|
a |
|
b/docpat/views.py |
|
|
1 |
from django.shortcuts import render |
|
|
2 |
import pickle |
|
|
3 |
import os |
|
|
4 |
from django.core.files.storage import FileSystemStorage |
|
|
5 |
import numpy as np |
|
|
6 |
import tensorflow |
|
|
7 |
from tensorflow.keras.models import load_model |
|
|
8 |
from tensorflow.keras.preprocessing.image import load_img, img_to_array |
|
|
9 |
import os |
|
|
10 |
from django.conf import settings |
|
|
11 |
from xc import predict_image # Import the function from c.py |
|
|
12 |
|
|
|
13 |
|
|
|
14 |
# Path to your single image |
|
|
15 |
|
|
|
16 |
def load_model(file_path): |
|
|
17 |
if not os.path.exists(file_path): |
|
|
18 |
raise FileNotFoundError(f"The model file at {file_path} does not exist.") |
|
|
19 |
with open(file_path, 'rb') as file: |
|
|
20 |
model = pickle.load(file) |
|
|
21 |
return model |
|
|
22 |
def homepage(request): |
|
|
23 |
return render(request,"main.html") |
|
|
24 |
def breast(request): |
|
|
25 |
return render(request,"breast.html") |
|
|
26 |
def faq(request): |
|
|
27 |
return render(request,"faqs.html") |
|
|
28 |
|
|
|
29 |
def heart(request): |
|
|
30 |
return render(request,"heart.html") |
|
|
31 |
|
|
|
32 |
|
|
|
33 |
def liver(request): |
|
|
34 |
return render(request,"liver.html") |
|
|
35 |
|
|
|
36 |
|
|
|
37 |
def diabetes(request): |
|
|
38 |
return render(request,"diabetes.html") |
|
|
39 |
def predictb(request): |
|
|
40 |
if request.method == 'POST': |
|
|
41 |
try: |
|
|
42 |
model_path = r'breast_cancer_svm_model.pkl' |
|
|
43 |
breast_model = load_model(model_path) |
|
|
44 |
|
|
|
45 |
texture_mean = float(request.POST.get('texture_mean')) |
|
|
46 |
smoothness_mean = float(request.POST.get('smoothness_mean')) |
|
|
47 |
compactness_mean = float(request.POST.get('compactness_mean')) |
|
|
48 |
concave_points_mean = float(request.POST.get('concave_points_mean')) |
|
|
49 |
symmetry_mean = float(request.POST.get('symmetry_mean')) |
|
|
50 |
fractal_dimension_mean = float(request.POST.get('fractal_dimension_mean')) |
|
|
51 |
texture_se = float(request.POST.get('texture_se')) |
|
|
52 |
area_se = float(request.POST.get('area_se')) |
|
|
53 |
smoothness_se = float(request.POST.get('smoothness_se')) |
|
|
54 |
compactness_se = float(request.POST.get('compactness_se')) |
|
|
55 |
concavity_se = float(request.POST.get('concavity_se')) |
|
|
56 |
concave_points_se = float(request.POST.get('concave_points_se')) |
|
|
57 |
symmetry_se = float(request.POST.get('symmetry_se')) |
|
|
58 |
fractal_dimension_se =float(request.POST.get('fractal_dimension_se')) |
|
|
59 |
texture_worst = float(request.POST.get('texture_worst')) |
|
|
60 |
area_worst = float(request.POST.get('area_worst')) |
|
|
61 |
smoothness_worst = float(request.POST.get('smoothness_worst')) |
|
|
62 |
compactness_worst = float(request.POST.get('compactness_worst')) |
|
|
63 |
concavity_worst = float(request.POST.get('concavity_worst')) |
|
|
64 |
concave_points_worst = float(request.POST.get('concave_points_worst')) |
|
|
65 |
symmetry_worst = float(request.POST.get('symmetry_worst')) |
|
|
66 |
fractal_dimension_worst = float(request.POST.get('fractal_dimension_worst')) |
|
|
67 |
data = [ texture_mean, smoothness_mean, compactness_mean, |
|
|
68 |
concave_points_mean, symmetry_mean, fractal_dimension_mean, texture_se, |
|
|
69 |
