|
a |
|
b/diabetes_model.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"id": "9af65cb9-8a84-47e4-8bea-1547afe46a15", |
|
|
6 |
"metadata": {}, |
|
|
7 |
"source": [ |
|
|
8 |
"DIABETIES" |
|
|
9 |
] |
|
|
10 |
}, |
|
|
11 |
{ |
|
|
12 |
"cell_type": "code", |
|
|
13 |
"execution_count": 2, |
|
|
14 |
"id": "3fba3c9b-5e48-4771-a28a-4ec54fc4bc1b", |
|
|
15 |
"metadata": {}, |
|
|
16 |
"outputs": [ |
|
|
17 |
{ |
|
|
18 |
"data": { |
|
|
19 |
"text/plain": [ |
|
|
20 |
"Pregnancies 0\n", |
|
|
21 |
"Glucose 0\n", |
|
|
22 |
"BloodPressure 0\n", |
|
|
23 |
"SkinThickness 0\n", |
|
|
24 |
"Insulin 0\n", |
|
|
25 |
"BMI 0\n", |
|
|
26 |
"DiabetesPedigreeFunction 0\n", |
|
|
27 |
"Age 0\n", |
|
|
28 |
"Outcome 0\n", |
|
|
29 |
"dtype: int64" |
|
|
30 |
] |
|
|
31 |
}, |
|
|
32 |
"execution_count": 2, |
|
|
33 |
"metadata": {}, |
|
|
34 |
"output_type": "execute_result" |
|
|
35 |
} |
|
|
36 |
], |
|
|
37 |
"source": [ |
|
|
38 |
"import numpy as np\n", |
|
|
39 |
"import pandas as pd\n", |
|
|
40 |
"from sklearn.model_selection import train_test_split\n", |
|
|
41 |
"from sklearn import svm\n", |
|
|
42 |
"from sklearn.metrics import accuracy_score\n", |
|
|
43 |
"dataset= pd.read_csv(r'C:\\Users\\Pranshu Saini\\Desktop\\disease-prediction-main\\docpat\\datasets\\diabetes.csv')\n", |
|
|
44 |
"dataset.head(5)\n", |
|
|
45 |
"dataset.isna().sum()" |
|
|
46 |
] |
|
|
47 |
}, |
|
|
48 |
{ |
|
|
49 |
"cell_type": "code", |
|
|
50 |
"execution_count": 4, |
|
|
51 |
"id": "e99dd297-c606-4501-80c8-fa87d89fc237", |
|
|
52 |
"metadata": {}, |
|
|
53 |
"outputs": [ |
|
|
54 |
{ |
|
|
55 |
"name": "stdout", |
|
|
56 |
"output_type": "stream", |
|
|
57 |
"text": [ |
|
|
58 |
"The reduced dataframe has 9 columns.\n" |
|
|
59 |
] |
|
|
60 |
} |
|
|
61 |
], |
|
|
62 |
"source": [ |
|
|
63 |
"# removing highly correlated features\n", |
|
|
64 |
"\n", |
|
|
65 |
"corr_matrix = dataset.corr().abs() \n", |
|
|
66 |
"\n", |
|
|
67 |
"mask = np.triu(np.ones_like(corr_matrix, dtype = bool))\n", |
|
|
68 |
"tri_df = corr_matrix.mask(mask)\n", |
|
|
69 |
"\n", |
|
|
70 |
"to_drop = [x for x in tri_df.columns if any(tri_df[x] > 0.92)]\n", |
|
|
71 |
"\n", |
|
|
72 |
"df = dataset.drop(to_drop, axis = 1)\n", |
|
|
73 |
"\n", |
|
|
74 |
"print(f\"The reduced dataframe has {df.shape[1]} columns.\")" |
|
|
75 |
] |
|
|
76 |
}, |
|
|
77 |
{ |
|
|
78 |
"cell_type": "code", |
|
|
79 |
"execution_count": 5, |
|
|
80 |
"id": "64693a8e", |
|
|
81 |
"metadata": {}, |
|
|
82 |
"outputs": [ |
|
|
83 |
{ |
|
|
84 |
"data": { |
|
|
85 |
"text/html": [ |
|
|
86 |
"<div>\n", |
|
|
87 |
"<style scoped>\n", |
|
|
88 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
89 |
" vertical-align: middle;\n", |
|
|
90 |
" }\n", |
|
|
91 |
"\n", |
|
|
92 |
" .dataframe tbody tr th {\n", |
|
|
93 |
" vertical-align: top;\n", |
|
|
94 |
" }\n", |
|
|
95 |
"\n", |
|
|
96 |
" .dataframe thead th {\n", |
|
|
97 |
" text-align: right;\n", |
