "# GI Tract Segmentation Competition"
8
   ]
9
  },
10
  {
11
   "cell_type": "markdown",
12
   "metadata": {},
13
   "source": [
14
    "# Load And Prepare"
15
   ]
16
  },
17
  {
18
   "cell_type": "markdown",
19
   "metadata": {},
20
   "source": [
21
    "## Imports"
22
   ]
23
  },
24
  {
25
   "cell_type": "code",
26
   "execution_count": 1,
27
   "metadata": {
28
    "ExecuteTime": {
29
     "end_time": "2022-06-28T03:46:47.438209Z",
30
     "start_time": "2022-06-28T03:46:44.722879Z"
31
    }
32
   },
33
   "outputs": [],
34
   "source": [
35
    "from fastai.vision.all import *\n",
36
    "import matplotlib.patches as mpatches\n",
37
    "import albumentations as A\n",
38
    "import cv2\n",
39
    "import pynvml\n",
40
    "from scipy.spatial.distance import directed_hausdorff\n",
41
    "import timm\n",
42
    "import segmentation_models_pytorch as smp\n",
43
    "\n",
44
    "\n",
45
    "# !cp kaggle.json /home/kgeorgio/.kaggle\n",
46
    "# !kaggle competitions download -c uw-madison-gi-tract-image-segmentation\n"
47
   ]
48
  },
49
  {
50
   "cell_type": "markdown",
51
   "metadata": {},
52
   "source": [
53
    "## Load CSV"
54
   ]
55
  },
56
  {
57
   "cell_type": "code",
58
   "execution_count": 2,
59
   "metadata": {
60
    "ExecuteTime": {
61
     "end_time": "2022-06-28T03:46:47.672193Z",
62
     "start_time": "2022-06-28T03:46:47.439755Z"
63
    },
64
    "pycharm": {
65
     "name": "#%%\n"
66
    }
67
   },
68
   "outputs": [],
69
   "source": [
70
    "train_df = pd.read_csv('dataset/train.csv', low_memory=False)\n",
71
    "train_df = train_df.pivot(index='id', columns='class', values='segmentation').reset_index()"
72
   ]
73
  },
74
  {
75
   "cell_type": "code",
76
   "execution_count": 3,
77
   "metadata": {
78
    "ExecuteTime": {
79
     "end_time": "2022-06-28T03:46:47.739865Z",
80
     "start_time": "2022-06-28T03:46:47.730425Z"
81
    },
82
    "pycharm": {
83
     "name": "#%%\n"
84
    }
85
   },
86
   "outputs": [
87
    {
88
     "data": {
89
      "text/html": [
90
       "<div>\n",
91
       "<style scoped>\n",
92
       "    .dataframe tbody tr th:only-of-type {\n",
93
       "        vertical-align: middle;\n",
94
       "    }\n",
95
       "\n",
96
       "    .dataframe tbody tr th {\n",
97
       "        vertical-align: top;\n",
98
       "    }\n",
99
       "\n",
100
       "    .dataframe thead th {\n",
101
       "        text-align: right;\n",
102
       "    }\n",
103
       "</style>\n",
104
       "<table border=\"1\" class=\"dataframe\">\n",
105
       "  <thead>\n",
106
       "    <tr style=\"text-align: right;\">\n",
107
       "      <th>class</th>\n",
108
       "      <th>id</th>\n",
109
       "      <th>large_bowel</th>\n",
110
       "      <th>small_bowel</th>\n",
111
       "      <th>stomach</th>\n",
112
       "    </tr>\n",
113
       "  </thead>\n",
114
       "  <tbody>\n",
115
       "    <tr>\n",
116
       "      <th>0</th>\n",
117
       "      <td>case101_day20_slice_0001</td>\n",
118
       "      <td>NaN</td>\n",
119
       "      <td>NaN</td>\n",
120
       "      <td>NaN</td>\n",
121
       "    </tr>\n",
122
       "    <tr>\n",
123
       "      <th>1</th>\n",
124
       "      <td>case101_day20_slice_0002</td>\n",
125
       "      <td>NaN</td>\n",
126
       "      <td>NaN</td>\n",
127
       "      <td>NaN</td>\n",
128
       "    </tr>\n",
129
       "    <tr>\n",
130
       "      <th>2</th>\n",
131
       "      <td>case101_day20_slice_0003</td>\n",
132
       "      <td>NaN</td>\n",
133
       "      <td>NaN</td>\n",
134
       "      <td>NaN</td>\n",
135
       "    </tr>\n",
136
       "    <tr>\n",
137
       "      <th>3</th>\n",
138
       "      <td>case101_day20_slice_0004</td>\n",
139
       "      <td>NaN</td>\n",
140
       "      <td>NaN</td>\n",
141
       "      <td>NaN</td>\n",
142
       "    </tr>\n",
143
       "    <tr>\n",
144
       "      <th>4</th>\n",
145
       "      <td>case101_day20_slice_0005</td>\n",
146
       "      <td>NaN</td>\n",
147
       "      <td>NaN</td>\n",
148
       "      <td>NaN</td>\n",
149
       "    </tr>\n",
150
       "  </tbody>\n",
151
       "</table>\n",
152
       "</div>"
153
      ],
154
      "text/plain": [
155
       "class                        id large_bowel small_bowel stomach\n",
156
       "0      case101_day20_slice_0001         NaN         NaN     NaN\n",
157
       "1      case101_day20_slice_0002         NaN         NaN     NaN\n",
158
       "2      case101_day20_slice_0003         NaN         NaN     NaN\n",
159
       "3      case101_day20_slice_0004         NaN         NaN     NaN\n",
160
       "4      case101_day20_slice_0005         NaN         NaN     NaN"
161
      ]
162
     },
163
     "execution_count": 3,
164
     "metadata": {},
165
     "output_type": "execute_result"
166
    }
167
   ],
168
   "source": [
169
    "train_df.head()"
170
   ]
171
  },
172
  {
173
   "cell_type": "code",
174
   "execution_count": 4,
175
   "metadata": {
176
    "ExecuteTime": {
177
     "end_time": "2022-06-28T03:46:47.950258Z",
178
     "start_time": "2022-06-28T03:46:47.742286Z"
179
    },
180
    "pycharm": {
181
     "name": "#%%\n"
182
    }
183
   },
184
   "outputs": [
185
    {
186
     "name": "stdout",
187
     "output_type": "stream",
188
     "text": [
189
      "dataset/train/case101/case101_day26/scans/slice_0121_266_266_1.50_1.50.png\n",
190
      "dataset/train/case101/case101_day26/scans/slice_0081_266_266_1.50_1.50.png\n",
191
      "dataset/train/case101/case101_day26/scans/slice_0065_266_266_1.50_1.50.png\n",
192
      "dataset/train/case101/case101_day26/scans/slice_0068_266_266_1.50_1.50.png\n",
193
      "dataset/train/case101/case101_day26/scans/slice_0059_266_266_1.50_1.50.png\n",
194
      "dataset/train/case101/case101_day26/scans/slice_0064_266_266_1.50_1.50.png\n",
195
      "dataset/train/case101/case101_day26/scans/slice_0002_266_266_1.50_1.50.png\n",
196
      "dataset/train/case101/case101_day26/scans/slice_0088_266_266_1.50_1.50.png\n",
197
      "dataset/train/case101/case101_day26/scans/slice_0098_266_266_1.50_1.50.png\n",
198
      "dataset/train/case101/case101_day26/scans/slice_0074_266_266_1.50_1.50.png\n",
199
      "dataset/train/case101/case101_day26/scans/slice_0021_266_266_1.50_1.50.png\n",
200
      "...\n",
201
      "And 38486 more lines.\n"
202
     ]
203
    }
204
   ],
205
   "source": [
206
    "path = Path('dataset/train')\n",
207
    "\n",
208
    "fnames = get_image_files(path)\n",
209
    "\n",
210
    "for ind, file_name in enumerate(fnames):\n",
211
    "    print(file_name)\n",
212
    "    if ind>9:\n",
213
    "        print('...')\n",
214
    "        break\n",
215
    "print(f\"And {len(fnames)-10} more lines.\")"
216
   ]
217
  },
218
  {
219
   "cell_type": "markdown",
220
   "metadata": {},
221
   "source": [
222
    "# Functions"
223
   ]
224
  },
225
  {
226
   "cell_type": "code",
227
   "execution_count": 5,
228
   "metadata": {},
229
   "outputs": [],
230
   "source": [
231
    "def get_slice_id(fname):\n",
232
    "    return fname.parts[3] + '_' + fname.parts[5][:10]\n",
233
    "\n",
234
    "\n",
235
    "def rle_decode(mask_rle, shape, color=1):\n",
236
    "    \"\"\" TBD\n",
237
    "\n",
238
    "    Args:\n",
239
    "        mask_rle (str): run-length as string formated (start length)\n",
240
    "        shape (tuple of ints): (height,width) of array to return \n",
241
    "\n",
242
    "    Returns: \n",
243
    "        Mask (np.array)\n",
244
    "            - 1 indicating mask\n",
245
    "            - 0 indicating background\n",
246
    "\n",
247
    "    \"\"\"\n",
248
    "    # Split the string by space, then convert it into a integer array\n",
249
    "    s = np.array(mask_rle.split(), dtype=int)\n",
250
    "\n",
251
    "    # Every even value is the start, every odd value is the \"run\" length\n",
252
    "    starts = s[0::2] - 1\n",
253
    "    lengths = s[1::2]\n",
254
    "    ends = starts + lengths\n",
255
    "\n",
256
    "    # The image image is actually flattened since RLE is a 1D \"run\"\n",
257
    "    if len(shape) == 3:\n",
258
    "        h, w, d = shape\n",
259
    "        img = np.zeros((h * w, d), dtype=np.float32)\n",
260
    "    else:\n",
261
    "        h, w = shape\n",
262
    "        img = np.zeros((h * w,), dtype=np.float32)\n",
263
    "\n",
264
    "    # The color here is actually just any integer you want!\n",
265
    "    for lo, hi in zip(starts, ends):\n",
266
    "        img[lo: hi] = color\n",
267
    "\n",
268
    "    # Don't forget to change the image back to the original shape\n",
269
    "    return img.reshape(shape)\n",
270
    "\n",
271
    "\n",
272
    "def label_func(fname):\n",
273
    "    # First we need to get the slice row\n",
274
    "    slice_id = get_slice_id(fname)\n",
275
    "    slice_row = train_df.query('id == @slice_id')\n",
276
    "\n",
277
    "    # Then we need to extract the slice width and height which are provided in the fname last part\n",
278
    "    # Typically the height is the first part of a dimension, but for some reason the slices have\n",
279
    "    # widths provided first\n",
280
    "    w, h = map(lambda x: int(x), fname.parts[-1].split('_')[2:4])\n",
281
    "\n",
282
    "    # Create mask array (It needs to have 3 channels but fastai will only keep the first one anyways)\n",
283
    "    mask = np.zeros((h, w, 3), dtype=np.uint8)\n",
284
    "\n",
285
    "    # If the segmentation mask is str\n",
286
    "    # Each mask should have it's own code (color) where fastai will use them for identification\n",
287
    "    if isinstance(slice_row['large_bowel'].item(), str):\n",
288
    "        mask[:, :, 0] = rle_decode(slice_row['large_bowel'].item(), shape=(h, w), color=255)\n",
289
    "\n",
290
    "    if isinstance(slice_row['small_bowel'].item(), str):\n",
291
    "        mask[:, :, 1] = rle_decode(slice_row['small_bowel'].item(), shape=(h, w), color=255)\n",
292
    "\n",
293
