[06cc32]: / heart_disease.ipynb

Download this file

1897 lines (1896 with data), 67.9 kB

{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "41bc3d29-1e2f-41ec-b919-37d014f4769b",
   "metadata": {},
   "source": [
    "HEART DISEASE\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "596f49af-da22-40fd-b931-972608d711f9",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>age</th>\n",
       "      <th>sex</th>\n",
       "      <th>cp</th>\n",
       "      <th>trestbps</th>\n",
       "      <th>chol</th>\n",
       "      <th>fbs</th>\n",
       "      <th>restecg</th>\n",
       "      <th>thalach</th>\n",
       "      <th>exang</th>\n",
       "      <th>oldpeak</th>\n",
       "      <th>slope</th>\n",
       "      <th>ca</th>\n",
       "      <th>thal</th>\n",
       "      <th>target</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>63</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>145</td>\n",
       "      <td>233</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>150</td>\n",
       "      <td>0</td>\n",
       "      <td>2.3</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>37</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>130</td>\n",
       "      <td>250</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>187</td>\n",
       "      <td>0</td>\n",
       "      <td>3.5</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>41</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>130</td>\n",
       "      <td>204</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>172</td>\n",
       "      <td>0</td>\n",
       "      <td>1.4</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>56</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>120</td>\n",
       "      <td>236</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>178</td>\n",
       "      <td>0</td>\n",
       "      <td>0.8</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>57</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>120</td>\n",
       "      <td>354</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>163</td>\n",
       "      <td>1</td>\n",
       "      <td>0.6</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>57</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>140</td>\n",
       "      <td>192</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>148</td>\n",
       "      <td>0</td>\n",
       "      <td>0.4</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>56</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>140</td>\n",
       "      <td>294</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>153</td>\n",
       "      <td>0</td>\n",
       "      <td>1.3</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>44</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>120</td>\n",
       "      <td>263</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>173</td>\n",
       "      <td>0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>52</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>172</td>\n",
       "      <td>199</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>162</td>\n",
       "      <td>0</td>\n",
       "      <td>0.5</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>57</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>150</td>\n",
       "      <td>168</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>174</td>\n",
       "      <td>0</td>\n",
       "      <td>1.6</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>54</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>140</td>\n",
       "      <td>239</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>160</td>\n",
       "      <td>0</td>\n",
       "      <td>1.2</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>48</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>130</td>\n",
       "      <td>275</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>139</td>\n",
       "      <td>0</td>\n",
       "      <td>0.2</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>49</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>130</td>\n",
       "      <td>266</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>171</td>\n",
       "      <td>0</td>\n",
       "      <td>0.6</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13</th>\n",
       "      <td>64</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>110</td>\n",
       "      <td>211</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>144</td>\n",
       "      <td>1</td>\n",
       "      <td>1.8</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14</th>\n",
       "      <td>58</td>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>150</td>\n",
       "      <td>283</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>162</td>\n",
       "      <td>0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    age  sex  cp  trestbps  chol  fbs  restecg  thalach  exang  oldpeak  \\\n",
       "0    63    1   3       145   233    1        0      150      0      2.3   \n",
       "1    37    1   2       130   250    0        1      187      0      3.5   \n",
       "2    41    0   1       130   204    0        0      172      0      1.4   \n",
       "3    56    1   1       120   236    0        1      178      0      0.8   \n",
       "4    57    0   0       120   354    0        1      163      1      0.6   \n",
       "5    57    1   0       140   192    0        1      148      0      0.4   \n",
       "6    56    0   1       140   294    0        0      153      0      1.3   \n",
       "7    44    1   1       120   263    0        1      173      0      0.0   \n",
       "8    52    1   2       172   199    1        1      162      0      0.5   \n",
       "9    57    1   2       150   168    0        1      174      0      1.6   \n",
       "10   54    1   0       140   239    0        1      160      0      1.2   \n",
       "11   48    0   2       130   275    0        1      139      0      0.2   \n",
       "12   49    1   1       130   266    0        1      171      0      0.6   \n",
       "13   64    1   3       110   211    0        0      144      1      1.8   \n",
       "14   58    0   3       150   283    1        0      162      0      1.0   \n",
       "\n",
       "    slope  ca  thal  target  \n",
       "0       0   0     1       1  \n",
       "1       0   0     2       1  \n",
       "2       2   0     2       1  \n",