area_se, smoothness_se, compactness_se, concavity_se, concave_points_se, symmetry_se, |
|
|
70 |
fractal_dimension_se, texture_worst, area_worst, smoothness_worst, |
|
|
71 |
compactness_worst, concavity_worst, concave_points_worst, symmetry_worst, fractal_dimension_worst] |
|
|
72 |
prediction_result = breast_model.predict([data]) |
|
|
73 |
context = { |
|
|
74 |
'prediction_result': prediction_result[0] |
|
|
75 |
} |
|
|
76 |
return render(request, 'predict.html', context) |
|
|
77 |
|
|
|
78 |
except Exception as e: |
|
|
79 |
return render(request, 'error.html', {'error': str(e)}) |
|
|
80 |
|
|
|
81 |
def predictd(request): |
|
|
82 |
if request.method == 'POST': |
|
|
83 |
try: |
|
|
84 |
model_path = r'diabetes_model.pkl' |
|
|
85 |
diabetes_model = load_model(model_path) |
|
|
86 |
|
|
|
87 |
Pregnancies = float(request.POST.get('Pregnancies')) |
|
|
88 |
Glucose =float(request.POST.get('Glucose')) |
|
|
89 |
BloodPressure = float(request.POST.get('BloodPressure')) |
|
|
90 |
SkinThickness = float(request.POST.get('SkinThickness')) |
|
|
91 |
Insulin = float(request.POST.get('Insulin')) |
|
|
92 |
BMI = float(request.POST.get('BMI')) |
|
|
93 |
DiabetesPedigreeFunction = float(request.POST.get('DiabetesPedigreeFunction')) |
|
|
94 |
Age = float(request.POST.get('Age')) |
|
|
95 |
inputs = [[Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, |
|
|
96 |
BMI, DiabetesPedigreeFunction, Age |
|
|
97 |
]] |
|
|
98 |
prediction_result = diabetes_model.predict(inputs) |
|
|
99 |
|
|
|
100 |
|
|
|
101 |
context = { |
|
|
102 |
'prediction_result': prediction_result[0] |
|
|
103 |
} |
|
|
104 |
return render(request, 'predict.html', context) |
|
|
105 |
|
|
|
106 |
except Exception as e: |
|
|
107 |
return render(request, 'error.html', {'error': str(e)}) |
|
|
108 |
|
|
|
109 |
def predictl(request): |
|
|
110 |
if request.method == 'POST': |
|
|
111 |
try: |
|
|
112 |
model_path = r'liver_prediction.pkl' |
|
|
113 |
liver_model = load_model(model_path) |
|
|
114 |
age = float(request.POST.get('Age')) |
|
|
115 |
gender = float(request.POST.get('Gender')) |
|
|
116 |
total_bilirubin = float(request.POST.get('Total_Bilirubin')) |
|
|
117 |
direct_bilirubin = float(request.POST.get('Direct_Bilirubin')) |
|
|
118 |
alkaline_phosphotase = float(request.POST.get('Alkaline_Phosphotase')) |
|
|
119 |
alamine_aminotransferase = float(request.POST.get('Alamine_Aminotransferase')) |
|
|
120 |
aspartate_aminotransferase = float(request.POST.get('Aspartate_Aminotransferase')) |
|
|
121 |
total_proteins = float(request.POST.get('Total_Protiens')) |
|
|
122 |
albumin = float(request.POST.get('Albumin')) |
|
|
123 |
albumin_and_globulin_ratio = float(request.POST.get('Albumin_and_Globulin_Ratio')) |
|
|
124 |
|
|
|
125 |
inputs = [[age, gender, total_bilirubin, direct_bilirubin, alkaline_phosphotase, |
|
|
126 |
alamine_aminotransferase, aspartate_aminotransferase, total_proteins, |
|
|
127 |
albumin, albumin_and_globulin_ratio]] |
|
|
128 |
|
|
|
129 |
|
|
|
130 |
prediction_result =liver_model.predict(inputs) |
|
|
131 |
|
|
|
132 |
|
|
|
133 |
context = { |
|
|
134 |
'prediction_result': prediction_result[0] |
|
|
135 |
} |
|
|
136 |
return render(request, 'predict.html', context) |
|
|
137 |
|
|
|
138 |
except Exception as e: |
|
|
139 |
return render(request, 'error.html', {'error': str(e)}) |
|
|
140 |