    "    if isinstance(slice_row['stomach'].item(), str):\n",
294
    "        mask[:, :, 2] = rle_decode(slice_row['stomach'].item(), shape=(h, w), color=255)\n",
295
    "\n",
296
    "    return mask\n",
297
    "\n",
298
    "\n",
299
    "# This was the code available in fastai\n",
300
    "@ToTensor\n",
301
    "def encodes(self, o: PILMask): return o._tensor_cls(image2tensor(o)[0])\n",
302
    "\n",
303
    "\n",
304
    "# And this is how we customize it to suit our needs\n",
305
    "@ToTensor\n",
306
    "def encodes(self, o: PILMask): return o._tensor_cls(image2tensor(o))\n",
307
    "\n",
308
    "\n",
309
    "@typedispatch\n",
310
    "def show_batch(x: TensorImage, y: TensorMask, samples, ctxs=None, max_n=6, nrows=None, ncols=2,\n",
311
    "               figsize=None, **kwargs):\n",
312
    "    if figsize is None: figsize = (ncols * 3, max_n // ncols * 3)\n",
313
    "    if ctxs is None: ctxs = get_grid(max_n, nrows=nrows, ncols=ncols, figsize=figsize)\n",
314
    "    for i, ctx in enumerate(ctxs):\n",
315
    "        x_i = x[i] / x[i].max()\n",
316
    "        show_image(x_i, ctx=ctx, cmap='gray', **kwargs)\n",
317
    "        show_image(y[i], ctx=ctx, cmap='Spectral_r', alpha=0.35, **kwargs)\n",
318
    "        red_patch = mpatches.Patch(color='red', label='large_bowel')\n",
319
    "        green_patch = mpatches.Patch(color='green', label='small_bowel')\n",
320
    "        blue_patch = mpatches.Patch(color='blue', label='stomach')\n",
321
    "        ctx.legend(handles=[red_patch, green_patch, blue_patch], fontsize=figsize[0] / 2)\n",
322
    "\n",
323
    "\n",
324
    "def pad_img(img, up_size=None):\n",
325
    "    if up_size is None:\n",
326
    "        return img\n",
327
    "    shape0 = np.array(img.shape[:2])\n",
328
    "    resize = np.array(up_size)\n",
329
    "    if np.any(shape0 != resize):\n",
330
    "        diff = resize - shape0\n",
331
    "        pad0 = diff[0]\n",
332
    "        pad1 = diff[1]\n",
333
    "        pady = [pad0 // 2, pad0 // 2 + pad0 % 2]\n",
334
    "        padx = [pad1 // 2, pad1 // 2 + pad1 % 2]\n",
335
    "        img = np.pad(img, [pady, padx])\n",
336
    "        img = img.reshape((*resize))\n",
337
    "    return img\n",
338
    "\n",
339
    "\n",
340
    "def unpad_img(img, up_size, org_size):\n",
341
    "    shape0 = np.array(org_size)\n",
342
    "    resize = np.array(up_size)\n",
343
    "    if np.any(shape0 != resize):\n",
344
    "        diff = resize - shape0\n",
345
    "        pad0 = diff[0]\n",
346
    "        pad1 = diff[1]\n",
347
    "        pady = [pad0 // 2, pad0 // 2 + pad0 % 2]\n",
348
    "        padx = [pad1 // 2, pad1 // 2 + pad1 % 2]\n",
349
    "        img = img[pady[0]:-pady[1], padx[0]:-padx[1], :]\n",
350
    "        img = img.reshape((*shape0, 3))\n",
351
    "    return img\n",
352
    "\n",
353
    "\n",
354
    "def load_image(fname, up_size=None):\n",
355
    "    img = np.array(Image.open(fname))\n",
356
    "    img = np.interp(img, [np.min(img), np.max(img)], [0, 255])\n",
357
    "    return pad_img(img, up_size)\n",
358
    "\n",
359
    "\n",
360
    "def get_25D_image(row, up_size=None):\n",
361
    "    if up_size:\n",
362
    "        imgs = np.zeros((*up_size, len(row['fnames'])))\n",
363
    "    else:\n",
364
    "        imgs = np.zeros((row['slice_h'], row['slice_w'], len(row['fnames'])))\n",
365
    "\n",
366
    "    for i, fname in enumerate(row['fnames']):\n",
367
    "        img = load_image(fname, up_size)\n",
368
    "        imgs[..., i] += img\n",
369
    "    return imgs.astype(np.uint8)\n",
370
    "\n",
371
    "\n",
372
    "def get_mask(row, up_size=None):\n",
373
    "    if up_size:\n",
374
    "        mask = np.zeros((*up_size, 3))\n",
375
    "    else:\n",
376
    "        mask = np.zeros((row['slice_h'], row['slice_w'], 3))\n",
377
    "\n",
378
    "    if isinstance(row['large_bowel'], str):\n",
379
    "        mask[..., 0] += pad_img(\n",
380
    "            rle_decode(row['large_bowel'], shape=(row['slice_h'], row['slice_w']), color=255), up_size)\n",
381
    "    if isinstance(row['small_bowel'], str):\n",
382
    "        mask[..., 1] += pad_img(\n",
383
    "            rle_decode(row['small_bowel'], shape=(row['slice_h'], row['slice_w']), color=255), up_size)\n",
384
    "    if isinstance(row['stomach'], str):\n",
385
    "        mask[..., 2] += pad_img(\n",
386
    "            rle_decode(row['stomach'], shape=(row['slice_h'], row['slice_w']), color=255), up_size)\n",
387
    "\n",
388
    "    return mask.astype(np.uint8)\n",
389
    "\n",
390
    "\n",
391
    "def get_train_aug(img_size, crop=0.9, p=0.4):\n",
392
    "    crop_size = round(img_size[0] * crop)\n",
393
    "    return A.Compose([\n",
394
    "        A.RandomCrop(height=crop_size, width=crop_size, always_apply=True),\n",
395
    "        A.HorizontalFlip(p=p),\n",
396
    "        A.OneOf([\n",
397
    "            A.GridDistortion(num_steps=5, distort_limit=0.05, p=1.0),\n",
398
    "            A.ElasticTransform(alpha=1, sigma=50, alpha_affine=50, p=1.0)\n",
399
    "        ], p=p),\n",
400
    "        A.CoarseDropout(\n",
401
    "            max_holes=8, min_holes=8,\n",
402
    "            max_height=crop_size // 10, max_width=crop_size // 10,\n",
403
    "            min_height=4, min_width=4, mask_fill_value=0, p=0.2 * p),\n",
404
    "        A.ShiftScaleRotate(\n",
405
    "            shift_limit=0.0625, scale_limit=0.2, rotate_limit=25,\n",
406
    "            interpolation=cv2.INTER_AREA, p=p),\n",
407
    "        A.HorizontalFlip(p=0.5 * p),\n",
408
    "        A.OneOf([\n",
409
    "            A.MotionBlur(p=0.2 * p),\n",
410
    "            A.MedianBlur(blur_limit=3, p=0.1 * p),\n",
411
    "            A.Blur(blur_limit=3, p=0.1 * p),\n",
412
    "        ], p=0.2 * p),\n",
413
    "        A.GaussNoise(var_limit=0.001, p=0.2 * p),\n",
414
    "        A.OneOf([\n",
415
    "            A.OpticalDistortion(p=0.3 * p),\n",
416
    "            A.GridDistortion(p=0.1 * p),\n",
417
    "            A.PiecewiseAffine(p=0.3 * p),\n",
418
    "        ], p=0.2 * p),\n",
419
    "        A.OneOf([\n",
420
    "            A.Sharpen(p=0.2 * p),\n",
421
    "            A.Emboss(p=0.2 * p),\n",
422
    "            A.RandomBrightnessContrast(p=0.2 * p),\n",
423
    "        ]),\n",
424
    "    ])\n",
425
    "\n",
426
    "\n",
427
    "def get_test_aug(img_size, crop=0.9):\n",
428
    "    crop_size = round(crop * img_size[0])\n",
429
    "    return A.Compose([\n",
430
    "        A.CenterCrop(height=crop_size, width=crop_size),\n",
431
    "    ])\n",
432
    "\n",
433
    "\n",
434
    "class AlbumentationsTransform(ItemTransform, RandTransform):\n",
435
    "    split_idx, order = None, 2\n",
436
    "\n",
437
    "    def __init__(self, train_aug, valid_aug):\n",
438
    "        store_attr()\n",
439
    "\n",
440
    "    def before_call(self, b, split_idx):\n",
441
    "        self.idx = split_idx\n",
442
    "\n",
443
    "    def encodes(self, x):\n",
444
    "        if len(x) > 1:\n",
445
    "            img, mask = x\n",
446
    "            if self.idx == 0:\n",
447
    "                aug = self.train_aug(image=np.array(img), mask=np.array(mask))\n",
448
    "            else:\n",
449
    "                aug = self.valid_aug(image=np.array(img), mask=np.array(mask))\n",
450
    "            return PILImage.create(aug[\"image\"]), PILMask.create(aug[\"mask\"])\n",
451
    "        else:\n",
452
    "            img = x[0]\n",
453
    "            aug = self.valid_aug(image=np.array(img))\n",
454
    "            return PILImage.create(aug[\"image\"])\n"
455
   ]
456
  },
457
  {
458
   "cell_type": "markdown",
459
   "metadata": {},
460
   "source": [
461
    "# Preprocess"
462
   ]
463
  },
464
  {
465
   "cell_type": "markdown",
466
   "metadata": {},
467
   "source": [
468
    "## Split name metada into different columns"
469
   ]
470
  },
471
  {
472
   "cell_type": "code",
473
   "execution_count": 6,
474
   "metadata": {
475
    "ExecuteTime": {
476
     "end_time": "2022-06-28T03:46:48.134095Z",
477
     "start_time": "2022-06-28T03:46:47.951449Z"
478
    },
479
    "pycharm": {
480
     "name": "#%%\n"
481
    }
482
   },
483
   "outputs": [],
484
   "source": [
485
    "train_df['partial_fname'] = train_df.id\n",
486
    "fname_df = pd.DataFrame({'partial_fname': [f'{fname.parts[-3]}_slice_{fname.parts[-1][6:10]}' for fname in fnames],\n",
487
    "                         'fname': fnames})\n",
488
    "\n",
489
    "train_df = train_df.merge(fname_df, on='partial_fname').drop('partial_fname', axis=1)\n",
490
    "\n",
491
    "train_df['case_id'] = train_df.id.apply(lambda x: x.split('_')[0])\n",
492
    "train_df['day_num'] = train_df.id.apply(lambda x: x.split('_')[1])\n",
493
    "\n",
494
    "train_df['slice_w'] = train_df[\"fname\"].apply(lambda x: int(str(x)[:-4].rsplit(\"_\",4)[1]))\n",
495
    "train_df['slice_h'] = train_df[\"fname\"].apply(lambda x: int(str(x)[:-4].rsplit(\"_\",4)[2]))"
496
   ]
497
  },
498
  {
499
   "cell_type": "markdown",
500
   "metadata": {},
501
   "source": [
502
    "## Add Fnames"
503
   ]
504
  },
505
  {
506
   "cell_type": "code",
507
   "execution_count": 7,
508
   "metadata": {
509
    "ExecuteTime": {
510
     "end_time": "2022-06-28T03:46:48.186750Z",
511
     "start_time": "2022-06-28T03:46:48.135151Z"
512
    },
513
    "pycharm": {
514
     "name": "#%%\n"
515
    }
516
   },
517
   "outputs": [],
518
   "source": [
519
    "channels = 3\n",
520
    "stride = 2\n",
521
    "for j, i in enumerate(range(-1*(channels-channels//2-1), channels//2+1)):\n",
522
    "    method = 'ffill'\n",
523
    "    if i <= 0: method = 'bfill'\n",
524
    "    train_df[f'fname_{j:02}'] = train_df.groupby(['case_id', 'day_num'])['fname'].shift(stride*-i).fillna(method=method)\n",
525
    "    \n",
526
    "train_df['fnames'] = train_df[[f'fname_{j:02d}' for j in range(channels)]].values.tolist()"
527
   ]
528
  },
529
  {
530
   "cell_type": "markdown",