       "3       2   0     2       1  \n",
       "4       2   0     2       1  \n",
       "5       1   0     1       1  \n",
       "6       1   0     2       1  \n",
       "7       2   0     3       1  \n",
       "8       2   0     3       1  \n",
       "9       2   0     2       1  \n",
       "10      2   0     2       1  \n",
       "11      2   0     2       1  \n",
       "12      2   0     2       1  \n",
       "13      1   0     2       1  \n",
       "14      2   0     2       1  "
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.linear_model import LogisticRegression\n",
    "from sklearn.metrics import accuracy_score\n",
    "\n",
    "\n",
    "df= pd.read_csv(r'C:\\Users\\Pranshu Saini\\Desktop\\disease-prediction-main\\docpat\\datasets\\heart.csv')\n",
    "df.head(15)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "7bd28756",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(303, 14)"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "3244edd5-3dd2-47f9-85da-b9cc26fed0d7",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "age         0\n",
       "sex         0\n",
       "cp          0\n",
       "trestbps    0\n",
       "chol        0\n",
       "fbs         0\n",
       "restecg     0\n",
       "thalach     0\n",
       "exang       0\n",
       "oldpeak     0\n",
       "slope       0\n",
       "ca          0\n",
       "thal        0\n",
       "target      0\n",
       "dtype: int64"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.isna().sum()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "348dde1b-1ff9-4d98-91a9-29688f5b0933",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The reduced dataframe has 14 columns.\n"
     ]
    }
   ],
   "source": [
    "# removing highly correlated features\n",
    "\n",
    "corr_matrix = df.corr().abs() \n",
    "\n",
    "mask = np.triu(np.ones_like(corr_matrix, dtype = bool))\n",
    "tri_df = corr_matrix.mask(mask)\n",
    "\n",
    "to_drop = [x for x in tri_df.columns if any(tri_df[x] > 0.92)]\n",
    "\n",
    "df = df.drop(to_drop, axis = 1)\n",
    "\n",
    "print(f\"The reduced dataframe has {df.shape[1]} columns.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "16a87f6e",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(303, 14)"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "ade36649-a20a-4bf2-8368-64f70cd000f2",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(303, 13) (242, 13) (61, 13)\n"
     ]
    }
   ],
   "source": [
    "A = df.drop(columns='target', axis=1)\n",
    "B = df['target']\n",
    "A_training, A_testing, B_training, B_testing = train_test_split(A, B, test_size=0.2, stratify=B, random_state=2)\n",
    "\n",
    "print(A.shape, A_training.shape, A_testing.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "34f600fd-1faf-4a62-8aba-9a6d0fa38644",
   "metadata": {},
   "source": [
    "LogisticRegression"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "fce2ced2-6375-4077-921e-2f568056fffe",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.8512396694214877\n",
      "0.819672131147541\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Users\\Pranshu Saini\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\linear_model\\_logistic.py:469: ConvergenceWarning: lbfgs failed to converge (status=1):\n",
      "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n",
      "\n",
      "Increase the number of iterations (max_iter) or scale the data as shown in:\n",
      "    https://scikit-learn.org/stable/modules/preprocessing.html\n",
      "Please also refer to the documentation for alternative solver options:\n",
      "    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n",
      "  n_iter_i = _check_optimize_result(\n"
     ]
    }
   ],
   "source": [
    "# fitting data to model\n",
    "\n",
    "from sklearn.linear_model import LogisticRegression\n",
    "\n",
    "log_reg = LogisticRegression()\n",
    "log_reg.fit(A_training, B_training)\n",
    "B_pred = log_reg.predict(A_testing)\n",
    "# accuracy score\n",
    "\n",
    "from sklearn.metrics import accuracy_score, confusion_matrix, classification_report\n",
    "\n",
    "print(accuracy_score(B_training, log_reg.predict(A_training)))\n",
    "\n",
    "log_reg_acc = accuracy_score(B_testing, log_reg.predict(A_testing))\n",
    "print(log_reg_acc)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f1a6ab2c-fc10-4f0b-8b07-1e01f8ce1243",
   "metadata": {},
   "source": [
    "K Neighbors Classifier (KNN)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "f8aecca7-018d-41ba-bb3c-2a96cf73b007",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.78099173553719\n",
      "0.6229508196721312\n"
     ]
    }
   ],
   "source": [
    "from sklearn.neighbors import KNeighborsClassifier\n",
    "\n",
    "knn = KNeighborsClassifier()\n",
    "knn.fit(A_training, B_training)\n",
    "# model predictions \n",
    "\n",
    "B_pred = knn.predict(A_testing)\n",
    "# accuracy score\n",
    "\n",
    "print(accuracy_score(B_training, knn.predict(A_training)))\n",
    "\n",
    "knn_acc = accuracy_score(B_testing, knn.predict(A_testing))\n",
    "print(knn_acc)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "dd05e4cf-6aaf-468e-9eef-6f1b27d99560",
   "metadata": {},
   "source": [
    "Support Vector Machine (SVM)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "35cc692b-d57f-4738-badf-5fd6c02c2889",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'C': 20, 'gamma': 0.0001}"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from sklearn.svm import SVC\n",
    "from sklearn.model_selection import GridSearchCV\n",
    "\n",
    "svc = SVC(probability=True)\n",
    "parameters = {\n",
    "    'gamma' : [0.0001, 0.001, 0.01, 0.1],\n",
    "    'C' : [0.01, 0.05, 0.5, 0.1, 1, 10, 15, 20]\n",
    "}\n",
    "\n",
    "grid_search = GridSearchCV(svc, parameters)\n",
    "grid_search.fit(A_training, B_training)\n",
    "# best parameters\n",
    "\n",
    "grid_search.best_params_\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "cb090811-a42c-47ec-b7c7-43889430b93d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.6981292517006803"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# best score \n",
    "\n",
    "grid_search.best_score_\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "639e3132-7346-40d5-becf-6d230a9004fb",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1.0\n",