def predicth(request): |
|
|
141 |
if request.method == 'POST': |
|
|
142 |
try: |
|
|
143 |
model_path = r'heart_disease_model.pkl' |
|
|
144 |
heart_model =(load_model(model_path)) |
|
|
145 |
age = float(request.POST.get('age')) |
|
|
146 |
sex = float(request.POST.get('sex')) |
|
|
147 |
cp = float(request.POST.get('cp')) |
|
|
148 |
trestbps = float(request.POST.get('trestbps')) |
|
|
149 |
chol = float(request.POST.get('chol')) |
|
|
150 |
fbs = float(request.POST.get('fbs')) |
|
|
151 |
restecg = float(request.POST.get('restecg')) |
|
|
152 |
thalach = float(request.POST.get('thalach')) |
|
|
153 |
exang = float(request.POST.get('exang')) |
|
|
154 |
oldpeak = float(request.POST.get('oldpeak')) |
|
|
155 |
slope = float(request.POST.get('slope')) |
|
|
156 |
ca = float(request.POST.get('ca')) |
|
|
157 |
thal = float(request.POST.get('thal')) |
|
|
158 |
inputs = [[age, sex,cp,trestbps, chol, fbs, restecg, |
|
|
159 |
thalach, exang, oldpeak, |
|
|
160 |
slope, ca,thal]] |
|
|
161 |
|
|
|
162 |
prediction_result = heart_model.predict(inputs) |
|
|
163 |
|
|
|
164 |
|
|
|
165 |
context = { |
|
|
166 |
'prediction_result': prediction_result[0] |
|
|
167 |
} |
|
|
168 |
return render(request, 'predict.html', context) |
|
|
169 |
|
|
|
170 |
except Exception as e: |
|
|
171 |
return render(request, 'error.html', {'error': str(e)}) |
|
|
172 |
def gi(request): |
|
|
173 |
return render(request, 'GI_diseases.html') |
|
|
174 |
# View to handle file upload and prediction |
|
|
175 |
# views.py |
|
|
176 |
|
|
|
177 |
|
|
|
178 |
def predictg(request): |
|
|
179 |
if request.method == 'POST' and request.FILES.get('uploadedImage'): |
|
|
180 |
# Handle the uploaded file |
|
|
181 |
uploaded_file = request.FILES['uploadedImage'] |
|
|
182 |
file_name = uploaded_file.name |
|
|
183 |
|
|
|
184 |
# Save the uploaded file temporarily |
|
|
185 |
fs = FileSystemStorage() |
|
|
186 |
file_path = fs.save(file_name, uploaded_file) |
|
|
187 |
full_file_path = fs.path(file_path) |
|
|
188 |
|
|
|
189 |
# Debugging: Ensure the file path is correct |
|
|
190 |
print(f"File uploaded to: {full_file_path}") |
|
|
191 |
|
|
|
192 |
# Call the predict_image function from c.py to process the image |
|
|
193 |
predicted_class = predict_image(full_file_path) |
|
|
194 |
|
|
|
195 |
if predicted_class is not None: |
|
|
196 |
print(f"Predicted class: {predicted_class}") # Debugging: print the predicted class |
|
|
197 |
return render(request, 'p.html', { |
|
|
198 |
'predicted_class': predicted_class # Only send predicted class |
|
|
199 |
}) |
|
|
200 |
else: |
|
|
201 |
print("Prediction failed") # Debugging: print if prediction failed |
|
|
202 |
return render(request, 'error.html', {'error': 'Failed to process the image or make predictions.'}) |
|
|
203 |
|
|
|
204 |
else: |
|
|
205 |
return render(request, 'p.html') |
|
|
206 |
def GI_Diseases_info(request): |
|
|
207 |
return render(request,"gi.html") |
|
|
208 |
def diabetes_info(request): |
|
|
209 |
return render(request,"diabetes_info.html") |
|
|
210 |
def breast_cancer_info(request): |
|
|
211 |
return render(request,'breast_cancer_info.html') |
|
|
212 |
def heart_disease_info(request): |
|
|
213 |
return render(request,'heart_disease_info.html') |
|
|
214 |
def liver_disease_info(request): |
|
|
215 |
return render(request,'liver_disease_info.html') |