531
   "metadata": {
532
    "pycharm": {
533
     "name": "#%%\n"
534
    }
535
   },
536
   "source": [
537
    "# Training"
538
   ]
539
  },
540
  {
541
   "cell_type": "markdown",
542
   "metadata": {
543
    "pycharm": {
544
     "name": "#%%\n"
545
    }
546
   },
547
   "source": [
548
    "## Metrics"
549
   ]
550
  },
551
  {
552
   "cell_type": "code",
553
   "execution_count": 8,
554
   "metadata": {
555
    "ExecuteTime": {
556
     "end_time": "2022-06-28T03:46:49.086943Z",
557
     "start_time": "2022-06-28T03:46:49.086930Z"
558
    }
559
   },
560
   "outputs": [],
561
   "source": [
562
    "def dice_coeff_adj(inp, targ):\n",
563
    "    inp = np.where(sigmoid(inp).cpu().detach().numpy() > 0.5, 1, 0)\n",
564
    "    targ = targ.cpu().detach().numpy()\n",
565
    "    eps = 1e-5\n",
566
    "    dice_scores = []\n",
567
    "    for i in range(targ.shape[0]):\n",
568
    "        dice_i = []\n",
569
    "        for j in range(targ.shape[1]):\n",
570
    "            if inp[i, j].sum() == targ[i, j].sum() == 0:\n",
571
    "                continue\n",
572
    "            I = (targ[i, j] * inp[i, j]).sum()\n",
573
    "            U =  targ[i, j].sum() + inp[i, j].sum()\n",
574
    "            dice_i.append((2.*I)/(U+eps))\n",
575
    "        if dice_i:\n",
576
    "            dice_scores.append(np.mean(dice_i))\n",
577
    "    \n",
578
    "    if dice_scores:\n",
579
    "        return np.mean(dice_scores)\n",
580
    "    else:\n",
581
    "        return 0\n",
582
    "    \n",
583
    "    \n",
584
    "def hd_dist_per_slice(inp, targ, seed):    \n",
585
    "    inp = np.argwhere(inp) / np.array(inp.shape)\n",
586
    "    targ = np.argwhere(targ) / np.array(targ.shape)\n",
587
    "    haussdorf_dist = 1 - directed_hausdorff(inp, targ, seed)[0]\n",
588
    "    return haussdorf_dist if haussdorf_dist > 0 else 0\n",
589
    "\n",
590
    "def hd_dist_adj(inp, targ, seed=42):\n",
591
    "    inp = np.where(sigmoid(inp).cpu().detach().numpy() > 0.5, 1, 0)\n",
592
    "    targ = targ.cpu().detach().numpy()\n",
593
    "    hd_scores = []\n",
594
    "    for i in range(targ.shape[0]):\n",
595
    "        hd_i = []\n",
596
    "        for j in range(targ.shape[1]):\n",
597
    "            if inp[i, j].sum() == targ[i, j].sum() == 0:\n",
598
    "                continue\n",
599
    "            hd_i.append(hd_dist_per_slice(inp[i, j], targ[i, j], seed))\n",
600
    "        if hd_i:\n",
601
    "            hd_scores.append(np.mean(hd_i))\n",
602
    "    if hd_scores:\n",
603
    "        return np.mean(hd_scores)\n",
604
    "    else:\n",
605
    "        return 0\n",
606
    "\n",
607
    "def custom_metric_adj(inp, targ, seed=42):\n",
608
    "    hd_score_per_batch = hd_dist_adj(inp, targ, seed)\n",
609
    "    dice_score_per_batch = dice_coeff_adj(inp, targ)\n",
610
    "    \n",
611
    "    return 0.4*dice_score_per_batch + 0.6*hd_score_per_batch"
612
   ]
613
  },
614
  {
615
   "cell_type": "markdown",
616
   "metadata": {},
617
   "source": [
618
    "## Loss Functions"
619
   ]
620
  },
621
  {
622
   "cell_type": "code",
623
   "execution_count": 9,
624
   "metadata": {
625
    "ExecuteTime": {
626
     "end_time": "2022-06-28T03:46:49.088279Z",
627
     "start_time": "2022-06-28T03:46:49.088271Z"
628
    }
629
   },
630
   "outputs": [],
631
   "source": [
632
    "class DiceBCEModule(Module):\n",
633
    "    def __init__(self, eps:float=1e-5, from_logits=True):\n",
634
    "        store_attr()\n",
635
    "        \n",
636
    "    def forward(self, inp:Tensor, targ:Tensor) -> Tensor:\n",
637
    "        inp = inp.view(-1)\n",
638
    "        targ = targ.view(-1)\n",
639
    "        \n",
640
    "        if self.from_logits: \n",
641
    "            bce_loss = nn.BCEWithLogitsLoss()(inp, targ)\n",
642
    "            inp = torch.sigmoid(inp)\n",
643
    "            \n",
644
    "            \n",
645
    "        intersection = (inp * targ).sum()                            \n",
646
    "        dice = (2.*intersection + self.eps)/(inp.sum() + targ.sum() + self.eps)  \n",
647
    "        \n",
648
    "        return 0.5*(1 - dice) + 0.5*bce_loss\n",
649
    "\n",
650
    "\n",
651
    "class DiceBCELoss(BaseLoss):\n",
652
    "    def __init__(self, *args, eps:float=1e-5, from_logits=True, thresh=0.5, **kwargs):\n",
653
    "        super().__init__(DiceBCEModule, *args, eps=eps, from_logits=from_logits, flatten=False, is_2d=True, floatify=True, **kwargs)\n",
654
    "        self.thresh = thresh\n",
655
    "    \n",
656
    "    def decodes(self, x:Tensor) -> Tensor:\n",
657
    "        \"Converts model output to target format\"\n",
658
    "        return (x>self.thresh).long()\n",
659
    "\n",
660
    "    def activation(self, x:Tensor) -> Tensor:\n",
661
    "        \"`nn.BCEWithLogitsLoss`'s fused activation function applied to model output\"\n",
662
    "        return torch.sigmoid(x)\n",
663
    "\n",
664
    "# Source: https://www.kaggle.com/code/thedrcat/focal-multilabel-loss-in-pytorch-explained/notebook\n",
665
    "def focal_binary_cross_entropy(logits, targets, gamma=2, n=3):\n",
666
    "    p = torch.sigmoid(logits)\n",
667
    "    p = torch.where(targets >= 0.5, p, 1-p)\n",
668
    "    logp = - torch.log(torch.clamp(p, 1e-4, 1-1e-4))\n",
669
    "    loss = logp*((1-p)**gamma)\n",
670
    "    loss = n*loss.mean()\n",
671
    "    return loss\n",
672
    "\n",
673
    "class DiceFocalModule(Module):\n",
674
    "    def __init__(self, eps:float=1e-5, from_logits=True, ws=[0.5, 0.5], gamma=2, n=3):\n",
675
    "        store_attr()\n",
676
    "        \n",
677
    "    def forward(self, inp:Tensor, targ:Tensor) -> Tensor:\n",
678
    "        inp = inp.view(-1)\n",
679
    "        targ = targ.view(-1)\n",
680
    "        \n",
681
    "        if self.from_logits: \n",
682
    "            focal_loss = focal_binary_cross_entropy(inp, targ, self.gamma, self.n)\n",
683
    "            inp = torch.sigmoid(inp)\n",
684
    "            \n",
685
    "            \n",
686
    "        intersection = (inp * targ).sum()                            \n",
687
    "        dice = (2.*intersection + self.eps)/(inp.sum() + targ.sum() + self.eps)  \n",
688
    "        \n",
689
    "        return self.ws[0]*(1 - dice) + self.ws[1]*focal_loss\n",
690
    "    \n",
691
    "class DiceFocalLoss(BaseLoss):\n",
692
    "    def __init__(self, *args, eps:float=1e-5, from_logits=True, ws=[0.5, 0.5], gamma=2, n=3, thresh=0.5, **kwargs):\n",
693
    "        super().__init__(DiceFocalModule, *args, eps=eps, from_logits=from_logits, ws=ws, gamma=gamma, n=n, flatten=False, is_2d=True, floatify=True, **kwargs)\n",
694
    "        self.thresh = thresh\n",
695
    "    \n",
696
    "    def decodes(self, x:Tensor) -> Tensor:\n",
697
    "        \"Converts model output to target format\"\n",
698
    "        return (x>self.thresh).long()\n",
699
    "\n",
700
    "    def activation(self, x:Tensor) -> Tensor:\n",
701
    "        \"`nn.BCEWithLogitsLoss`'s fused activation function applied to model output\"\n",
702
    "        return torch.sigmoid(x)\n",
703
    "\n",
704
    "class FocalTverskyLossModule(Module):\n",
705
    "    def __init__(self, eps:float=1e-5, from_logits=True, alpha=0.3, beta=0.7, gamma=3/4):\n",
706
    "        store_attr()\n",
707
    "        \n",
708
    "    def forward(self, inp:Tensor, targ:Tensor) -> Tensor:\n",
709
    "        inp = inp.view(-1)\n",
710
    "        targ = targ.view(-1)\n",
711
    "        \n",
712
    "        if self.from_logits: \n",
713
    "            inp = torch.sigmoid(inp)\n",
714
    "            \n",
715
    "        inp_0, inp_1 = inp, 1 - inp\n",
716
    "        targ_0, targ_1 = targ, 1 - targ\n",
717
    "            \n",
718
    "        num = (inp_0 * targ_0).sum() \n",
719
    "        denom = num + (self.alpha * (inp_0 * targ_1).sum()) + (self.beta * (inp_1 * targ_0).sum()) + self.eps\n",
720
    "        loss = 1 - (num / denom)\n",
721
    "        return loss**self.gamma \n",
722
    "    \n",
723
    "class FocalTverskyLoss(BaseLoss):\n",
724
    "    def __init__(self, *args, eps:float=1e-5, from_logits=True, alpha=0.3, beta=0.7, gamma=3/4, thresh=0.5, **kwargs):\n",
725
    "        super().__init__(FocalTverskyLossModule, *args, eps=eps, from_logits=from_logits, alpha=alpha, beta=beta, gamma=gamma, flatten=False, is_2d=True, floatify=True, **kwargs)\n",
726
    "        self.thresh = thresh\n",
727
    "    \n",
728
    "    def decodes(self, x:Tensor) -> Tensor:\n",
729
    "        \"Converts model output to target format\"\n",
730
    "        return (x>self.thresh).long()\n",
731
    "\n",
732
    "    def activation(self, x:Tensor) -> Tensor:\n",
733
    "        \"`nn.BCEWithLogitsLoss`'s fused activation function applied to model output\"\n",
734
    "        return torch.sigmoid(x)\n",
735
    "\n",
736
    "def focal_binary_cross_entropy(logits, targets, gamma=2, n=3):\n",
737
    "    p = torch.sigmoid(logits)\n",
738
    "    p = torch.where(targets >= 0.5, p, 1-p)\n",
739
    "    logp = - torch.log(torch.clamp(p, 1e-4, 1-1e-4))\n",
740
    "    loss = logp*((1-p)**gamma)\n",
741
    "    loss = n*loss.mean()\n",
742
    "    return loss\n",
743
    "\n",
744
    "class ComboModule(Module):\n",
745
    "    def __init__(self, eps:float=1e-5, from_logits=True, ws=[2, 3, 1], gamma=2, n=3):\n",
746
    "        store_attr()\n",
747
    "        \n",
748
    "    def forward(self, inp:Tensor, targ:Tensor) -> Tensor:\n",
749
    "        inp = inp.view(-1)\n",
750
    "        targ = targ.view(-1)\n",
751
    "        \n",
752
    "        if self.from_logits: \n",
753
    "            focal_loss = focal_binary_cross_entropy(inp, targ, self.gamma, self.n)\n",
754
    "            bce_loss = nn.BCEWithLogitsLoss()(inp, targ)\n",
755
    "            inp = torch.sigmoid(inp)\n",
756
    "                \n",
757
    "        intersection = (inp * targ).sum()                            \n",
758