      "0.5409836065573771\n",
      "              precision    recall  f1-score   support\n",
      "\n",
      "           0       0.50      0.43      0.46        28\n",
      "           1       0.57      0.64      0.60        33\n",
      "\n",
      "    accuracy                           0.54        61\n",
      "   macro avg       0.53      0.53      0.53        61\n",
      "weighted avg       0.54      0.54      0.54        61\n",
      "\n"
     ]
    }
   ],
   "source": [
    "svc = SVC(C = 10, gamma = 0.01, probability=True)\n",
    "svc.fit(A_training, B_training)\n",
    "# model predictions \n",
    "\n",
    "B_pred = svc.predict(A_testing)\n",
    "# accuracy score\n",
    "\n",
    "print(accuracy_score(B_training, svc.predict(A_training)))\n",
    "\n",
    "svc_acc = accuracy_score(B_testing, svc.predict(A_testing))\n",
    "print(svc_acc)\n",
    "# classification report\n",
    "\n",
    "print(classification_report(B_testing, B_pred))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0e3059b1-2e79-46bd-9195-98cbd044b75c",
   "metadata": {},
   "source": [
    "DECISION TREE"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "79b6cc36-eab3-4502-861f-0c4576170ffd",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Fitting 5 folds for each of 8640 candidates, totalling 43200 fits\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<style>#sk-container-id-1 {\n",
       "  /* Definition of color scheme common for light and dark mode */\n",
       "  --sklearn-color-text: black;\n",
       "  --sklearn-color-line: gray;\n",
       "  /* Definition of color scheme for unfitted estimators */\n",
       "  --sklearn-color-unfitted-level-0: #fff5e6;\n",
       "  --sklearn-color-unfitted-level-1: #f6e4d2;\n",
       "  --sklearn-color-unfitted-level-2: #ffe0b3;\n",
       "  --sklearn-color-unfitted-level-3: chocolate;\n",
       "  /* Definition of color scheme for fitted estimators */\n",
       "  --sklearn-color-fitted-level-0: #f0f8ff;\n",
       "  --sklearn-color-fitted-level-1: #d4ebff;\n",
       "  --sklearn-color-fitted-level-2: #b3dbfd;\n",
       "  --sklearn-color-fitted-level-3: cornflowerblue;\n",
       "\n",
       "  /* Specific color for light theme */\n",
       "  --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
       "  --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
       "  --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
       "  --sklearn-color-icon: #696969;\n",
       "\n",
       "  @media (prefers-color-scheme: dark) {\n",
       "    /* Redefinition of color scheme for dark theme */\n",
       "    --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
       "    --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
       "    --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
       "    --sklearn-color-icon: #878787;\n",
       "  }\n",
       "}\n",
       "\n",
       "#sk-container-id-1 {\n",
       "  color: var(--sklearn-color-text);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 pre {\n",
       "  padding: 0;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 input.sk-hidden--visually {\n",
       "  border: 0;\n",
       "  clip: rect(1px 1px 1px 1px);\n",
       "  clip: rect(1px, 1px, 1px, 1px);\n",
       "  height: 1px;\n",
       "  margin: -1px;\n",
       "  overflow: hidden;\n",
       "  padding: 0;\n",
       "  position: absolute;\n",
       "  width: 1px;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-dashed-wrapped {\n",
       "  border: 1px dashed var(--sklearn-color-line);\n",
       "  margin: 0 0.4em 0.5em 0.4em;\n",
       "  box-sizing: border-box;\n",
       "  padding-bottom: 0.4em;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-container {\n",
       "  /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
       "     but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
       "     so we also need the `!important` here to be able to override the\n",
       "     default hidden behavior on the sphinx rendered scikit-learn.org.\n",
       "     See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
       "  display: inline-block !important;\n",
       "  position: relative;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-text-repr-fallback {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       "div.sk-parallel-item,\n",
       "div.sk-serial,\n",
       "div.sk-item {\n",
       "  /* draw centered vertical line to link estimators */\n",
       "  background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
       "  background-size: 2px 100%;\n",
       "  background-repeat: no-repeat;\n",
       "  background-position: center center;\n",
       "}\n",
       "\n",
       "/* Parallel-specific style estimator block */\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item::after {\n",
       "  content: \"\";\n",
       "  width: 100%;\n",
       "  border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
       "  flex-grow: 1;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel {\n",
       "  display: flex;\n",
       "  align-items: stretch;\n",
       "  justify-content: center;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  position: relative;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item {\n",
       "  display: flex;\n",
       "  flex-direction: column;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item:first-child::after {\n",
       "  align-self: flex-end;\n",
       "  width: 50%;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item:last-child::after {\n",
       "  align-self: flex-start;\n",
       "  width: 50%;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item:only-child::after {\n",
       "  width: 0;\n",
       "}\n",
       "\n",
       "/* Serial-specific style estimator block */\n",
       "\n",
       "#sk-container-id-1 div.sk-serial {\n",
       "  display: flex;\n",
       "  flex-direction: column;\n",
       "  align-items: center;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  padding-right: 1em;\n",
       "  padding-left: 1em;\n",
       "}\n",
       "\n",
       "\n",
       "/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
       "clickable and can be expanded/collapsed.\n",
       "- Pipeline and ColumnTransformer use this feature and define the default style\n",
       "- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