|
|
98 |
" }\n", |
|
|
99 |
"</style>\n", |
|
|
100 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
101 |
" <thead>\n", |
|
|
102 |
" <tr style=\"text-align: right;\">\n", |
|
|
103 |
" <th></th>\n", |
|
|
104 |
" <th>Pregnancies</th>\n", |
|
|
105 |
" <th>Glucose</th>\n", |
|
|
106 |
" <th>BloodPressure</th>\n", |
|
|
107 |
" <th>SkinThickness</th>\n", |
|
|
108 |
" <th>Insulin</th>\n", |
|
|
109 |
" <th>BMI</th>\n", |
|
|
110 |
" <th>DiabetesPedigreeFunction</th>\n", |
|
|
111 |
" <th>Age</th>\n", |
|
|
112 |
" <th>Outcome</th>\n", |
|
|
113 |
" </tr>\n", |
|
|
114 |
" </thead>\n", |
|
|
115 |
" <tbody>\n", |
|
|
116 |
" <tr>\n", |
|
|
117 |
" <th>0</th>\n", |
|
|
118 |
" <td>6</td>\n", |
|
|
119 |
" <td>148</td>\n", |
|
|
120 |
" <td>72</td>\n", |
|
|
121 |
" <td>35</td>\n", |
|
|
122 |
" <td>0</td>\n", |
|
|
123 |
" <td>33.6</td>\n", |
|
|
124 |
" <td>0.627</td>\n", |
|
|
125 |
" <td>50</td>\n", |
|
|
126 |
" <td>1</td>\n", |
|
|
127 |
" </tr>\n", |
|
|
128 |
" <tr>\n", |
|
|
129 |
" <th>1</th>\n", |
|
|
130 |
" <td>1</td>\n", |
|
|
131 |
" <td>85</td>\n", |
|
|
132 |
" <td>66</td>\n", |
|
|
133 |
" <td>29</td>\n", |
|
|
134 |
" <td>0</td>\n", |
|
|
135 |
" <td>26.6</td>\n", |
|
|
136 |
" <td>0.351</td>\n", |
|
|
137 |
" <td>31</td>\n", |
|
|
138 |
" <td>0</td>\n", |
|
|
139 |
" </tr>\n", |
|
|
140 |
" <tr>\n", |
|
|
141 |
" <th>2</th>\n", |
|
|
142 |
" <td>8</td>\n", |
|
|
143 |
" <td>183</td>\n", |
|
|
144 |
" <td>64</td>\n", |
|
|
145 |
" <td>0</td>\n", |
|
|
146 |
" <td>0</td>\n", |
|
|
147 |
" <td>23.3</td>\n", |
|
|
148 |
" <td>0.672</td>\n", |
|
|
149 |
" <td>32</td>\n", |
|
|
150 |
" <td>1</td>\n", |
|
|
151 |
" </tr>\n", |
|
|
152 |
" <tr>\n", |
|
|
153 |
" <th>3</th>\n", |
|
|
154 |
" <td>1</td>\n", |
|
|
155 |
" <td>89</td>\n", |
|
|
156 |
" <td>66</td>\n", |
|
|
157 |
" <td>23</td>\n", |
|
|
158 |
" <td>94</td>\n", |
|
|
159 |
" <td>28.1</td>\n", |
|
|
160 |
" <td>0.167</td>\n", |
|
|
161 |
" <td>21</td>\n", |
|
|
162 |
" <td>0</td>\n", |
|
|
163 |
" </tr>\n", |
|
|
164 |
" <tr>\n", |
|
|
165 |
" <th>4</th>\n", |
|
|
166 |
" <td>0</td>\n", |
|
|
167 |
" <td>137</td>\n", |
|
|
168 |
" <td>40</td>\n", |
|
|
169 |
" <td>35</td>\n", |
|
|
170 |
" <td>168</td>\n", |
|
|
171 |
" <td>43.1</td>\n", |
|
|
172 |
" <td>2.288</td>\n", |
|
|
173 |
" <td>33</td>\n", |
|
|
174 |
" <td>1</td>\n", |
|
|
175 |
" </tr>\n", |
|
|
176 |
" <tr>\n", |
|
|
177 |
" <th>...</th>\n", |
|
|
178 |
" <td>...</td>\n", |
|
|
179 |
" <td>...</td>\n", |
|
|
180 |
" <td>...</td>\n", |
|
|
181 |
" <td>...</td>\n", |
|
|
182 |
" <td>...</td>\n", |
|
|
183 |
" <td>...</td>\n", |
|
|
184 |
" <td>...</td>\n", |
|
|
185 |
" <td>...</td>\n", |
|
|
186 |
" <td>...</td>\n", |
|
|
187 |
" </tr>\n", |
|
|
188 |
" <tr>\n", |
|
|
189 |
" <th>763</th>\n", |
|
|
190 |
" <td>10</td>\n", |
|
|
191 |
" <td>101</td>\n", |
|
|
192 |
" <td>76</td>\n", |
|
|
193 |
" <td>48</td>\n", |
|
|
194 |
" <td>180</td>\n", |
|
|
195 |
" <td>32.9</td>\n", |
|
|
196 |
" <td>0.171</td>\n", |
|
|
197 |
" <td>63</td>\n", |
|
|
198 |
" <td>0</td>\n", |
|
|
199 |
" </tr>\n", |
|
|
200 |
" <tr>\n", |
|
|
201 |
" <th>764</th>\n", |
|
|
202 |
" <td>2</td>\n", |
|
|
203 |
" <td>122</td>\n", |
|
|
204 |
" <td>70</td>\n", |
|
|
205 |
" <td>27</td>\n", |
|
|
206 |
" <td>0</td>\n", |
|
|
207 |
" <td>36.8</td>\n", |
|
|
208 |
" <td>0.340</td>\n", |
|
|
209 |
" <td>27</td>\n", |
|
|
210 |
" <td>0</td>\n", |
|
|
211 |
" </tr>\n", |
|
|
212 |
" <tr>\n", |
|
|
213 |
" <th>765</th>\n", |
|
|
214 |
" <td>5</td>\n", |
|
|
215 |
" <td>121</td>\n", |
|
|
216 |
" <td>72</td>\n", |
|
|
217 |
" <td>23</td>\n", |
|
|
218 |
" <td>112</td>\n", |
|
|
219 |
" <td>26.2</td>\n", |
|
|
220 |
" <td>0.245</td>\n", |
|
|
221 |
" <td>30</td>\n", |
|
|
222 |
" <td>0</td>\n", |
|
|
223 |
" </tr>\n", |
|
|
224 |
" <tr>\n", |
|
|
225 |
" <th>766</th>\n", |
|
|
226 |
" <td>1</td>\n", |
|
|
227 |
" <td>126</td>\n", |
|
|
228 |
" <td>60</td>\n", |
|
|
229 |
" <td>0</td>\n", |
|
|
230 |
" <td>0</td>\n", |
|
|
231 |
" <td>30.1</td>\n", |
|
|
232 |
" <td>0.349</td>\n", |
|
|
233 |
" <td>47</td>\n", |
|
|
234 |
" <td>1</td>\n", |
|
|
235 |
" </tr>\n", |
|
|
236 |
" <tr>\n", |
|
|
237 |
" <th>767</th>\n", |
|
|
238 |
" <td>1</td>\n", |
|
|
239 |
" <td>93</td>\n", |
|
|
240 |
" <td>70</td>\n", |
|
|
241 |
" <td>31</td>\n", |
|
|
242 |
" <td>0</td>\n", |
|
|
243 |
" <td>30.4</td>\n", |
|
|
244 |
" <td>0.315</td>\n", |
|
|
245 |
" <td>23</td>\n", |
|
|
246 |
" <td>0</td>\n", |
|
|
247 |
" </tr>\n", |
|
|
248 |
" </tbody>\n", |
|
|
249 |
"</table>\n", |
|
|
250 |
"<p>768 rows × 9 columns</p>\n", |
|
|
251 |
"</div>" |
|
|
252 |
], |
|
|
253 |
"text/plain": [ |
|
|
254 |
" Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", |
|
|
255 |
"0 6 148 72 35 0 33.6 \n", |
|
|
256 |
"1 1 85 66 29 0 26.6 \n", |
|
|
257 |
"2 8 183 64 0 0 23.3 \n", |
|
|
258 |
"3 1 89 66 23 94 28.1 \n", |
|
|
259 |
"4 0 137 40 35 168 43.1 \n", |
|
|
260 |
".. ... ... ... ... ... ... \n", |
|
|
261 |
"763 10 101 76 48 180 32.9 \n", |
|
|
262 |
"764 2 122 70 27 0 36.8 \n", |
|
|
263 |
"765 5 121 72 23 112 26.2 \n", |
|
|
264 |
"766 1 126 60 0 0 30.1 \n", |
|
|
265 |
"767 1 93 70 31 0 30.4 \n", |
|
|
266 |
"\n", |
|
|
267 |
" DiabetesPedigreeFunction Age Outcome \n", |
|
|
268 |
"0 0.627 50 1 \n", |
|
|
269 |
"1 0.351 31 0 \n", |
|
|
270 |
"2 0.672 32 1 \n", |
|
|
271 |
"3 0.167 21 0 \n", |
|
|
272 |
"4 2.288 33 1 \n", |
|
|
273 |
".. ... ... ... \n", |
|
|
274 |
"763 0.171 63 0 \n", |
|
|
275 |
"764 0.340 27 0 \n", |
|
|
276 |
"765 0.245 30 0 \n", |
|
|
277 |
"766 0.349 47 1 \n", |
|
|
278 |
"767 0.315 23 0 \n", |
|
|
279 |
"\n", |
|
|
280 |
"[768 rows x 9 columns]" |
|
|
281 |
] |
|
|
282 |
}, |
|
|
283 |
"execution_count": 5, |
|
|
284 |
"metadata": {}, |
|
|
285 |
"output_type": "execute_result" |
|
|
286 |
} |
|
|
287 |
], |
|
|
288 |
"source": [ |
|
|
289 |