    "        dice = (2.*intersection + self.eps)/(inp.sum() + targ.sum() + self.eps)  \n",
759
    "        \n",
760
    "        return self.ws[0]*(1 - dice) + self.ws[1]*focal_loss + self.ws[2]*bce_loss\n",
761
    "    \n",
762
    "class ComboLoss(BaseLoss):\n",
763
    "    def __init__(self, *args, eps:float=1e-5, from_logits=True, ws=[2, 3, 1], gamma=2, n=3, thresh=0.5, **kwargs):\n",
764
    "        super().__init__(ComboModule, *args, eps=eps, from_logits=from_logits, ws=ws, gamma=gamma, n=n, flatten=False, is_2d=True, floatify=True, **kwargs)\n",
765
    "        self.thresh = thresh\n",
766
    "    \n",
767
    "    def decodes(self, x:Tensor) -> Tensor:\n",
768
    "        \"Converts model output to target format\"\n",
769
    "        return (x>self.thresh).long()\n",
770
    "\n",
771
    "    def activation(self, x:Tensor) -> Tensor:\n",
772
    "        \"`nn.BCEWithLogitsLoss`'s fused activation function applied to model output\"\n",
773
    "        return torch.sigmoid(x)"
774
   ]
775
  },
776
  {
777
   "cell_type": "markdown",
778
   "metadata": {},
779
   "source": [
780
    "## Set up CUDA"
781
   ]
782
  },
783
  {
784
   "cell_type": "code",
785
   "execution_count": 10,
786
   "metadata": {},
787
   "outputs": [
788
    {
789
     "name": "stdout",
790
     "output_type": "stream",
791
     "text": [
792
      "device_name: GeForce RTX 2080 Ti\n",
793
      "device_capability: (7, 5)\n",
794
      "device_properties: _CudaDeviceProperties(name='GeForce RTX 2080 Ti', major=7, minor=5, total_memory=11019MB, multi_processor_count=68)\n",
795
      "current_device: 0\n",
796
      "\n",
797
      "Available Device IDs:  (0, 1, 2, 3)\n",
798
      "Device 0: 10620 MB free\n",
799
      "Device 1: 7899 MB free\n",
800
      "Device 2: 16274 MB free\n",
801
      "Device 3: 9241 MB free\n"
802
     ]
803
    }
804
   ],
805
   "source": [
806
    "# Select Cuda GPU device\n",
807
    "def get_memory_free_MiB(gpu_index):\n",
808
    "    pynvml.nvmlInit()\n",
809
    "    handle = pynvml.nvmlDeviceGetHandleByIndex(int(gpu_index))\n",
810
    "    mem_info = pynvml.nvmlDeviceGetMemoryInfo(handle)\n",
811
    "    return mem_info.free // 1024 ** 2\n",
812
    "\n",
813
    "device_count = torch.cuda.device_count()\n",
814
    "current_device = torch.cuda.current_device()\n",
815
    "device_name = torch.cuda.get_device_name(current_device)\n",
816
    "device_capability = torch.cuda.get_device_capability(current_device)\n",
817
    "device_properties = torch.cuda.get_device_properties(current_device)\n",
818
    "is_available = torch.cuda.is_available()\n",
819
    "device_cuda = torch.device(\"cuda\")\n",
820
    "devices_tup = tuple(range(device_count))\n",
821
    "\n",
822
    "print('device_name: {device_name}'.format(device_name=device_name))\n",
823
    "print('device_capability: {device_capability}'.format(device_capability=device_capability))\n",
824
    "print('device_properties: {device_properties}'.format(device_properties=device_properties))\n",
825
    "print('current_device: {current_device}'.format(current_device=current_device))\n",
826
    "print(\"\\nAvailable Device IDs: \", devices_tup)\n",
827
    "\n",
828
    "for device_id in devices_tup:\n",
829
    "    print(f\"Device {device_id}: {get_memory_free_MiB(device_id)} MB free\")"
830
   ]
831
  },
832
  {
833
   "cell_type": "code",
834
   "execution_count": 11,
835
   "metadata": {},
836
   "outputs": [
837
    {
838
     "name": "stdout",
839
     "output_type": "stream",
840
     "text": [
841
      "\n",
842
      "Successfully selected device 2\n"
843
     ]
844
    }
845
   ],
846
   "source": [
847
    "device_id = 2\n",
848
    "torch.backends.cudnn.benchmark = True\n",
849
    "\n",
850
    "if device_id is not None:\n",
851
    "    torch.cuda.set_device(device_id)\n",
852
    "    current_device = torch.cuda.current_device()\n",
853
    "    if current_device == device_id:\n",
854
    "        print(f\"\\nSuccessfully selected device {device_id}\")\n",
855
    "    else:\n",
856
    "        print(f\"Error: Couldn't change device from {current_device} to {device_id}\")\n"
857
   ]
858
  },
859
  {
860
   "cell_type": "markdown",
861
   "metadata": {},
862
   "source": [
863
    "## Baseline train using SMP"
864
   ]
865
  },
866
  {
867
   "cell_type": "code",
868
   "execution_count": 12,
869
   "metadata": {
870
    "ExecuteTime": {
871
     "end_time": "2022-06-28T03:46:49.089093Z",
872
     "start_time": "2022-06-28T03:46:49.089085Z"
873
    }
874
   },
875
   "outputs": [],
876
   "source": [
877
    "def build_model(encoder_name, in_c=3, classes=3, weights=\"imagenet\"):\n",
878
    "    model = smp.Unet(\n",
879
    "        encoder_name=encoder_name,      \n",
880
    "        encoder_weights=weights,     \n",
881
    "        in_channels=in_c,                \n",
882
    "        classes=classes,        \n",
883
    "        activation=None\n",
884
    "    )\n",
885
    "    return model\n",
886
    "\n",
887
    "# Split any of model parameters from smp into encoder and decoder, \n",
888
    "# so that we can freeze and unfreeze encoder layers.\n",
889
    "def smp_splitter(model):\n",
890
    "    model_layers = list(model.children())\n",
891
    "    encoder_params = params(model_layers[0])\n",
892
    "    decoder_params = params(model_layers[1]) + params(model_layers[2])\n",
893
    "    return L(encoder_params, decoder_params)"
894
   ]
895
  },
896
  {
897
   "cell_type": "code",
898
   "execution_count": 13,
899
   "metadata": {},
900
   "outputs": [
901
    {
902
     "name": "stderr",
903
     "output_type": "stream",
904
     "text": [
905
      "/home/kgeorgio/miniconda3/envs/gi-tract/lib/python3.7/site-packages/torch/_tensor.py:575: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.\n",
906
      "To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at  /opt/conda/conda-bld/pytorch_1631630742027/work/aten/src/ATen/native/BinaryOps.cpp:467.)\n",
907
      "  return torch.floor_divide(self, other)\n"
908
     ]
909
    }
910
   ],
911
   "source": [
912
    "dev_df = train_df.sample(frac=0.2)\n",
913
    "up_size = (320, 384)\n",
914
    "tfms = [[partial(get_25D_image, up_size=up_size), PILImage.create],\n",
915
    "        [partial(get_mask, up_size=up_size), PILMask.create]]  # the pipeline\n",
916
    "\n",
917
    "splits = RandomSplitter()(dev_df)\n",
918
    "# https://docs.fast.ai/tutorial.albumentations.html\n",
919
    "albu_aug = AlbumentationsTransform(get_train_aug(up_size), \n",
920
    "                                   get_test_aug(up_size))\n",
921
    "                                                                \n",
922
    "# https://docs.fast.ai/data.core.html#Datasets\n",
923
    "dsets = Datasets(train_df, tfms, splits=splits)\n",
924
    "# https://docs.fast.ai/data.load.html#DataLoader\n",
925
    "dls = dsets.dataloaders(bs=16, \n",
926
    "                        after_item=[albu_aug, ToTensor], \n",
927
    "                        after_batch=[IntToFloatTensor(div_mask=255),                                                                             \n",
928
    "                                     Normalize.from_stats(*imagenet_stats)],\n",
929
    "                        device=device_id)\n",
930
    "# https://smp.readthedocs.io/en/latest/encoders.html\n",
931
    "model = build_model('efficientnet-b0', in_c=3, classes=3, weights=\"imagenet\")\n",
932
    "model = model.cuda(device_id)\n",
933
    "metrics = [\n",
934
    "           dice_coeff_adj, \n",
935
    "           hd_dist_adj, \n",
936
    "           custom_metric_adj\n",
937
    "          ]\n",
938
    "loss_func = ComboLoss()\n",
939
    "splitter = smp_splitter"
940
   ]
941
  },
942
  {
943
   "cell_type": "code",
944
   "execution_count": 14,
945
   "metadata": {
946
    "ExecuteTime": {
947
     "end_time": "2022-06-28T03:46:49.091707Z",
948
     "start_time": "2022-06-28T03:46:49.091699Z"
949
    }
950
   },
951
   "outputs": [
952
    {
953
     "data": {
954
      "text/html": [
955
       "\n",
956
       "<style>\n",
957
       "    /* Turns off some styling */\n",
958
       "    progress {\n",
959
       "        /* gets rid of default border in Firefox and Opera. */\n",
960
       "        border: none;\n",
961
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
962
       "        background-size: auto;\n",
963
       "    }\n",
964
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
965
       "        background: #F44336;\n",
966
       "    }\n",
967
       "</style>\n"
968
      ],
969
      "text/plain": [
970
       "<IPython.core.display.HTML object>"
971
      ]
972
     },
973
     "metadata": {},
974
     "output_type": "display_data"
975
    },
976
    {
977
     "data": {
978
      "text/html": [
979
       "<table border=\"1\" class=\"dataframe\">\n",
980
       "  <thead>\n",
981
       "    <tr style=\"text-align: left;\">\n",
982
       "      <th>epoch</th>\n",
983
       "      <th>train_loss</th>\n",
984
       "      <th>valid_loss</th>\n",
985
       "      <th>dice_coeff_adj</th>\n",
986
       "      <th>hd_dist_adj</th>\n",
987
       "      <th>custom_metric_adj</th>\n",
988
       "      <th>time</th>\n",
989
       "    </tr>\n",
990
       "  </thead>\n",
991
       "  <tbody>\n",
992
       "    <tr>\n",
993
       "      <td>0</td>\n",
994
       "      <td>1.383521</td>\n",
995
       "      <td>1.162622</td>\n",
996
       "      <td>0.383626</td>\n",
997
       "      <td>0.797801</td>\n",
998
       "      <td>0.632131</td>\n",
999
       "      <td>01:41</td>\n",
1000
       "    </tr>\n",
1001
       "  </tbody>\n",
1002
       "</table>"
1003
      ],
1004
      "text/plain": [
1005
       "<IPython.core.display.HTML object>"
1006
      ]
1007
     },
1008
     "metadata": {},
1009
     "output_type": "display_data"
1010
    },
1011
    {
1012
     "data": {
1013
      "text/html": [
1014
       "\n",
1015
       "<style>\n",
1016
       "    /* Turns off some styling */\n",