       "*/\n",
       "\n",
       "/* Pipeline and ColumnTransformer style (default) */\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable {\n",
       "  /* Default theme specific background. It is overwritten whether we have a\n",
       "  specific estimator or a Pipeline/ColumnTransformer */\n",
       "  background-color: var(--sklearn-color-background);\n",
       "}\n",
       "\n",
       "/* Toggleable label */\n",
       "#sk-container-id-1 label.sk-toggleable__label {\n",
       "  cursor: pointer;\n",
       "  display: block;\n",
       "  width: 100%;\n",
       "  margin-bottom: 0;\n",
       "  padding: 0.5em;\n",
       "  box-sizing: border-box;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n",
       "  /* Arrow on the left of the label */\n",
       "  content: \"▸\";\n",
       "  float: left;\n",
       "  margin-right: 0.25em;\n",
       "  color: var(--sklearn-color-icon);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n",
       "  color: var(--sklearn-color-text);\n",
       "}\n",
       "\n",
       "/* Toggleable content - dropdown */\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable__content {\n",
       "  max-height: 0;\n",
       "  max-width: 0;\n",
       "  overflow: hidden;\n",
       "  text-align: left;\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable__content.fitted {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable__content pre {\n",
       "  margin: 0.2em;\n",
       "  border-radius: 0.25em;\n",
       "  color: var(--sklearn-color-text);\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
       "  /* Expand drop-down */\n",
       "  max-height: 200px;\n",
       "  max-width: 100%;\n",
       "  overflow: auto;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
       "  content: \"▾\";\n",
       "}\n",
       "\n",
       "/* Pipeline/ColumnTransformer-specific style */\n",
       "\n",
       "#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  color: var(--sklearn-color-text);\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "/* Estimator-specific style */\n",
       "\n",
       "/* Colorize estimator box */\n",
       "#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n",
       "#sk-container-id-1 div.sk-label label {\n",
       "  /* The background is the default theme color */\n",
       "  color: var(--sklearn-color-text-on-default-background);\n",
       "}\n",
       "\n",
       "/* On hover, darken the color of the background */\n",
       "#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n",
       "  color: var(--sklearn-color-text);\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "/* Label box, darken color on hover, fitted */\n",
       "#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
       "  color: var(--sklearn-color-text);\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "/* Estimator label */\n",
       "\n",
       "#sk-container-id-1 div.sk-label label {\n",
       "  font-family: monospace;\n",
       "  font-weight: bold;\n",
       "  display: inline-block;\n",
       "  line-height: 1.2em;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-label-container {\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       "/* Estimator-specific */\n",
       "#sk-container-id-1 div.sk-estimator {\n",
       "  font-family: monospace;\n",
       "  border: 1px dotted var(--sklearn-color-border-box);\n",
       "  border-radius: 0.25em;\n",
       "  box-sizing: border-box;\n",
       "  margin-bottom: 0.5em;\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-estimator.fitted {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-0);\n",
       "}\n",
       "\n",
       "/* on hover */\n",
       "#sk-container-id-1 div.sk-estimator:hover {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-estimator.fitted:hover {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
       "\n",
       "/* Common style for \"i\" and \"?\" */\n",
       "\n",
       ".sk-estimator-doc-link,\n",
       "a:link.sk-estimator-doc-link,\n",
       "a:visited.sk-estimator-doc-link {\n",
       "  float: right;\n",
       "  font-size: smaller;\n",
       "  line-height: 1em;\n",
       "  font-family: monospace;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  border-radius: 1em;\n",
       "  height: 1em;\n",
       "  width: 1em;\n",
       "  text-decoration: none !important;\n",
       "  margin-left: 1ex;\n",
       "  /* unfitted */\n",
       "  border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
       "  color: var(--sklearn-color-unfitted-level-1);\n",
       "}\n",
       "\n",
       ".sk-estimator-doc-link.fitted,\n",
       "a:link.sk-estimator-doc-link.fitted,\n",
       "a:visited.sk-estimator-doc-link.fitted {\n",
       "  /* fitted */\n",
       "  border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
       "  color: var(--sklearn-color-fitted-level-1);\n",
       "}\n",
       "\n",
       "/* On hover */\n",
       "div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
       ".sk-estimator-doc-link:hover,\n",
       "div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
       ".sk-estimator-doc-link:hover {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-3);\n",
       "  color: var(--sklearn-color-background);\n",
       "  text-decoration: none;\n",
       "}\n",
       "\n",
       "div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
       ".sk-estimator-doc-link.fitted:hover,\n",
       "div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
       ".sk-estimator-doc-link.fitted:hover {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-3);\n",
       "  color: var(--sklearn-color-background);\n",
       "  text-decoration: none;\n",
       "}\n",
       "\n",
       "/* Span, style for the box shown on hovering the info icon */\n",
       ".sk-estimator-doc-link span {\n",
       "  display: none;\n",
       "  z-index: 9999;\n",
       "  position: relative;\n",
       "  font-weight: normal;\n",
       "  right: .2ex;\n",
       "  padding: .5ex;\n",
       "  margin: .5ex;\n",
       "  width: min-content;\n",
       "  min-width: 20ex;\n",
       "  max-width: 50ex;\n",
       "  color: var(--sklearn-color-text);\n",
       "  box-shadow: 2pt 2pt 4pt #999;\n",
       "  /* unfitted */\n",
       "  background: var(--sklearn-color-unfitted-level-0);\n",
       "  border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
