{ "cells": [ { "cell_type": "markdown", "id": "41bc3d29-1e2f-41ec-b919-37d014f4769b", "metadata": {}, "source": [ "HEART DISEASE\n" ] }, { "cell_type": "code", "execution_count": 1, "id": "596f49af-da22-40fd-b931-972608d711f9", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | age | \n", "sex | \n", "cp | \n", "trestbps | \n", "chol | \n", "fbs | \n", "restecg | \n", "thalach | \n", "exang | \n", "oldpeak | \n", "slope | \n", "ca | \n", "thal | \n", "target | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "63 | \n", "1 | \n", "3 | \n", "145 | \n", "233 | \n", "1 | \n", "0 | \n", "150 | \n", "0 | \n", "2.3 | \n", "0 | \n", "0 | \n", "1 | \n", "1 | \n", "
1 | \n", "37 | \n", "1 | \n", "2 | \n", "130 | \n", "250 | \n", "0 | \n", "1 | \n", "187 | \n", "0 | \n", "3.5 | \n", "0 | \n", "0 | \n", "2 | \n", "1 | \n", "
2 | \n", "41 | \n", "0 | \n", "1 | \n", "130 | \n", "204 | \n", "0 | \n", "0 | \n", "172 | \n", "0 | \n", "1.4 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "
3 | \n", "56 | \n", "1 | \n", "1 | \n", "120 | \n", "236 | \n", "0 | \n", "1 | \n", "178 | \n", "0 | \n", "0.8 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "
4 | \n", "57 | \n", "0 | \n", "0 | \n", "120 | \n", "354 | \n", "0 | \n", "1 | \n", "163 | \n", "1 | \n", "0.6 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "
5 | \n", "57 | \n", "1 | \n", "0 | \n", "140 | \n", "192 | \n", "0 | \n", "1 | \n", "148 | \n", "0 | \n", "0.4 | \n", "1 | \n", "0 | \n", "1 | \n", "1 | \n", "
6 | \n", "56 | \n", "0 | \n", "1 | \n", "140 | \n", "294 | \n", "0 | \n", "0 | \n", "153 | \n", "0 | \n", "1.3 | \n", "1 | \n", "0 | \n", "2 | \n", "1 | \n", "
7 | \n", "44 | \n", "1 | \n", "1 | \n", "120 | \n", "263 | \n", "0 | \n", "1 | \n", "173 | \n", "0 | \n", "0.0 | \n", "2 | \n", "0 | \n", "3 | \n", "1 | \n", "
8 | \n", "52 | \n", "1 | \n", "2 | \n", "172 | \n", "199 | \n", "1 | \n", "1 | \n", "162 | \n", "0 | \n", "0.5 | \n", "2 | \n", "0 | \n", "3 | \n", "1 | \n", "
9 | \n", "57 | \n", "1 | \n", "2 | \n", "150 | \n", "168 | \n", "0 | \n", "1 | \n", "174 | \n", "0 | \n", "1.6 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "
10 | \n", "54 | \n", "1 | \n", "0 | \n", "140 | \n", "239 | \n", "0 | \n", "1 | \n", "160 | \n", "0 | \n", "1.2 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "
11 | \n", "48 | \n", "0 | \n", "2 | \n", "130 | \n", "275 | \n", "0 | \n", "1 | \n", "139 | \n", "0 | \n", "0.2 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "
12 | \n", "49 | \n", "1 | \n", "1 | \n", "130 | \n", "266 | \n", "0 | \n", "1 | \n", "171 | \n", "0 | \n", "0.6 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "
13 | \n", "64 | \n", "1 | \n", "3 | \n", "110 | \n", "211 | \n", "0 | \n", "0 | \n", "144 | \n", "1 | \n", "1.8 | \n", "1 | \n", "0 | \n", "2 | \n", "1 | \n", "
14 | \n", "58 | \n", "0 | \n", "3 | \n", "150 | \n", "283 | \n", "1 | \n", "0 | \n", "162 | \n", "0 | \n", "1.0 | \n", "2 | \n", "0 | \n", "2 | \n", "1 | \n", "
GridSearchCV(cv=5, estimator=DecisionTreeClassifier(), n_jobs=-1,\n", " param_grid={'criterion': ['gini', 'entropy'],\n", " 'max_depth': range(2, 32),\n", " 'min_samples_leaf': range(1, 10),\n", " 'min_samples_split': range(2, 10),\n", " 'splitter': ['best', 'random']},\n", " verbose=1)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
GridSearchCV(cv=5, estimator=DecisionTreeClassifier(), n_jobs=-1,\n", " param_grid={'criterion': ['gini', 'entropy'],\n", " 'max_depth': range(2, 32),\n", " 'min_samples_leaf': range(1, 10),\n", " 'min_samples_split': range(2, 10),\n", " 'splitter': ['best', 'random']},\n", " verbose=1)
DecisionTreeClassifier()
DecisionTreeClassifier()
DecisionTreeClassifier(criterion='entropy', max_depth=19, min_samples_leaf=4,\n", " min_samples_split=6, splitter='random')In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
DecisionTreeClassifier(criterion='entropy', max_depth=19, min_samples_leaf=4,\n", " min_samples_split=6, splitter='random')
\n", " | Model | \n", "Score | \n", "
---|---|---|
0 | \n", "Logistic Regression | \n", "81.97 | \n", "
3 | \n", "Decision Tree Classifier | \n", "68.85 | \n", "
1 | \n", "KNN | \n", "62.30 | \n", "
2 | \n", "SVM | \n", "54.10 | \n", "