1017
       "    progress {\n",
1018
       "        /* gets rid of default border in Firefox and Opera. */\n",
1019
       "        border: none;\n",
1020
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
1021
       "        background-size: auto;\n",
1022
       "    }\n",
1023
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
1024
       "        background: #F44336;\n",
1025
       "    }\n",
1026
       "</style>\n"
1027
      ],
1028
      "text/plain": [
1029
       "<IPython.core.display.HTML object>"
1030
      ]
1031
     },
1032
     "metadata": {},
1033
     "output_type": "display_data"
1034
    },
1035
    {
1036
     "data": {
1037
      "text/html": [
1038
       "<table border=\"1\" class=\"dataframe\">\n",
1039
       "  <thead>\n",
1040
       "    <tr style=\"text-align: left;\">\n",
1041
       "      <th>epoch</th>\n",
1042
       "      <th>train_loss</th>\n",
1043
       "      <th>valid_loss</th>\n",
1044
       "      <th>dice_coeff_adj</th>\n",
1045
       "      <th>hd_dist_adj</th>\n",
1046
       "      <th>custom_metric_adj</th>\n",
1047
       "      <th>time</th>\n",
1048
       "    </tr>\n",
1049
       "  </thead>\n",
1050
       "  <tbody>\n",
1051
       "    <tr>\n",
1052
       "      <td>0</td>\n",
1053
       "      <td>0.814299</td>\n",
1054
       "      <td>0.605600</td>\n",
1055
       "      <td>0.621061</td>\n",
1056
       "      <td>0.814855</td>\n",
1057
       "      <td>0.737338</td>\n",
1058
       "      <td>01:59</td>\n",
1059
       "    </tr>\n",
1060
       "  </tbody>\n",
1061
       "</table>"
1062
      ],
1063
      "text/plain": [
1064
       "<IPython.core.display.HTML object>"
1065
      ]
1066
     },
1067
     "metadata": {},
1068
     "output_type": "display_data"
1069
    }
1070
   ],
1071
   "source": [
1072
    "# https://docs.fast.ai/learner.html#Learner\n",
1073
    "learn = Learner(dls, \n",
1074
    "                model,\n",
1075
    "                metrics=metrics, \n",
1076
    "                loss_func=loss_func, \n",
1077
    "                splitter=splitter).to_fp16()\n",
1078
    "\n",
1079
    "#https://docs.fast.ai/callback.schedule.html#Learner.fine_tune\n",
1080
    "learn.freeze()\n",
1081
    "learn.fine_tune(1, 1e-2)\n",
1082
    "learn.export('test_model.pkl')"
1083
   ]
1084
  },
1085
  {
1086
   "cell_type": "markdown",
1087
   "metadata": {
1088
    "pycharm": {
1089
     "name": "#%%\n"
1090
    }
1091
   },
1092
   "source": [
1093
    "## Use DynamicUnet"
1094
   ]
1095
  },
1096
  {
1097
   "cell_type": "code",
1098
   "execution_count": 15,
1099
   "metadata": {},
1100
   "outputs": [],
1101
   "source": [
1102
    "def timm_model_sizes(encoder, img_size):\n",
1103
    "    sizes = []\n",
1104
    "    for layer in encoder.feature_info:\n",
1105
    "        sizes.append(torch.Size([1, layer['num_chs'], img_size[0]//layer['reduction'], img_size[1]//layer['reduction']]))\n",
1106
    "    return sizes\n",
1107
    "\n",
1108
    "\n",
1109
    "def get_timm_output_layers(encoder):\n",
1110
    "    outputs = []\n",
1111
    "    for layer in encoder.feature_info:\n",
1112
    "        # Converts 'blocks.0.0' to ['blocks', '0', '0']\n",
1113
    "        attrs = layer['module'].split('.')\n",
1114
    "        output_layer = getattr(encoder, attrs[0])[int(attrs[1])][int(attrs[2])]\n",
1115
    "        outputs.append(output_layer)\n",
1116
    "    return outputs\n",
1117
    "\n",
1118
    "\n",
1119
    "class DynamicTimmUnet(SequentialEx):\n",
1120
    "    \"Create a U-Net from a given architecture in timm.\"\n",
1121
    "    def __init__(self, encoder, n_out, img_size, blur=False, blur_final=True, self_attention=False,\n",
1122
    "                 y_range=None, last_cross=True, bottle=False, act_cls=defaults.activation,\n",
1123
    "                 init=nn.init.kaiming_normal_, norm_type=None, **kwargs):\n",
1124
    "        imsize = img_size\n",
1125
    "        sizes = timm_model_sizes(encoder, img_size)\n",
1126
    "        sz_chg_idxs = list(reversed(range(len(sizes))))\n",
1127
    "        outputs = list(reversed(get_timm_output_layers(encoder)))\n",
1128
    "        self.sfs = hook_outputs(outputs, detach=False)\n",
1129
    "        \n",
1130
    "        # cut encoder\n",
1131
    "        encoder = nn.Sequential(*list(encoder.children()))[:-5]\n",
1132
    "        \n",
1133
    "        x = dummy_eval(encoder, imsize).detach()\n",
1134
    "\n",
1135
    "        ni = sizes[-1][1]\n",
1136
    "        middle_conv = nn.Sequential(ConvLayer(ni, ni*2, act_cls=act_cls, norm_type=norm_type, **kwargs),\n",
1137
    "                                    ConvLayer(ni*2, ni, act_cls=act_cls, norm_type=norm_type, **kwargs)).eval()\n",
1138
    "        x = middle_conv(x)\n",
1139
    "        layers = [encoder, BatchNorm(ni), nn.ReLU(), middle_conv]\n",
1140
    "\n",
1141
    "        for i,idx in enumerate(sz_chg_idxs):\n",
1142
    "            not_final = i!=len(sz_chg_idxs)-1\n",
1143
    "            up_in_c, x_in_c = int(x.shape[1]), int(sizes[idx][1])\n",
1144
    "            do_blur = blur and (not_final or blur_final)\n",
1145
    "            sa = self_attention and (i==len(sz_chg_idxs)-3)\n",
1146
    "            unet_block = UnetBlock(up_in_c, x_in_c, self.sfs[i], final_div=not_final, blur=do_blur, self_attention=sa,\n",
1147
    "                                   act_cls=act_cls, init=init, norm_type=norm_type, **kwargs).eval()\n",
1148
    "            layers.append(unet_block)\n",
1149
    "            x = unet_block(x)\n",
1150
    "\n",
1151
    "        ni = x.shape[1]\n",
1152
    "        if imsize != sizes[0][-2:]: layers.append(PixelShuffle_ICNR(ni, act_cls=act_cls, norm_type=norm_type))\n",
1153
    "        layers.append(ResizeToOrig())\n",
1154
    "        if last_cross:\n",
1155
    "            layers.append(MergeLayer(dense=True))\n",
1156
    "            ni += in_channels(encoder)\n",
1157
    "            layers.append(ResBlock(1, ni, ni//2 if bottle else ni, act_cls=act_cls, norm_type=norm_type, **kwargs))\n",
1158
    "        layers += [ConvLayer(ni, n_out, ks=1, act_cls=None, norm_type=norm_type, **kwargs)]\n",
1159
    "        apply_init(nn.Sequential(layers[3], layers[-2]), init)\n",
1160
    "        #apply_init(nn.Sequential(layers[2]), init)\n",
1161
    "        if y_range is not None: layers.append(SigmoidRange(*y_range))\n",
1162
    "        layers.append(ToTensorBase())\n",
1163
    "        super().__init__(*layers)\n",
1164
    "\n",
1165
    "    def __del__(self):\n",
1166
    "        if hasattr(self, \"sfs\"): self.sfs.remove()\n",
1167
    "            \n",
1168
    "            \n",
1169
    "def dynamic_unet_splitter(model):\n",
1170
    "    return L(model[0], model[1:]).map(params)"
1171
   ]
1172
  },
1173
  {
1174
   "cell_type": "code",
1175
   "execution_count": 16,
1176
   "metadata": {},
1177
   "outputs": [
1178
    {
1179
     "data": {
1180
      "text/html": [
1181
       "\n",
1182
       "<style>\n",
1183
       "    /* Turns off some styling */\n",
1184
       "    progress {\n",
1185
       "        /* gets rid of default border in Firefox and Opera. */\n",
1186
       "        border: none;\n",
1187
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
1188
       "        background-size: auto;\n",
1189
       "    }\n",
1190
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
1191
       "        background: #F44336;\n",
1192
       "    }\n",
1193
       "</style>\n"
1194
      ],
1195
      "text/plain": [
1196
       "<IPython.core.display.HTML object>"
1197
      ]
1198
     },
1199
     "metadata": {},
1200
     "output_type": "display_data"
1201
    },
1202
    {
1203
     "data": {
1204
      "text/html": [],
1205
      "text/plain": [
1206
       "<IPython.core.display.HTML object>"
1207
      ]
1208
     },
1209
     "metadata": {},
1210
     "output_type": "display_data"
1211
    },
1212
    {
1213
     "data": {
1214
      "text/plain": [
1215
       "SuggestedLRs(valley=0.00013182566908653826)"
1216
      ]
1217
     },
1218
     "execution_count": 16,
1219
     "metadata": {},
1220
     "output_type": "execute_result"
1221
    },
1222
    {
1223
     "data": {
1224
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtpklEQVR4nO3deXxcdbn48c8zk8m+NUu3pCVt09J9syBYkNqC7AVFQC+uPxSRe0FQ4cq9ioD7dYGLioKieEXBWlDKorIWFBDbQlvpQps0aZtumSTNMpM9eX5/zKSEkKRJO2fOLM/79ZpXZ845c87z7bTzzHc536+oKsYYY5KXx+0AjDHGuMsSgTHGJDlLBMYYk+QsERhjTJKzRGCMMUnOEoExxiS5FLcDGK2ioiItKytzOwxjjIkrGzZsqFPV4sH2xV0iKCsrY/369W6HYYwxcUVEdg+1z5qGjDEmyVkiMMaYJGeJwBhjklzc9REMpquri5qaGtrb290OxTXp6emUlpbi8/ncDsUYE2cSIhHU1NSQk5NDWVkZIuJ2OFGnqtTX11NTU8OUKVPcDscYE2cSommovb2dwsLCpEwCACJCYWFhUteIjDHHLiESAZC0SaBPspffmESmqjy2aT/7G9scOX/CJIJ4kp2dDUB1dTVz5851ORpjTKw70NTOtQ++znPbax05f3Imgs2r4I65cGt+6M/Nq9yOyBhjhrSzNgDA9LHZjpw/+RLB5lXw2HXQtBfQ0J+PXXdcyeDLX/4yP/nJT468vvXWW/nGN77BihUrWLx4MfPmzePRRx8d9hw9PT3ceOONnHTSScyfP5977rkHgI9//OP86U9/OnLcFVdccdRzGWMSy85DLQBMH5fjyPmTLxE8ezt0DWhn62oLbT9Gl19+OatWvZVIVq1axSc+8Qn++Mc/8tprr/H888/zxS9+keGWBb3vvvvIy8tj3bp1rFu3jp///OdUVVVx5ZVXcv/99wPQ1NTEyy+/zPnnn3/MsRpj4k9FbYDCrFQKslIdOX9CDB8dlaaa0W0fgUWLFlFbW8v+/fvx+/2MGTOG8ePHc8MNN/Diiy/i8XjYt28fhw4dYvz48YOe46mnnmLz5s2sXr06FE5TEzt37uT9738/11xzDX6/n4cffphLLrmElJTk+9iMSWY7awOUO9QsBMmYCPJKw81Cg2w/DpdeeimrV6/m4MGDXH755fz2t7/F7/ezYcMGfD4fZWVlww7vVFV+9KMfcfbZZ79j38c//nEeeOABHnroIX71q18dV5zGmPiiquw41MJFCyc6do3kaxpacQv4Mt6+zZcR2n4cLr/8ch566CFWr17NpZdeSlNTE2PHjsXn8/H888+ze/eQE/8BcPbZZ/PTn/6Urq4uAHbs2EEwGATgk5/8JHfeeScAs2fPPq44jTHxpbalg5b2bqaPdaZ/AJKxRjD/stCfz94eag7KKw0lgb7tx2jOnDm0tLRQUlLChAkTuOKKK7jwwguZN28eS5YsYebMmcO+/9Of/jTV1dUsXrwYVaW4uPhIJ/G4ceOYNWsWF1988XHFaIyJPzsPOTtiCECG68CMRUuWLNGB6xFs27aNWbNmuRSR81pbW5k3bx6vvfYaeXl5Qx6X6H8PxiSjX71UxW2PbWXdf59JcU7aMZ9HRDao6pLB9iVf01CceeaZZ5g1axbXXnvtsEnAGJOYdtYGyM/0UZTtzIghSMamoThz5plnHrV/wRiTuCoOBZg+NtvRaWSsRmCMMTFKVdlR20K5gx3FkECJIN76OiIt2ctvTCKqD3bS2NrlaEcxJEgiSE9Pp76+Pmm/DPvWI0hPT3c7FGNMBB0ZMTTO2UTgeB+BiHiB9cA+Vb1giGMuAVYDJ6nq+sGOGU5paSk1NTX4/f7jCzaO9a1QZoxJHBW14TmGHG4aikZn8eeBbUDuYDtFJCd8zKvHegGfz2crcxljEs7O2gA5aSmMyz32YaMj4WjTkIiUAucDvxjmsK8D3wVseS1jjOln56EA5eOcHTEEztcI7gRuAgat14jIYmCSqj4hIjc6HMuwenqV1/ccpqouSEOwk4ZgJ/XBTnp7ldIxGZSOyTzy57i8NNJSvG97v6rSEOxkV10Qj8CJ43PJTrPRucaYY7ezNsDymcWOX8exbyoRuQCoVdUNIrJskP0e4IfAJ0dwrquAqwAmT54csRi7enp5pbKev2w5yFNbDlIX6DyyLy3FQ2FWKiLCnza20TugH7ooO40JeemMy02jLtDJLn+A5vbutx1TVpjJrAm5lI/NJjsthcxULxmpKaSmePC3dFBzuJV9h9vY19hGZqqXKUVZTC3OZkpRFvkZPg63dlIX6KQ+0ElrVzflxdnMLcmjfGw2Pm/kKnO9vUpjWxcNwQ46unspyEplTGYq6b53JrvOnl56ewc/T9+PlhSPkBLB+IxJRoeDndQFOhzvHwBnawRLgZUich6QDuSKyAOq+tHw/hxgLrA2XO0ZD6wRkZUDO4xV9V7gXghNMXEswVT6A6yramBPQyu7G1rZU99KVV2QQEc3male3jdzLOfOHc/8knwKslPJSvUeqY519fRysKmdvYdbqTncxoHGdg42t7G/sZ2aw20UZKVy4YKJTC3OZmpxFt09yrYDzUcef9lykMEGNGWmeikdk0FJfgbBzh6e2+5n1frBp8P2eYWuntBJ0lI8zByfw5isVHxeD6leDylewesRBMEjoS9lQVA0/HcIvQqtnd0EOrppbu8m0N5FY2sXh1s735HoALJSveRm+Ojs7qWtq4f2rp5BjxtMZqqXvAwfuek+8jJ8ZKenkJ2W8taf/R/pKWSkevF5PPi8oSTi8woeEUTAI6HnmalecsLvt0RjEl2FPzRiqNzhEUPgYCJQ1ZuBmwHCNYIv9UsCqGoTUNT3WkTWho8Z9aihkXh22yG+9eR2UjxC6ZgMJhdmsWhyPqdPL+b06UXv+PXbn8/rYVJBJpMKMkd8vbNmjzvyvLdXaevqobWzh9bObjq6eynOTiM/0/eOtr/m9i6q/EGa2roozE6lKDuNMZmpeD1CVV2QLfubeGNfE1sPNNMQ7KSzu5fuXqWrp5funr4vfaVXQVEEOfJLve/LNDs9hdz0FCbmpZOfmUphViqF2aFFL9JSPDQEQ8mhIdhJc1sXqSkeMnxeMlK9pPu8eD3vbK/U8PVUobtHaW7vormti+b2LprauqhtaaeqroeW9m5a2rvo6B6iWjFCmalexmSG4g7Fn0ZxThrjctIYn5fOuNx0xuelMzYnfdB4jYl1O/pWJXP4HgJwYYoJEbkdWK+qa6J53UsWl3Lu3AlMyEuP+q9Jj0fISkshKy0FGL73Pzfdx4JJ+YPuKx+bTfnYbC5aWBL5IKOsu6eXYEcPLR1dBDq6ae3sobtH6e7ppTOc1Ho1VJ9RVXp6IdjZfSSRtLR309jaRV2gA3+gg20HWqgLdNA9oMqS6vWEE38mkwsyGZuTRm64ppKTnkJBViqTCzIpCDcDGhMrdh4KkJXqpSQ/4+gHH6eoJAJVXQusDT8fdOJ/VV3mZAyF2WkUOnkBMyopXg95mR7yMn0RO2dvr9LQ2snBpnYONbdzoCnUdLenIciehlY27D5My4B+nD5ZqV4mFYSSxZSirLcexVkUZ6dZkjBRVxFelSwa//ZsWItJGB6PUJSdRlF2GnNLBp+ptbO7l5b2Lprbu2lu68Lf0sHew63srm9lb0Mru+qCrH3TT2fPW01XxTlpLJqUz6LJY1g0OZ8FpflkpA7dlGhMJOysbeG0cudHDIElApNkUlM8odph9tBNdD29yv7GNnbVBdnlD/CvmiZe39vIU1sPAaHO+tOnF3HmrHEsnzWWsTk2tYeJrKa2Lg41dzg+tUQfSwTGDOD1yJHBAWfMeOsXWUOwk417D/Pijjqe3nqIZ7bVArBocj4rF0zk/PkTLCmYiKiodX5Vsv4sERgzQgVZqSyfOY7lM8fxtQtns/1gC89sPcSTbxzktse28vXHt7K0vIgLF0zk1KmFlI7JsL4Fc0z65hgqt0RgTOwSEWZNyGXWhFyuXTGdnYdaWLNpP2s27eem1ZsByM/0Ma8kj7kleZxWXsQpUwttKKsZkYraAKkpHkrHjHzI+vFIiDWLjYkVqsrWA81s3NvIG/ua2FzTxJsHW+juVcbmpHHhgolctHAi80ryrLZghvT/7l/H/sY2/nL9eyN2zuHWLLYagTERJCLMmZjHnIlvjVpq7+rhue21/On1ffzmld3c9/cqZo7P4Svnz+a0tufg2duhqQbySmHFLTD/MhdLYGJBRW2A+aXRW6PcEoExDkv3eTlv3gTOmzeBptYunnzjAD9dW8mqX/2Ak9LuI007Qgc27YXHrgs9t2SQtNq7eth7uJUPLIrejaM2YYsxUZSX6eMjJ0/mqRveyzdyHnkrCfTpagvVEEzSqqoLohq9jmKwGoExrkj3eUnvODT4zqbBJx40yaFv6Oi04uglAqsRGOOWvMGXFu3Njf+5pMyxq/QHEIGpxVlRu6YlAmPcsuIW8L19QrFWTeUO/QiNrZ1DvMkkuoraAJPGZA47I3KkWSIwxi3zL4ML74K8SYBA3iR2vvtb3NPwLj587z/wt3Qc9RQm8VT6g0yLYm0ArI/AGHfNv+xtI4QWAPdN93PV/23gs79Zz0NXnUpqiv1eSxY9vcouf4DTyqM7V7L9CzMmxpw+vZjvXTqf1/Y08q0nt7kdjomi/Y1tdHT3RrWjGCwRGBOTLpg/kU8tLeP+l6t5bNN+t8MxUdI3YiiaQ0fBEoExMevmc2fxrhPG8J8Pbz4yCZlJbG4MHQVLBMbErNQUDz/5t8Vk+Lxc/cBrBDsGX13NJI5Kf4DCrFTGZKVG9bqWCIyJYePz0rnrI4vY5Q9w08ObibdJIs3oVNQGmBblZiGwRGBMzFtaXsSNZ8/kic0HuHttpdvhGAdV+gNRbxYCSwTGxIWrz5jKygUT+d5f3+SpLQfdDsc4oD7QweHWrqh3FIMlAmPigojwPx+az/zSPG74/UbePGidx4mm0h8EiPrNZGCJwJi4ke7zcu/HlpCZlsKn/28dh4M2DUUicWvoKFgiMCaujM9L596PvYtDzR1c89vX6O7pdTskEyEVtQEyfF4m5mUc/eAIs0RgTJxZNHkM3/rAPF7ZVc89L+5yOxwTIZX+AFOLs/C4sK61JQJj4tAli0s4f94E7nxmB9sONLsdjomAitqAK81CYInAmLgkInz94rnkZaTyhVWb6Oy2JqJ41tbZw77GNleGjkIUEoGIeEXkdRF5fJB9XxCRrSKyWUSeFZETnI7HmERRkJXKtz84j20Hmrnr2Z1uh2OOQ6XfvY5iiE6N4PPAUFMovg4sUdX5wGrgf6IQjzEJ46zZ4/jQu0q5e20Fr+857HY45hj1JYKErBGISClwPvCLwfar6vOq2hp++Q9g8LX7jDFDuuXC2YzPTeeLf9hEe1eP2+GYY1BZG8AjUFaU6cr1na4R3AncBIykAfNK4M+ORmNMAspN9/E/H1rALn+Q7/x5u9vhmGNQ4Q8wuSCTtJToLU/Zn2OJQEQuAGpVdcMIjv0osAT43hD7rxKR9SKy3u/3RzhSY+LfadOL+OR7QusXvLDD/o/Em8raoGv9A+BsjWApsFJEqoGHgOUi8sDAg0TkTOC/gZWqOugirap6r6ouUdUlxcXFDoZsTPz68rkzmTEumy/9YRMNdtdx3Oju6aWqLujKrKN9HEsEqnqzqpaqahnwYeA5Vf1o/2NEZBFwD6EkUOtULMYkg3SflzsvX0RTaxf/9ci/bMrqOLH3cBudPdFfnrK/qN9HICK3i8jK8MvvAdnAH0Rko4isiXY8xiSS2RNz+dLZM/jLloP8YUON2+GYEah0cY6hPinRuIiqrgXWhp/f0m/7mdG4vjHJ5NOnTeX57X5uW7OFd08p4ITC6M9maUauwuWho2B3FhuTcDwe4QeXLcDrEa5+4DVa2rvcDskMo6I2QHFOGnkZPtdisERgTAKamJ/Bj/9tMTsPtXD1AxtsCooYVukPUO5ibQAsERiTsN47o5jvXjKflyrquWn1Jnp7rfM41qiqq5PN9YlKH4Exxh2XvKuUg83tfO+vbzIuL52bz53ldkimH39LBy3t3a6sStafJQJjEtw1y6ZxsKmde17YxfjcdD61dIrbIZmwiiOTzeW4Goc1DRmT4ESEW1fO4azZ4/jGE9vYXNPodkgmLBaGjoIlAmOSgtcjfP9DCyjMSuWm1Zut8zhGVNQGyE5LYVxumqtxWCIwJknkZfr45gfmsf1gC3evrXA7HANU+oNMK85CJPrLU/ZnicCYJHLW7HFctHAiP36uwpa4jAEVtQFXbyTrY4nAmCTztQvnkJ/p46bVm+nusSYit7S0d3Gwud3Vyeb6WCIwJskUZKVy+0Vz+de+Ju792y63w0lalf4g4H5HMVgiMCYpnTdvAufOHc+dT++kui7odjhJqW/EkDUNGWNcc9vKOYjAT9dWuh1KUqrwB0jxCCcUurM8ZX+WCIxJUmNz07n8pEk88noN+xvb3A4n6VTUBigrysLndf9r2P0IjDGu+ewZ01CFe1+0voJoq/QHXJ9aoo8lAmOSWEl+Bh9YVMKD/9yDv2XQlWKNAzq7e9ld3xoTHcVgicCYpHf1sml09vTyy5eq3A4laeyuD9LTq5YIjDGxYVpxNufNm8BvXtlNU6stYhMNlTGwKll/lgiMMfz7snICHd38+pVqt0NJChUxNHQULBEYYwgter9i5lh++VIVwY5ut8NJeBW1ASbkpZOVFhsrAVgiMMYA8O/Ly2ls7eLBf+5xO5SEV+kPxkz/AFgiMMaELZ48hlOmFvCLv1XZNNUOUtXw0FFLBMaYGHT1GdM42NzOoxv3uR1KwjrQ1E5rZ09MTDbXxxKBMeaIM2YUM3N8Dve+uMsWu3fIWyOGYuNmMrBEYIzpR0S4+oxp7KwN8Nz2WrfDSUixsjxlf5YIjDFvc/78CZTkZ/CzF2wyOidU+oPkpKdQnO3u8pT9WSIwxryNz+vh06dPYf3uw6yvbnA7nITT11Hs9vKU/TmeCETEKyKvi8jjg+xLE5Hfi0iFiLwqImVOx2OMObrLT5pEfqaPn71gk9FFWqyNGILo1Ag+D2wbYt+VwGFVLQfuAL4bhXiMMUeRmZrCx08t45lth6iobXE7nITR3N7FoeYOpo2NnY5icDgRiEgpcD7wiyEOuQj4dfj5amCFxFJ9yZgk9olTTyDd57FaQQTt6lueMslqBHcCNwFD3Z1SAuwFUNVuoAkodDgmY8wIFGan8ZGTJ/PIazXsPGS1gkg4sjxlDI0YAgcTgYhcANSq6oYInOsqEVkvIuv9fn8EojPGjMS1y6eTlZrCd/683e1QEkJleHnKyQXuL0/Z34gSgYhkiYgn/HyGiKwUEd9R3rYUWCki1cBDwHIReWDAMfuASeHzpgB5QP3AE6nqvaq6RFWXFBcXjyRkY0wEFGSlcs37ynl2ey0vV9a5HU7cq/QHOKEwMyaWp+xvpNG8CKSLSAnwFPAx4P7h3qCqN6tqqaqWAR8GnlPVjw44bA3wifDzD4WPsdsZjYkhn1paxsS8dL715Da72/g4VfqDMTdiCEaeCERVW4EPAner6qXAnGO5oIjcLiIrwy/vAwpFpAL4AvDlYzmnMcY56T4vN55zIm/sa+bRTTYH0bHq6umlui62Zh3tM+JEICKnAlcAT4S3eUd6EVVdq6oXhJ/foqprws/bVfVSVS1X1ZNV1YYnGBODLlpQwtySXL7/1x20d/W4HU5c2tPQSnevxnWN4HrgZuCPqrpFRKYCzzsWlTEmpng8wn+dO4t9jW3c/3K12+HEpVgdMQQjTASq+oKqrlTV74Y7jetU9TqHYzPGxJD3lBexfOZYfvJcBY2tnW6HE3cqw/cQTI2hWUf7jHTU0O9EJFdEsoA3gK0icqOzoRljYs1N55xIS0c3v3yp2u1Q4k6lP8DYnDRy04824DL6Rto0NFtVm4GLgT8DUwiNHDLGJJGZ43M5e844fvVSFc3tXW6HE1cq/YGY7CiGkScCX/i+gYuBNaraBdg4MmOS0LXLp9PS3s2vrVYwYqpKZW3sTTbXZ6SJ4B6gGsgCXhSRE4Bmp4IyxsSuuSV5rJg5lvteqiLQ0e12OHHBH+igub07plYl62+kncV3qWqJqp6nIbuB9zkcmzEmRl27YjqNrV385pXdbocSFyprQx3FsThiCEbeWZwnIj/sm+9HRH5AqHZgjElCCyfl894Zxfzib7to7bRawdG8tU5xHCcC4JdAC3BZ+NEM/MqpoIwxse+65eXUBzv53at73A4l5lX6A2SmepmQl+52KIMaaSKYpqpfU9Vd4cdtwFQnAzPGxLYlZQWcOrWQe17cZXcbH0XfHEOxutzKSBNBm4ic1vdCRJYCbc6EZIyJF9etmI6/pYOH/mm1guGERgzFbmv6SBPB1cBPRKQ6PK30j4HPOhaVMSYunDK1gJOnFHD32kqrFQyhrbOHfY1tMds/ACMfNbRJVRcA84H5qroIWO5oZMaYmCci3HDmDGpbOnjQagWDOtJRHKMjhmCUK5SpanP4DmMITRttjElyp04r5N1WKxhSVV3szjHU53iWyYnNXg9jTNRdf+YM/C0dNoJoEH2JoKwwMROBTTFhjAFCtYJTphbw0xesVjBQdV2QiXnppPtGvIRL1A2bCESkRUSaB3m0ABOjFKMxJg701Qp+a7WCt9lVF2RKDDcLwVESgarmqGruII8cVU2JVpDGmNh3ytRCTp1ayE/XVtLWabWCPtX1wZhuFoLjaxoyxpi3uf7M6dQFOnjgHzYHEcDhYCeNrV1MKbJEYIxJEu+eWsjp04u467md1AU63A7HdVX1oY5iSwTGmKTytQvn0N7Vw7ef3O52KK6r8lsiMMYkofKx2Xz69Kk8/FoN66ob3A7HVdX1QbweYVJBptuhDMsSgTEm4q5dXs7EvHS++qc36O7pdTsc1+yqCzJpTAY+b2x/1cZ2dMaYuJSZmsItF85m+8EWfp3Ei9dU1wUpi/FmIbBEYIxxyNlzxnPGjGLueHoHh5rb3Q4n6lSVqrpgzPcPgCUCY4xDRITbVs6hs7uXbz6xze1wos7f0kFrZ48lAmNMcisryuLqM6ayZtN+/rGr3u1wompXXXyMGAIHE4GIpIvIP0Vkk4hsEZHbBjlmsog8LyKvi8hmETnPqXiMMe743LJySvIzuHXNlqTqOK6Og8nm+jhZI+gAlofXMVgInCMipww45ivAqvD6Bh8G7nYwHmOMCzJSvXz1gllsP9iSVPMQVdUFSU3xMDE/w+1QjsqxRKAhgfBLX/gxcMZSBXLDz/OA/U7FY4xxz9lzxnNaeRE/eOpN6pPkjuOquiAnFGTi9cT+jP2O9hGIiFdENgK1wNOq+uqAQ24FPioiNcCTwLVOxmOMcYeIcOvK2bR29vC9v77pdjhRES8jhsDhRKCqPaq6ECgFThaRuQMO+Qhwv6qWAucBvxGRd8QkIleJyHoRWe/3+50M2RjjkPKxOXxqaRm/X7+XzTWNbofjqJ5eZXd9qyWC/lS1EXgeOGfAriuBVeFjXgHSgaJB3n+vqi5R1SXFxcUOR2uMccp1K6ZTlJ3GLY9uobc3cde22t/YRmdPryUCESkWkfzw8wzgLGDgLFR7gBXhY2YRSgT2k9+YBJWT7uPL58xk495GnvjXAbfDccyR5SmTPREAE4DnRWQzsI5QH8HjInK7iKwMH/NF4DMisgl4EPikqibuzwRjDB9YVML0sdn86LmdCVsrqA5PPz01ThKBY6uMqepmYNEg22/p93wrsNSpGIwxscfjEa5dMZ3rHnydv2w5yHnzJrgdUsTt8gfJSvVSnJPmdigjYncWG2Oi7vx5E5hanMVdzyZmraC6PjTZnEjsDx0FSwTGGBd4PcK1y8vZfrCFp7cdcjuciKuKk1lH+1giMMa44sL5EykrzOSuZ3eSSF2Dnd291Bxui5v+AbBEYIxxSYrXw7+/r5wt+5t5dlut2+FEzN7DrfT0alzMMdTHEoExxjUXLyphckEmdz2XOLWCvsnmphRbIjDGmKPyeT38+/umsbmmibVvJsYtRH33EEyxGoExxozMBxaVUpKfwR3P7EiIWkFVXZC8DB9jslLdDmXELBEYY1yVmuLhuhXlbK5pSoi+gr6ho/HEEoExxnUfXFzKCYWZ/PDpHXF/X0F1XStTCjPdDmNULBEYY1zn83q4bvl0th5o5qmtB90O55i1d/Wwv6nNagTGGHMsLlo4kanFWdzxdPzebbynoRXV+FinuD9LBMaYmJDi9fD5FdN581BL3M5MWhVH6xT3Z4nAGBMzLpw/kRnjsrnzmR30xGGtoDrOpp/uY4nAGBMzPB7hhjNnUOkPsmbTPrfDGbXq+iAFWankZfjcDmVULBEYY2LK2XPGM2tCLnc8vZPO7l63wxmVqrogZXE2YggsERhjYozHI9x09onsaWjloXV73A5nVKrrWuOuWQgsERhjYtCyE4t595QC7np2J8GObrfDGZG2zh4ONrfH1dQSfSwRGGNijojwn+fOpC7QyS/+VuV2OCPStzyl1QiMMSZCFk8ewzlzxnPvi5XUBTrcDueojsw6aonAGGMi50tnn0hbVw8/fq7C7VCOqspqBMYYE3nlY7O5/KRJ/PbV3eypb3U7nGFV1wUpyk4jOy3F7VBGzRKBMSamfX7FDLwe4QdPv+l2KMOqrmtlSlH8DR0FSwTGmBg3Pi+dTy2dwqMb97O5ptHtcIZUVR+Mu6kl+lgiMMbEvM8tm0ZRdiq3PbY1JhevCXR042/piMv+AbBEYIyJA7npPm48+0Q27D7Mmk373Q7nHeJ5xBBYIjDGxIkPvWsScybm8p0/b6e1M7ZuMjtyD4E1DRljjHO8HuFrF87hQFM797ywy+1w3uatWUets/htRCRdRP4pIptEZIuI3DbEcZeJyNbwMb9zKh5jTPw7eUoBF8yfwM9eqGRfY5vb4RxRVdfKuNw0MlPjb+goOFsj6ACWq+oCYCFwjoic0v8AEZkO3AwsVdU5wPUOxmOMSQA3nzcLgG8/uc3lSN5SHccjhsDBRKAhgfBLX/gxsLv/M8BPVPVw+D21TsVjjEkMJfkZfPaMaTy++QCv7qp3Oxwg1DQUrx3F4HAfgYh4RWQjUAs8raqvDjhkBjBDRF4SkX+IyDlOxmOMSQxXnzGVkvwMvvroG3T1uLtmQXN7F/XBTk6wGsHgVLVHVRcCpcDJIjJ3wCEpwHRgGfAR4Ocikj/wPCJylYisF5H1fr/fyZCNMXEgMzWFW1fOYcehAPf93d3ZSd8aOhqfHcUQpVFDqtoIPA8M/MVfA6xR1S5VrQJ2EEoMA99/r6ouUdUlxcXFjsdrjIl9Z80ex1mzx3HnMzvY2+DePERVcbpOcX9Ojhoq7vt1LyIZwFnA9gGH/YlQbQARKSLUVBRb48KMMTHr1pVzEITbHtviWgzVdaEkdEKBJYLBTACeF5HNwDpCfQSPi8jtIrIyfMxfgXoR2UqoxnCjqsZG748xJuaV5Gdww1nTeWZbLU9tOehKDNX1QSbkpZOR6nXl+pHg2KBXVd0MLBpk+y39nivwhfDDGGNG7VNLp/Dwhn3cumYLS8uLyIryNNChBevjtzYAdmexMSbO+bwevvmBuexvaueHT++I+vX3NLTG7R3FfSwRGGPi3pKyAq5492R++VIV/6xqiNp1m9u7aAh2MjmO+wfAEoExJkH813mzmDQmky/9YRPBjuhMSte3atoJhVYjMMYY12WlpfD9Sxew93Ar34zS9BO7w4lgcoElAmOMiQknTyngM6dP5Xev7mHtm87PWLO7IXQPgdUIjDEmhnzhrBnMGJfNfz68mabWLkevtae+lcKsVHLSfY5ex2mWCIwxCSXd5+WHly2kPtDJVx99w9Fr7a5vZXKc1wbAEoExJgHNLcnj8yums2bTfh7duM+x6+xpaOWEOO8fAEsExpgE9bll01hywhi+8sc3HJmLqKO7h/1NbUyO85vJwBKBMSZBpXg93HH5QgBu+P1GuiM8XXXN4TZUsRqBMcbEskkFmXz94rms332Yn66tjOi5E+UeArBEYIxJcBcvKuHihRO589mdvLbncMTOu7s+NHTUOouNMSYO3H7xXMbnpnP9QxtpaY/MkNLdDa1kpnopzk6LyPncZInAGJPwctN9/O+HF7KvsY0vP/IvQhMfH5899a1MLshERCIQobssERhjksKSsgK+9P4TeWLzAf7vld3Hfb7dDa1xP7VEH0sExpik8dn3TmXFzLF844mtvH4c/QW9vRqefjr+h46CJQJjTBLxeIQfXLaAsTnp/MfvXudwsPOYznOopZ3O7l6rERhjTDzKz0zl7isW42/p4AurNtLbO/r+gt0JNHQULBEYY5LQgkn5fOWCWTz/pp//ePA1quuCo3r/kXsI4nxBmj7RXdzTGGNixMdOOYGGYCc/e6GSp7Yc4tIlk7huRTkT8jKO+t7dDUFSPMLE/PQoROo8qxEYY5KSiHD9mTN48cb3ccW7J7N6w17O+N5a7l5bcdT37q5vpWRMBinexPgKTYxSGGPMMRqbm85tF83luS8u430nFvM/f3mTF3f4h33P7vrEGToKlgiMMQYIzUv0vx9eRPnY8KI2bUPfgby7PpgwHcVgicAYY44ILWqzgNqWDm5/bOugxzS2dtLc3p0wHcVgicAYY95mfmk+1yybxsOv1fD01kPv2H9kwXqrERhjTOK6dvl0Zk3I5eZH/vWOm852NyTWPQRgicAYY94hNcXDDy5dQFNbJ1959I23TVK3p2/6aessPjoRSReRf4rIJhHZIiK3DXPsJSKiIrLEqXiMMWY0Zk/M5fozZ/DE5gPc/Mi/6AqvcLa7vpWxOWlkpibObVhOlqQDWK6qARHxAX8XkT+r6j/6HyQiOcDngVcdjMUYY0btmmXTaO/q4UfPVbCvsY27r1jM7obWhGoWAgdrBBoSCL/0hR+DTerxdeC7QLtTsRhjzLEQEb74/hP57iXzeLmynkt/9goVtQEmJ9CIIXC4j0BEvCKyEagFnlbVVwfsXwxMUtUnnIzDGGOOx+UnTeb+T53EvsNtNAQ7rUYwGqrao6oLgVLgZBGZ27dPRDzAD4EvHu08InKViKwXkfV+//B3/BljjBNOn17MHz53KqeVF7Fi1li3w4koicSSbSO6kMgtQKuqfj/8Og+oBPqaj8YDDcBKVV0/1HmWLFmi69cPudsYY8wgRGSDqg46IMfJUUPFIpIffp4BnAVs79uvqk2qWqSqZapaBvyDoyQBY4wxkedk09AE4HkR2QysI9RH8LiI3C4iKx28rjHGmFFwbPioqm4GFg2y/ZYhjl/mVCzGGGOGZncWG2NMkrNEYIwxSc4SgTHGJDlLBMYYk+QsERhjTJKL2g1lkSIifmB3+GUe0NRvd//Xgz0vAuqO4/IDr3csxw22b7hyDHzd97z/tmiU63jLNHCb05/VUDGM5phIfVb9n7v9b3Ck20fzWUF8/BtMhs9q4Ov+3xf5qlo8aASqGrcP4N6hXg/2HFgfyesdy3GD7RuuHMOUpf82x8t1vGUayecTyc8qWuWKt3+DI90+ms8qWuWyz+rYy3W0WOK9aeixYV4P9TyS1zuW4wbbN1w5Br5+bIhjjsdIznW8ZRq4zenPaqTnisZnNdJYRuJ4/w2OdLt9VsfPjc9q4OsRfV/EXdPQ8RCR9TrEXBvxLBHLlYhlAitXPEnEMg0l3msEo3Wv2wE4JBHLlYhlAitXPEnEMg0qqWoExhhj3inZagTGGGMGsERgjDFJzhKBMcYkOUsEYSJyuoj8TER+ISIvux1PpIiIR0S+KSI/EpFPuB1PJIjIMhH5W/jzWuZ2PJEkIlnhZVkvcDuWSBCRWeHPabWIfM7teCJFRC4WkZ+LyO9F5P1ux3O8EiIRiMgvRaRWRN4YsP0cEXlTRCpE5MvDnUNV/6aqVwOPA792Mt6RikS5gIsIrRndBdQ4FetIRahMSmiJ03RioEwQsXIB/CewypkoRydC/6+2hf9fXQYsdTLekYpQuf6kqp8BrgYudzLeaEiIUUMi8l5CXwz/p6pzw9u8wA5CS2TWEFol7SOAF/j2gFP8P1WtDb9vFXClqrZEKfwhRaJc4cdhVb1HRFar6oeiFf9gIlSmOlXtFZFxwA9V9YpoxT+UCJVrAVBIKMHVqerj0Yl+cJH6fxVekfBzwG9U9XfRin8oEf6++AHwW1V9LUrhO8KxFcqiSVVfFJGyAZtPBipUdReAiDwEXKSq3wYGrXaLyGSgKRaSAESmXCJSA3SGX/Y4GO6IROqzCjsMpDkS6ChF6LNaBmQBs4E2EXlSVXudjHs4kfqsVHUNsEZEngBcTwQR+qwE+A7w53hPApAgiWAIJcDefq9rgHcf5T1XAr9yLKLIGG25HgF+JCKnAy86GdhxGFWZROSDwNlAPvBjRyM7PqMql6r+N4CIfJJwrcfR6I7NaD+rZcAHCSXsJ50M7DiN9v/VtcCZQJ6IlKvqz5wMzmmJnAhGTVW/5nYMkaaqrYQSXMJQ1UcIJbiEpKr3ux1DpKjqWmCty2FEnKreBdzldhyRkhCdxUPYB0zq97o0vC3eJWK5ErFMkJjlSsQyQeKWa0QSORGsA6aLyBQRSQU+DKxxOaZISMRyJWKZIDHLlYhlgsQt14gkRCIQkQeBV4ATRaRGRK5U1W7gP4C/AtuAVaq6xc04RysRy5WIZYLELFcilgkSt1zHIyGGjxpjjDl2CVEjMMYYc+wsERhjTJKzRGCMMUnOEoExxiQ5SwTGGJPkLBEYY0ySs0RgEoKIBKJ8vYisWSGhtRWaRGSjiGwXke+P4D0Xi8jsSFzfGLBEYMygRGTYebhU9T0RvNzfVHUhsAi4QESONm//xYRmKDUmIiwRmIQlItNE5C8iskFCK5rNDG+/UEReFZHXReSZ8LoGiMitIvIbEXkJ+E349S9FZK2I7BKR6/qdOxD+c1l4/+rwL/rfhqcoRkTOC2/bICJ3iciw6wuoahuwkdBMmIjIZ0RknYhsEpGHRSRTRN4DrAS+F65FTBuqnMaMlCUCk8juBa5V1XcBXwLuDm//O3CKqi4CHgJu6vee2cCZqvqR8OuZhKa8Phn4moj4BrnOIuD68HunAktFJB24Bzg3fP3iowUrImOA6bw1XfgjqnqSqi4gNO3Blar6MqE5cG5U1YWqWjlMOY0ZEZuG2iQkEckG3gP8IfwDHd5axKYU+L2ITABSgap+b10T/mXe5wlV7QA6RKQWGMc7l8f8p6rWhK+7ESgjtALWLlXtO/eDwFVDhHu6iGwilATuVNWD4e1zReQbhNZdyCY0D85oymnMiFgiMInKAzSG294H+hGhJS7XhBdOubXfvuCAYzv6Pe9h8P8zIzlmOH9T1QtEZArwDxFZpaobgfuBi1V1U3ixmmWDvHe4chozItY0ZBKSqjYDVSJyKYSWFhSRBeHdebw11/wnHArhTWBqvyURj7rAebj28B1CC9gD5AAHws1R/ddlbgnvO1o5jRkRSwQmUWSGpxTue3yB0JfnleFmly3AReFjbyXUlLIBqHMimHDz0jXAX8LXaQGaRvDWnwHvDSeQrwKvAi8B2/sd8xBwY7izexpDl9OYEbFpqI1xiIhkq2ogPIroJ8BOVb3D7biMGchqBMY45zPhzuMthJqj7nE3HGMGZzUCY4xJclYjMMaYJGeJwBhjkpwlAmOMSXKWCIwxJslZIjDGmCRnicAYY5Lc/wcltH5GZboWDgAAAABJRU5ErkJggg==\n",
1225
      "text/plain": [
1226
       "<Figure size 432x288 with 1 Axes>"
1227
      ]
1228
     },
1229
     "metadata": {
1230
      "needs_background": "light"
1231
     },
1232
     "output_type": "display_data"
1233
    }
1234
   ],
1235
   "source": [
1236
    "dls = dsets.dataloaders(bs=16, after_item=[albu_aug, ToTensor],\n",
1237
    "                        after_batch=[IntToFloatTensor(div_mask=255), \n",
1238
    "                                     Normalize.from_stats(*imagenet_stats)])\n",
1239
    "img_size = [round(0.9*320) for _ in range(2)]\n",
1240
    "\n",
1241
    "encoder = timm.create_model('efficientnet_b0', pretrained=True)\n",
1242
    "\n",
1243
    "# Let's use self attentions and Mish activation function \n",
1244
    "model = DynamicTimmUnet(encoder, 3, img_size, self_attention=True, act_cls=Mish)\n",
1245
    "\n",
1246
    "# We'll also use ranger optimizer with is RAdam with Lookahead\n",
1247
    "learn = Learner(dls, model, metrics=metrics, loss_func=loss_func, splitter=dynamic_unet_splitter, opt_func=ranger).to_fp16()\n",
1248
    "learn.freeze()\n",
1249
    "learn.lr_find()"
1250
   ]
1251
  },
1252
  {
1253
   "cell_type": "code",
1254
   "execution_count": 17,
1255
   "metadata": {},
1256
   "outputs": [
1257
    {
1258
     "data": {
1259
      "text/html": [
1260
       "\n",
1261
       "<style>\n",
1262
       "    /* Turns off some styling */\n",
1263
       "    progress {\n",
1264
       "        /* gets rid of default border in Firefox and Opera. */\n",
1265
       "        border: none;\n",
1266
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
1267
       "        background-size: auto;\n",
1268
       "    }\n",
1269
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
1270
       "        background: #F44336;\n",
1271
       "    }\n",
1272
       "</style>\n"
1273
      ],
1274
      "text/plain": [
1275
       "<IPython.core.display.HTML object>"
1276
      ]
1277
     },
1278
     "metadata": {},
1279
     "output_type": "display_data"
1280
    },
1281
    {
1282
     "data": {
1283
      "text/html": [
1284
       "<table border=\"1\" class=\"dataframe\">\n",
1285
       "  <thead>\n",
1286
       "    <tr style=\"text-align: left;\">\n",
1287
       "      <th>epoch</th>\n",
1288
       "      <th>train_loss</th>\n",
1289
       "      <th>valid_loss</th>\n",
1290
       "      <th>dice_coeff_adj</th>\n",
1291
       "      <th>hd_dist_adj</th>\n",
1292
       "      <th>custom_metric_adj</th>\n",
1293
       "      <th>time</th>\n",
1294
       "    </tr>\n",
1295
       "  </thead>\n",
1296
       "  <tbody>\n",
1297
       "    <tr>\n",
1298
       "      <td>0</td>\n",
1299
       "      <td>0.991883</td>\n",
1300
       "      <td>0.699887</td>\n",
1301
       "      <td>0.562718</td>\n",
1302
       "      <td>0.762979</td>\n",
1303
       "      <td>0.682874</td>\n",
1304
       "      <td>02:08</td>\n",
1305
       "    </tr>\n",
1306
       "  </tbody>\n",
1307
       "</table>"
1308
      ],
1309
      "text/plain": [
1310
       "<IPython.core.display.HTML object>"
1311
      ]
1312
     },
1313
     "metadata": {},
1314
     "output_type": "display_data"
1315
    }
1316
   ],
1317
   "source": [
1318
    "# Let's also use flat cosine annealing lr shceduler\n",
1319
    "lr = 1e-3\n",
1320
    "learn.fit_flat_cos(1, lr)"
1321
   ]
1322
  },
1323
  {
1324
   "cell_type": "code",
1325
   "execution_count": 18,
1326
   "metadata": {
1327
    "scrolled": true
1328
   },
1329
   "outputs": [
1330
    {
1331
     "data": {
1332
      "text/html": [
1333
       "\n",
1334
       "<style>\n",
1335
       "    /* Turns off some styling */\n",
1336
       "    progress {\n",
1337
       "        /* gets rid of default border in Firefox and Opera. */\n",
1338
       "        border: none;\n",
1339
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
1340
       "        background-size: auto;\n",
1341
       "    }\n",
1342
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
1343
       "        background: #F44336;\n",
1344
       "    }\n",
1345
       "</style>\n"
1346
      ],
1347
      "text/plain": [
1348
       "<IPython.core.display.HTML object>"
1349
      ]
1350
     },
1351
     "metadata": {},
1352
     "output_type": "display_data"
1353
    },
1354
    {
1355
     "data": {
1356
      "text/html": [
1357
       "<table border=\"1\" class=\"dataframe\">\n",
1358
       "  <thead>\n",
1359
       "    <tr style=\"text-align: left;\">\n",
1360
       "      <th>epoch</th>\n",
1361
       "      <th>train_loss</th>\n",
1362
       "      <th>valid_loss</th>\n",
1363
       "      <th>dice_coeff_adj</th>\n",
1364
       "      <th>hd_dist_adj</th>\n",
1365
       "      <th>custom_metric_adj</th>\n",
1366
       "      <th>time</th>\n",
1367
       "    </tr>\n",
1368
       "  </thead>\n",
1369
       "  <tbody>\n",
1370
       "    <tr>\n",
1371
       "      <td>0</td>\n",
1372
       "      <td>0.805488</td>\n",
1373
       "      <td>0.588406</td>\n",
1374
       "      <td>0.645035</td>\n",
1375
       "      <td>0.856163</td>\n",
1376
       "      <td>0.771712</td>\n",
1377
       "      <td>02:24</td>\n",
1378
       "    </tr>\n",
1379
       "    <tr>\n",
1380
       "      <td>1</td>\n",
1381
       "      <td>0.660503</td>\n",
1382
       "      <td>0.477541</td>\n",
1383
       "      <td>0.698127</td>\n",
1384
       "      <td>0.851142</td>\n",
1385
       "      <td>0.789936</td>\n",
1386
       "      <td>02:23</td>\n",
1387
       "    </tr>\n",
1388
       "  </tbody>\n",
1389
       "</table>"
1390
      ],
1391
      "text/plain": [
1392
       "<IPython.core.display.HTML object>"
1393
      ]
1394
     },
1395
     "metadata": {},
1396
     "output_type": "display_data"
1397
    }
1398
   ],
1399
   "source": [
1400
    "# Let's unfreeze the encoder layers and train with discriminative learning rates.\n",
1401
    "learn.unfreeze()\n",
1402
    "learn.fit_flat_cos(2, slice(lr/400, lr/4))"
1403
   ]
1404
  },
1405
  {
1406
   "cell_type": "markdown",
1407
   "metadata": {},
1408
   "source": [
1409
    "# Inference"
1410
   ]
1411
  },
1412
  {
1413
   "cell_type": "code",