       "}\n",
       "\n",
       ".sk-estimator-doc-link.fitted span {\n",
       "  /* fitted */\n",
       "  background: var(--sklearn-color-fitted-level-0);\n",
       "  border: var(--sklearn-color-fitted-level-3);\n",
       "}\n",
       "\n",
       ".sk-estimator-doc-link:hover span {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       "/* \"?\"-specific style due to the `<a>` HTML tag */\n",
       "\n",
       "#sk-container-id-1 a.estimator_doc_link {\n",
       "  float: right;\n",
       "  font-size: 1rem;\n",
       "  line-height: 1em;\n",
       "  font-family: monospace;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  border-radius: 1rem;\n",
       "  height: 1rem;\n",
       "  width: 1rem;\n",
       "  text-decoration: none;\n",
       "  /* unfitted */\n",
       "  color: var(--sklearn-color-unfitted-level-1);\n",
       "  border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 a.estimator_doc_link.fitted {\n",
       "  /* fitted */\n",
       "  border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
       "  color: var(--sklearn-color-fitted-level-1);\n",
       "}\n",
       "\n",
       "/* On hover */\n",
       "#sk-container-id-1 a.estimator_doc_link:hover {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-3);\n",
       "  color: var(--sklearn-color-background);\n",
       "  text-decoration: none;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-3);\n",
       "}\n",
       "</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>GridSearchCV(cv=5, estimator=DecisionTreeClassifier(), n_jobs=-1,\n",
       "             param_grid={&#x27;criterion&#x27;: [&#x27;gini&#x27;, &#x27;entropy&#x27;],\n",
       "                         &#x27;max_depth&#x27;: range(2, 32),\n",
       "                         &#x27;min_samples_leaf&#x27;: range(1, 10),\n",
       "                         &#x27;min_samples_split&#x27;: range(2, 10),\n",
       "                         &#x27;splitter&#x27;: [&#x27;best&#x27;, &#x27;random&#x27;]},\n",
       "             verbose=1)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" ><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;&nbsp;GridSearchCV<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.model_selection.GridSearchCV.html\">?<span>Documentation for GridSearchCV</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>GridSearchCV(cv=5, estimator=DecisionTreeClassifier(), n_jobs=-1,\n",
       "             param_grid={&#x27;criterion&#x27;: [&#x27;gini&#x27;, &#x27;entropy&#x27;],\n",
       "                         &#x27;max_depth&#x27;: range(2, 32),\n",
       "                         &#x27;min_samples_leaf&#x27;: range(1, 10),\n",
       "                         &#x27;min_samples_split&#x27;: range(2, 10),\n",
       "                         &#x27;splitter&#x27;: [&#x27;best&#x27;, &#x27;random&#x27;]},\n",
       "             verbose=1)</pre></div> </div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" ><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">estimator: DecisionTreeClassifier</label><div class=\"sk-toggleable__content fitted\"><pre>DecisionTreeClassifier()</pre></div> </div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" ><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;DecisionTreeClassifier<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.tree.DecisionTreeClassifier.html\">?<span>Documentation for DecisionTreeClassifier</span></a></label><div class=\"sk-toggleable__content fitted\"><pre>DecisionTreeClassifier()</pre></div> </div></div></div></div></div></div></div></div></div>"
      ],
      "text/plain": [
       "GridSearchCV(cv=5, estimator=DecisionTreeClassifier(), n_jobs=-1,\n",
       "             param_grid={'criterion': ['gini', 'entropy'],\n",
       "                         'max_depth': range(2, 32),\n",
       "                         'min_samples_leaf': range(1, 10),\n",
       "                         'min_samples_split': range(2, 10),\n",
       "                         'splitter': ['best', 'random']},\n",
       "             verbose=1)"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from sklearn.tree import DecisionTreeClassifier\n",
    "\n",
    "dtc = DecisionTreeClassifier()\n",
    "\n",
    "parameters = {\n",
    "    'criterion' : ['gini', 'entropy'],\n",
    "    'max_depth' : range(2, 32, 1),\n",
    "    'min_samples_leaf' : range(1, 10, 1),\n",
    "    'min_samples_split' : range(2, 10, 1),\n",
    "    'splitter' : ['best', 'random']\n",
    "}\n",
    "\n",
    "grid_search_dt = GridSearchCV(dtc, parameters, cv = 5, n_jobs = -1, verbose = 1)\n",
    "grid_search_dt.fit(A_training, B_training)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "362b8867-1ec8-4eba-84b0-c98486db2d2f",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style>#sk-container-id-2 {\n",
       "  /* Definition of color scheme common for light and dark mode */\n",
       "  --sklearn-color-text: black;\n",
       "  --sklearn-color-line: gray;\n",
       "  /* Definition of color scheme for unfitted estimators */\n",
       "  --sklearn-color-unfitted-level-0: #fff5e6;\n",
       "  --sklearn-color-unfitted-level-1: #f6e4d2;\n",
       "  --sklearn-color-unfitted-level-2: #ffe0b3;\n",
       "  --sklearn-color-unfitted-level-3: chocolate;\n",
       "  /* Definition of color scheme for fitted estimators */\n",
       "  --sklearn-color-fitted-level-0: #f0f8ff;\n",
       "  --sklearn-color-fitted-level-1: #d4ebff;\n",
       "  --sklearn-color-fitted-level-2: #b3dbfd;\n",
       "  --sklearn-color-fitted-level-3: cornflowerblue;\n",
       "\n",
       "  /* Specific color for light theme */\n",
       "  --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
       "  --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
       "  --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
       "  --sklearn-color-icon: #696969;\n",
       "\n",
       "  @media (prefers-color-scheme: dark) {\n",
       "    /* Redefinition of color scheme for dark theme */\n",
       "    --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
       "    --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
       "    --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
       "    --sklearn-color-icon: #878787;\n",
       "  }\n",
       "}\n",
       "\n",
       "#sk-container-id-2 {\n",