1414
   "execution_count": 25,
1415
   "metadata": {},
1416
   "outputs": [],
1417
   "source": [
1418
    "def create_df(df, fnames):\n",
1419
    "    df = df.copy()\n",
1420
    "    df = df.pivot(index='id', columns='class', values='segmentation').reset_index()\n",
1421
    "    \n",
1422
    "    df['partial_fname'] = df.id\n",
1423
    "    fname_df = pd.DataFrame({'partial_fname': [f'{fname.parts[-3]}_slice_{fname.parts[-1][6:10]}' for fname in fnames],\n",
1424
    "                             'fname': fnames})\n",
1425
    "\n",
1426
    "    df = df.merge(fname_df, on='partial_fname').drop('partial_fname', axis=1)\n",
1427
    "\n",
1428
    "    df['case_id'] = df.id.apply(lambda x: x.split('_')[0])\n",
1429
    "    df['day_num'] = df.id.apply(lambda x: x.split('_')[1])\n",
1430
    "\n",
1431
    "    df['slice_w'] = df[\"fname\"].apply(lambda x: int(str(x)[:-4].rsplit(\"_\",4)[1]))\n",
1432
    "    df['slice_h'] = df[\"fname\"].apply(lambda x: int(str(x)[:-4].rsplit(\"_\",4)[2]))\n",
1433
    "    \n",
1434
    "    channels = 3\n",
1435
    "    stride = 2\n",
1436
    "    for j, i in enumerate(range(-1*(channels-channels//2-1), channels//2+1)):\n",
1437
    "        method = 'ffill'\n",
1438
    "        if i <= 0: method = 'bfill'\n",
1439
    "        df[f'fname_{j:02}'] = df.groupby(['case_id', 'day_num'])['fname'].shift(stride*-i).fillna(method=method)\n",
1440
    "\n",
1441
    "    df['fnames'] = df[[f'fname_{j:02d}' for j in range(channels)]].values.tolist()\n",
1442
    "    \n",
1443
    "    return df\n",
1444
    "\n",
1445
    "def mask2rle(mask):\n",
1446
    "    \"\"\"\n",
1447
    "    img: numpy array, 1 - mask, 0 - background\n",
1448
    "    Returns run length as string formated\n",
1449
    "    \"\"\"\n",
1450
    "    mask = np.array(mask)\n",
1451
    "    pixels = mask.flatten()\n",
1452
    "    pad = np.array([0])\n",
1453
    "    pixels = np.concatenate([pad, pixels, pad])\n",
1454
    "    runs = np.where(pixels[1:] != pixels[:-1])[0] + 1\n",
1455
    "    runs[1::2] -= runs[::2]\n",
1456
    "\n",
1457
    "    return \" \".join(str(x) for x in runs)\n",
1458
    "\n",
1459
    "def resize_img_to_org_size(img, org_size):\n",
1460
    "    shape0 = np.array(img.shape[:2])\n",
1461
    "    diff = org_size - shape0\n",
1462
    "    if np.any(diff < 0):\n",
1463
    "        img = pad_img_nc(img, (320, 384))\n",
1464
    "        resized = unpad_img_nc(img, org_size)\n",
1465
    "    else:\n",
1466
    "        resized = pad_img_nc(img, org_size)\n",
1467
    "    return resized\n",
1468
    "\n",
1469
    "def get_rle_masks(preds, df):\n",
1470
    "    rle_masks = []\n",
1471
    "    for pred, width, height in zip(preds, df['slice_w'], df['slice_h']):\n",
1472
    "        upsized_mask = resize_img_to_org_size(pred, (height, width))\n",
1473
    "        for i in range(3):\n",
1474
    "            rle_mask = mask2rle(upsized_mask[:, :, i])\n",
1475
    "            rle_masks.append(rle_mask)\n",
1476
    "    return rle_masks\n",
1477
    "\n",
1478
    "def unpad_img_nc(img, org_size):\n",
1479
    "    shape0 = np.array(org_size)\n",
1480
    "    resize = np.array(img.shape[:2])\n",
1481
    "    if np.any(shape0!=resize):\n",
1482
    "        diff = resize - shape0\n",
1483
    "        pad0 = diff[0]\n",
1484
    "        pad1 = diff[1]\n",
1485
    "        pady = [pad0//2, pad0//2 + pad0%2]\n",
1486
    "        padx = [pad1//2, pad1//2 + pad1%2]\n",
1487
    "        \n",
1488
    "        if pady[0] != 0:\n",
1489
    "            img = img[pady[0]:-pady[1], :, :]\n",
1490
    "            \n",
1491
    "        if padx[0] != 0:\n",
1492
    "            img = img[:, padx[0]:-padx[1], :]\n",
1493
    "            \n",
1494
    "        img = img.reshape((*shape0, img.shape[-1]))\n",
1495
    "    return img\n",
1496
    "\n",
1497
    "def pad_img_nc(img, up_size=None):\n",
1498
    "    if up_size is None:\n",
1499
    "        return img\n",
1500
    "    shape0 = np.array(img.shape[:2])\n",
1501
    "    resize = np.array(up_size)\n",
1502
    "    if np.any(shape0!=resize):\n",
1503
    "        diff = resize - shape0\n",
1504
    "        pad0 = diff[0]\n",
1505
    "        pad1 = diff[1]\n",
1506
    "        pady = [pad0//2, pad0//2 + pad0%2]\n",
1507
    "        padx = [pad1//2, pad1//2 + pad1%2]\n",
1508
    "        padz = [0, 0]\n",
1509
    "        img = np.pad(img, [pady, padx, padz])\n",
1510
    "        img = img.reshape((*resize, img.shape[-1]))\n",
1511
    "    return img\n",
1512
    "\n",
1513
    "def get_rle_masks(preds, df):\n",
1514
    "    rle_masks = []\n",
1515
    "    for pred, width, height in zip(preds, df['slice_w'], df['slice_h']):\n",
1516
    "        upsized_mask = resize_img_to_org_size(pred, (height, width))\n",
1517
    "        for i in range(3):\n",
1518
    "            rle_mask = mask2rle(upsized_mask[:, :, i])\n",
1519
    "            rle_masks.append(rle_mask)\n",
1520
    "    return rle_masks"
1521
   ]
1522
  },
1523
  {
1524
   "cell_type": "code",
1525
   "execution_count": 22,
1526
   "metadata": {},
1527
   "outputs": [],
1528
   "source": [
1529
    "data_path = 'dataset/'\n",
1530
    "\n",
1531
    "train_path = Path(data_path+'train')\n",
1532
    "test_path = Path(data_path+'test')\n",
1533
    "\n",
1534
    "train_fnames = get_image_files(train_path)\n",
1535
    "test_fnames = get_image_files(test_path)\n",
1536
    "\n",
1537
    "sample_submission = pd.read_csv(data_path+'sample_submission.csv')\n",
1538
    "\n",
1539
    "if sample_submission.shape[0] > 0: \n",
1540
    "    test = sample_submission.copy()\n",
1541
    "else:\n",
1542
    "    test_fnames = train_fnames\n",
1543
    "    test_path = train_path\n",
1544
    "    train = pd.read_csv('dataset/train.csv', low_memory=False)\n",
1545
    "    test = train.copy()\n",
1546
    "    test = test.sample(frac=1.0, random_state=42)\n",
1547
    "\n",
1548
    "test_df = create_df(test, test_fnames)\n"
1549
   ]
1550
  },
1551
  {
1552
   "cell_type": "code",
1553
   "execution_count": 23,
1554
   "metadata": {},
1555
   "outputs": [],
1556
   "source": [
1557
    "learn = load_learner('test_model.pkl')\n",
1558
    "# Sample the test set demonstartion purposes\n",
1559
    "test_df = test_df.sample(frac=0.1)\n",
1560
    "bs = learn.dls.bs\n",
1561
    "test_dl = learn.dls.test_dl(test_df, bs=bs, shuffle=False).to('cuda')"
1562
   ]
1563
  },
1564
  {
1565
   "cell_type": "code",
1566
   "execution_count": 26,
1567
   "metadata": {},
1568
   "outputs": [
1569
    {
1570
     "name": "stderr",
1571
     "output_type": "stream",
1572
     "text": [
1573
      "100%|██████████████████████████████████████████████████████████████████████████████████| 241/241 [00:50<00:00,  4.81it/s]\n"
1574
     ]
1575
    }
1576
   ],
1577
   "source": [
1578
    "from tqdm import tqdm\n",
1579
    "import gc\n",
1580
    "\n",
1581
    "learn.model = learn.model.cuda()\n",
1582
    "learn.model.eval()\n",
1583
    "masks = []\n",
1584
    "\n",
1585
    "with torch.no_grad():\n",
1586
    "    for i, b in enumerate(tqdm(test_dl)):\n",
1587
    "        b.to('cuda')\n",
1588
    "        b_preds = (sigmoid(learn.model(b)) > 0.5).permute(0, 2, 3, 1).cpu().detach().numpy().astype(np.uint8)\n",
1589
    "\n",
1590
    "        masks.extend(get_rle_masks(b_preds, test_df.iloc[i*bs:i*bs+bs]))\n",
1591
    "\n",
1592
    "        # test_preds[i*bs:i*bs+bs] = b_preds\n",
1593
    "        del b_preds\n",
1594
    "        torch.cuda.empty_cache()\n",
1595
    "        gc.collect()"
1596
   ]
1597
  },
1598
  {
1599
   "cell_type": "markdown",
1600
   "metadata": {},
1601
   "source": [
1602
    "# Submission"
1603
   ]
1604
  },
1605
  {
1606
   "cell_type": "code",
1607
   "execution_count": 27,
1608
   "metadata": {},
1609
   "outputs": [],
1610
   "source": [
1611
    "def get_case_id(fname):\n",
1612
    "    return fname.parts[3] + '_' + fname.parts[5][:10]"
1613
   ]
1614
  },
1615
  {
1616
   "cell_type": "code",
1617
   "execution_count": 28,
1618
   "metadata": {},
1619
   "outputs": [],
1620
   "source": [
1621
    "from itertools import chain\n",
1622
    "\n",
1623
    "submission = pd.DataFrame({\n",
1624
    "        'id': chain.from_iterable([[get_case_id(fname)]*3 for fname in test_df['fname']]),\n",
1625
    "        'class': chain.from_iterable([['large_bowel', 'small_bowel', 'stomach'] for _ in test_df['fname']]),\n",
1626
    "        'predicted': masks,\n",
1627
    "    })\n",
1628
    "    \n",
1629
    "\n",
1630
    "# Merge with sample submission to preserve order to slices during scoring and avoid 0 scores\n",
1631
    "if sample_submission.shape[0] > 0:\n",
1632
    "    del sample_submission['segmentation']\n",
1633
    "    submission = sample_submission.merge(submission, on=['id', 'class'])\n",
1634
    "\n",
1635
    "submission.to_csv('submission.csv', index=False)"
1636
   ]
1637
  },
1638
  {
1639
   "cell_type": "code",
1640
   "execution_count": null,
1641
   "metadata": {},
1642
   "outputs": [],
1643
   "source": []
1644
  }
1645
 ],
1646
 "metadata": {
1647
  "kernelspec": {
1648
   "display_name": "Python 3 (ipykernel)",
1649
   "language": "python",
1650
   "name": "python3"
1651
  },
1652
  "language_info": {
1653
   "codemirror_mode": {
1654
    "name": "ipython",
1655
    "version": 3
1656
   },
1657
   "file_extension": ".py",
1658
   "mimetype": "text/x-python",
1659
   "name": "python",
1660
   "nbconvert_exporter": "python",
1661
   "pygments_lexer": "ipython3",
1662
   "version": "3.7.11"
1663
  },
1664
  "toc": {
1665
   "base_numbering": 1,
1666
   "nav_menu": {},
1667
   "number_sections": true,
1668
   "sideBar": true,
1669
   "skip_h1_title": false,
1670
   "title_cell": "Table of Contents",
1671
   "title_sidebar": "Contents",
1672
   "toc_cell": false,
1673
   "toc_position": {},
1674
   "toc_section_display": true,
1675
   "toc_window_display": false
1676
  }
1677
 },
1678
 "nbformat": 4,
1679
 "nbformat_minor": 1
1680
}