       "  color: var(--sklearn-color-text);\n",
       "}\n",
       "\n",
       "#sk-container-id-2 pre {\n",
       "  padding: 0;\n",
       "}\n",
       "\n",
       "#sk-container-id-2 input.sk-hidden--visually {\n",
       "  border: 0;\n",
       "  clip: rect(1px 1px 1px 1px);\n",
       "  clip: rect(1px, 1px, 1px, 1px);\n",
       "  height: 1px;\n",
       "  margin: -1px;\n",
       "  overflow: hidden;\n",
       "  padding: 0;\n",
       "  position: absolute;\n",
       "  width: 1px;\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-dashed-wrapped {\n",
       "  border: 1px dashed var(--sklearn-color-line);\n",
       "  margin: 0 0.4em 0.5em 0.4em;\n",
       "  box-sizing: border-box;\n",
       "  padding-bottom: 0.4em;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-container {\n",
       "  /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
       "     but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
       "     so we also need the `!important` here to be able to override the\n",
       "     default hidden behavior on the sphinx rendered scikit-learn.org.\n",
       "     See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
       "  display: inline-block !important;\n",
       "  position: relative;\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-text-repr-fallback {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       "div.sk-parallel-item,\n",
       "div.sk-serial,\n",
       "div.sk-item {\n",
       "  /* draw centered vertical line to link estimators */\n",
       "  background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
       "  background-size: 2px 100%;\n",
       "  background-repeat: no-repeat;\n",
       "  background-position: center center;\n",
       "}\n",
       "\n",
       "/* Parallel-specific style estimator block */\n",
       "\n",
       "#sk-container-id-2 div.sk-parallel-item::after {\n",
       "  content: \"\";\n",
       "  width: 100%;\n",
       "  border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
       "  flex-grow: 1;\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-parallel {\n",
       "  display: flex;\n",
       "  align-items: stretch;\n",
       "  justify-content: center;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  position: relative;\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-parallel-item {\n",
       "  display: flex;\n",
       "  flex-direction: column;\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-parallel-item:first-child::after {\n",
       "  align-self: flex-end;\n",
       "  width: 50%;\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-parallel-item:last-child::after {\n",
       "  align-self: flex-start;\n",
       "  width: 50%;\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-parallel-item:only-child::after {\n",
       "  width: 0;\n",
       "}\n",
       "\n",
       "/* Serial-specific style estimator block */\n",
       "\n",
       "#sk-container-id-2 div.sk-serial {\n",
       "  display: flex;\n",
       "  flex-direction: column;\n",
       "  align-items: center;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  padding-right: 1em;\n",
       "  padding-left: 1em;\n",
       "}\n",
       "\n",
       "\n",
       "/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
       "clickable and can be expanded/collapsed.\n",
       "- Pipeline and ColumnTransformer use this feature and define the default style\n",
       "- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
       "*/\n",
       "\n",
       "/* Pipeline and ColumnTransformer style (default) */\n",
       "\n",
       "#sk-container-id-2 div.sk-toggleable {\n",
       "  /* Default theme specific background. It is overwritten whether we have a\n",
       "  specific estimator or a Pipeline/ColumnTransformer */\n",
       "  background-color: var(--sklearn-color-background);\n",
       "}\n",
       "\n",
       "/* Toggleable label */\n",
       "#sk-container-id-2 label.sk-toggleable__label {\n",
       "  cursor: pointer;\n",
       "  display: block;\n",
       "  width: 100%;\n",
       "  margin-bottom: 0;\n",
       "  padding: 0.5em;\n",
       "  box-sizing: border-box;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       "#sk-container-id-2 label.sk-toggleable__label-arrow:before {\n",
       "  /* Arrow on the left of the label */\n",
       "  content: \"▸\";\n",
       "  float: left;\n",
       "  margin-right: 0.25em;\n",
       "  color: var(--sklearn-color-icon);\n",
       "}\n",
       "\n",
       "#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {\n",
       "  color: var(--sklearn-color-text);\n",
       "}\n",
       "\n",
       "/* Toggleable content - dropdown */\n",
       "\n",
       "#sk-container-id-2 div.sk-toggleable__content {\n",
       "  max-height: 0;\n",
       "  max-width: 0;\n",
       "  overflow: hidden;\n",
       "  text-align: left;\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-toggleable__content.fitted {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-toggleable__content pre {\n",
       "  margin: 0.2em;\n",
       "  border-radius: 0.25em;\n",
       "  color: var(--sklearn-color-text);\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-toggleable__content.fitted pre {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
       "  /* Expand drop-down */\n",
       "  max-height: 200px;\n",
       "  max-width: 100%;\n",
       "  overflow: auto;\n",
       "}\n",
       "\n",
       "#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
       "  content: \"▾\";\n",
       "}\n",
       "\n",
       "/* Pipeline/ColumnTransformer-specific style */\n",
       "\n",
       "#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  color: var(--sklearn-color-text);\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "/* Estimator-specific style */\n",
       "\n",
       "/* Colorize estimator box */\n",
       "#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-label label.sk-toggleable__label,\n",
       "#sk-container-id-2 div.sk-label label {\n",
       "  /* The background is the default theme color */\n",
       "  color: var(--sklearn-color-text-on-default-background);\n",
       "}\n",
       "\n",
       "/* On hover, darken the color of the background */\n",
       "#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {\n",
       "  color: var(--sklearn-color-text);\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "/* Label box, darken color on hover, fitted */\n",
       "#sk-container-id-2 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
       "  color: var(--sklearn-color-text);\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "/* Estimator label */\n",
       "\n",
       "#sk-container-id-2 div.sk-label label {\n",
       "  font-family: monospace;\n",
       "  font-weight: bold;\n",
       "  display: inline-block;\n",
       "  line-height: 1.2em;\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-label-container {\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       "/* Estimator-specific */\n",
       "#sk-container-id-2 div.sk-estimator {\n",
       "  font-family: monospace;\n",
       "  border: 1px dotted var(--sklearn-color-border-box);\n",
       "  border-radius: 0.25em;\n",
       "  box-sizing: border-box;\n",
       "  margin-bottom: 0.5em;\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-estimator.fitted {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-0);\n",
       "}\n",
       "\n",
       "/* on hover */\n",
       "#sk-container-id-2 div.sk-estimator:hover {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-2 div.sk-estimator.fitted:hover {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
       "\n",
       "/* Common style for \"i\" and \"?\" */\n",
       "\n",
       ".sk-estimator-doc-link,\n",
       "a:link.sk-estimator-doc-link,\n",
       "a:visited.sk-estimator-doc-link {\n",
       "  float: right;\n",
       "  font-size: smaller;\n",
       "  line-height: 1em;\n",
       "  font-family: monospace;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  border-radius: 1em;\n",
       "  height: 1em;\n",
       "  width: 1em;\n",
       "  text-decoration: none !important;\n",
       "  margin-left: 1ex;\n",
       "  /* unfitted */\n",
       "  border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
       "  color: var(--sklearn-color-unfitted-level-1);\n",
       "}\n",
       "\n",
       ".sk-estimator-doc-link.fitted,\n",
       "a:link.sk-estimator-doc-link.fitted,\n",
       "a:visited.sk-estimator-doc-link.fitted {\n",
       "  /* fitted */\n",
       "  border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
       "  color: var(--sklearn-color-fitted-level-1);\n",
       "}\n",
       "\n",
       "/* On hover */\n",
       "div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
       ".sk-estimator-doc-link:hover,\n",
       "div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
       ".sk-estimator-doc-link:hover {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-3);\n",
       "  color: var(--sklearn-color-background);\n",
       "  text-decoration: none;\n",
       "}\n",
       "\n",
       "div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
       ".sk-estimator-doc-link.fitted:hover,\n",
       "div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
       ".sk-estimator-doc-link.fitted:hover {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-3);\n",
       "  color: var(--sklearn-color-background);\n",
       "  text-decoration: none;\n",
       "}\n",
       "\n",
       "/* Span, style for the box shown on hovering the info icon */\n",
       ".sk-estimator-doc-link span {\n",
       "  display: none;\n",
       "  z-index: 9999;\n",
       "  position: relative;\n",
       "  font-weight: normal;\n",
       "  right: .2ex;\n",
       "  padding: .5ex;\n",
       "  margin: .5ex;\n",
       "  width: min-content;\n",
       "  min-width: 20ex;\n",
       "  max-width: 50ex;\n",
       "  color: var(--sklearn-color-text);\n",
       "  box-shadow: 2pt 2pt 4pt #999;\n",
       "  /* unfitted */\n",
       "  background: var(--sklearn-color-unfitted-level-0);\n",
       "  border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
       "}\n",
       "\n",
       ".sk-estimator-doc-link.fitted span {\n",
       "  /* fitted */\n",
       "  background: var(--sklearn-color-fitted-level-0);\n",
       "  border: var(--sklearn-color-fitted-level-3);\n",
       "}\n",
       "\n",
       ".sk-estimator-doc-link:hover span {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       "/* \"?\"-specific style due to the `<a>` HTML tag */\n",
       "\n",
       "#sk-container-id-2 a.estimator_doc_link {\n",
       "  float: right;\n",
       "  font-size: 1rem;\n",
       "  line-height: 1em;\n",
       "  font-family: monospace;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  border-radius: 1rem;\n",
       "  height: 1rem;\n",
       "  width: 1rem;\n",
       "  text-decoration: none;\n",
       "  /* unfitted */\n",
       "  color: var(--sklearn-color-unfitted-level-1);\n",
       "  border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
       "}\n",
       "\n",
       "#sk-container-id-2 a.estimator_doc_link.fitted {\n",
       "  /* fitted */\n",
       "  border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
       "  color: var(--sklearn-color-fitted-level-1);\n",
       "}\n",
       "\n",
       "/* On hover */\n",
       "#sk-container-id-2 a.estimator_doc_link:hover {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-3);\n",
       "  color: var(--sklearn-color-background);\n",
       "  text-decoration: none;\n",
       "}\n",
       "\n",
       "#sk-container-id-2 a.estimator_doc_link.fitted:hover {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-3);\n",
       "}\n",
       "</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>DecisionTreeClassifier(criterion=&#x27;entropy&#x27;, max_depth=19, min_samples_leaf=4,\n",
       "                       min_samples_split=6, splitter=&#x27;random&#x27;)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" checked><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;&nbsp;DecisionTreeClassifier<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.4/modules/generated/sklearn.tree.DecisionTreeClassifier.html\">?<span>Documentation for DecisionTreeClassifier</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>DecisionTreeClassifier(criterion=&#x27;entropy&#x27;, max_depth=19, min_samples_leaf=4,\n",
       "                       min_samples_split=6, splitter=&#x27;random&#x27;)</pre></div> </div></div></div></div>"
      ],
      "text/plain": [
       "DecisionTreeClassifier(criterion='entropy', max_depth=19, min_samples_leaf=4,\n",
       "                       min_samples_split=6, splitter='random')"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "\n",
    "dtc = DecisionTreeClassifier(criterion= 'entropy', max_depth= 19, min_samples_leaf= 4, min_samples_split= 6, splitter= 'random')\n",
    "dtc.fit(A_training, B_training)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "2ac9e062-42ce-4baa-81f6-b004efa79279",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.9132231404958677\n",
      "0.6885245901639344\n"
     ]
    }
   ],
   "source": [
    "B_pred = dtc.predict(A_testing)\n",
    "# accuracy score\n",
    "\n",
    "print(accuracy_score(B_training, dtc.predict(A_training)))\n",
    "\n",
    "dtc_acc = accuracy_score(B_testing, dtc.predict(A_testing))\n",
    "print(dtc_acc)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "23941f55-8363-4bdd-a552-1bbb83f1c206",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "              precision    recall  f1-score   support\n",
      "\n",
      "           0       0.67      0.64      0.65        28\n",
      "           1       0.71      0.73      0.72        33\n",
      "\n",
      "    accuracy                           0.69        61\n",
      "   macro avg       0.69      0.69      0.69        61\n",
      "weighted avg       0.69      0.69      0.69        61\n",
      "\n"
     ]
    }
   ],
   "source": [
    "# classification report\n",
    "\n",
    "print(classification_report(B_testing, B_pred))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "029bfdba-3d0e-4d3a-9ce1-06fe8de61f82",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Model</th>\n",
       "      <th>Score</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Logistic Regression</td>\n",
       "      <td>81.97</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Decision Tree Classifier</td>\n",
       "      <td>68.85</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>KNN</td>\n",
       "      <td>62.30</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>SVM</td>\n",
       "      <td>54.10</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                      Model  Score\n",
       "0       Logistic Regression  81.97\n",
       "3  Decision Tree Classifier  68.85\n",
       "1                       KNN  62.30\n",
       "2                       SVM  54.10"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "models = pd.DataFrame({\n",
    "    'Model': ['Logistic Regression', 'KNN', 'SVM', 'Decision Tree Classifier'],\n",
    "    'Score': [100*round(log_reg_acc,4), 100*round(knn_acc,4), 100*round(svc_acc,4), 100*round(dtc_acc,4)]\n",
    "})\n",
    "models.sort_values(by = 'Score', ascending = False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "12de1159",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "     age  sex  cp  trestbps  chol  fbs  restecg  thalach  exang  oldpeak  \\\n",
      "165   67    1   0       160   286    0        0      108      1      1.5   \n",
      "166   67    1   0       120   229    0        0      129      1      2.6   \n",
      "167   62    0   0       140   268    0        0      160      0      3.6   \n",
      "168   63    1   0       130   254    0        0      147      0      1.4   \n",
      "169   53    1   0       140   203    1        0      155      1      3.1   \n",
      "..   ...  ...  ..       ...   ...  ...      ...      ...    ...      ...   \n",
      "298   57    0   0       140   241    0        1      123      1      0.2   \n",
      "299   45    1   3       110   264    0        1      132      0      1.2   \n",
      "300   68    1   0       144   193    1        1      141      0      3.4   \n",
      "301   57    1   0       130   131    0        1      115      1      1.2   \n",
      "302   57    0   1       130   236    0        0      174      0      0.0   \n",
      "\n",
      "     slope  ca  thal  target  \n",
      "165      1   3     2       0  \n",
      "166      1   2     3       0  \n",
      "167      0   2     2       0  \n",
      "168      1   1     3       0  \n",
      "169      0   0     3       0  \n",
      "..     ...  ..   ...     ...  \n",
      "298      1   0     3       0  \n",
      "299      1   0     3       0  \n",
      "300      1   2     3       0  \n",
      "301      1   1     3       0  \n",
      "302      1   1     2       0  \n",
      "\n",
      "[138 rows x 14 columns]\n"
     ]
    }
   ],
   "source": [
    "filtered_df = df[df['target'] == 0]\n",
    "C = pd.DataFrame(filtered_df)   \n",
    "print(C)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9ea84040-eb10-42f2-97c7-f91b52129aef",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[1]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Users\\Pranshu Saini\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\sklearn\\base.py:493: UserWarning: X does not have valid feature names, but LogisticRegression was fitted with feature names\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "\n",
    "a = [63, 1, 3, 145, 233, 1, 0, 150, 0, 2.3, 0, 0, 1]\n",
    "b=[67  ,  1,   0,       160,   286,    0,        0,      108,      1,      1.5,  1,   3,     2 ]\n",
    "a_reshaped = np.array().reshape(1, -1)\n",
    "\n",
    "B = log_reg.predict(a_reshaped)\n",
    "print(B)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e66f5d96-79a7-4ac9-a01b-e753181af587",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "7552b5a0-d407-4bf9-98e0-56b8bd7c3245",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pickle\n",
    "filename = r'C:\\Users\\Pranshu Saini\\Desktop\\disease-prediction-main\\docpat\\model\\heart_disease_model.pkl'\n",
    "pickle.dump(log_reg, open(filename, 'wb'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4f01bd6a-95cc-4383-a17c-0e0ae3ff2e69",
   "metadata": {},
   "outputs": [],
   "source": [
    "'''import pickle\n",
    "def load_model(path):\n",
    "    with open(path, 'rb') as file:\n",
    "        model = pickle.load(file)\n",
    "heart_model = load_model(r'C:\\Users\\DELL\\Desktop\\app\\heart_disease_model.pkl')\n",
    "def predict(inputs):\n",
    "    return heart_model.predict(inputs)'''"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3765e3cf-d221-4413-a91e-9b7d4d49bd3c",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a8fc26d0",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "66257935",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}