"df" |
|
|
290 |
] |
|
|
291 |
}, |
|
|
292 |
{ |
|
|
293 |
"cell_type": "code", |
|
|
294 |
"execution_count": null, |
|
|
295 |
"id": "ecc668ff-a516-4ee6-8b2f-76b07d9df34f", |
|
|
296 |
"metadata": {}, |
|
|
297 |
"outputs": [ |
|
|
298 |
{ |
|
|
299 |
"name": "stdout", |
|
|
300 |
"output_type": "stream", |
|
|
301 |
"text": [ |
|
|
302 |
"(768, 8) (614, 8) (154, 8)\n" |
|
|
303 |
] |
|
|
304 |
} |
|
|
305 |
], |
|
|
306 |
"source": [ |
|
|
307 |
"A= dataset.drop(columns = 'Outcome', axis=1)\n", |
|
|
308 |
"B= dataset['Outcome']\n", |
|
|
309 |
"A_training, A_testing, B_training, B_testing = train_test_split(A,B, test_size = 0.2, stratify=B, random_state=5)\n", |
|
|
310 |
"print(A.shape, A_training.shape, A_testing.shape)\n" |
|
|
311 |
] |
|
|
312 |
}, |
|
|
313 |
{ |
|
|
314 |
"cell_type": "markdown", |
|
|
315 |
"id": "62af783b-d901-479d-bf3f-512a897fceaa", |
|
|
316 |
"metadata": {}, |
|
|
317 |
"source": [ |
|
|
318 |
"LogisticRegression" |
|
|
319 |
] |
|
|
320 |
}, |
|
|
321 |
{ |
|
|
322 |
"cell_type": "code", |
|
|
323 |
"execution_count": null, |
|
|
324 |
"id": "69152bd3-c30b-46b4-bf8e-32dbcd33e163", |
|
|
325 |
"metadata": {}, |
|
|
326 |
"outputs": [ |
|
|
327 |
{ |
|
|
328 |
"name": "stdout", |
|
|
329 |
"output_type": "stream", |
|
|
330 |
"text": [ |
|
|
331 |
"0.7817589576547231\n", |
|
|
332 |
"0.7532467532467533\n" |
|
|
333 |
] |
|
|
334 |
}, |
|
|
335 |
{ |
|
|
336 |
"name": "stderr", |
|
|
337 |
"output_type": "stream", |
|
|
338 |
"text": [ |
|
|
339 |
"c:\\Users\\Dell\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\sklearn\\linear_model\\_logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status=1):\n", |
|
|
340 |
"STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", |
|
|
341 |
"\n", |
|
|
342 |
"Increase the number of iterations (max_iter) or scale the data as shown in:\n", |
|
|
343 |
" https://scikit-learn.org/stable/modules/preprocessing.html\n", |
|
|
344 |
"Please also refer to the documentation for alternative solver options:\n", |
|
|
345 |
" https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", |
|
|
346 |
" n_iter_i = _check_optimize_result(\n" |
|
|
347 |
] |
|
|
348 |
} |
|
|
349 |
], |
|
|
350 |
"source": [ |
|
|
351 |
"# fitting data to model\n", |
|
|
352 |
"\n", |
|
|
353 |
"from sklearn.linear_model import LogisticRegression\n", |
|
|
354 |
"\n", |
|
|
355 |
"log_reg = LogisticRegression()\n", |
|
|
356 |
"log_reg.fit(A_training, B_training)\n", |
|
|
357 |
"B_pred = log_reg.predict(A_testing)\n", |
|
|
358 |
"# accuracy score\n", |
|
|
359 |
"\n", |
|
|
360 |
"from sklearn.metrics import accuracy_score, confusion_matrix, classification_report\n", |
|
|
361 |
"\n", |
|
|
362 |
"print(accuracy_score(B_training, log_reg.predict(A_training)))\n", |
|
|
363 |
"\n", |
|
|
364 |
"log_reg_acc = accuracy_score(B_testing, log_reg.predict(A_testing))\n", |
|
|
365 |
"print(log_reg_acc)" |
|
|
366 |
] |
|
|
367 |
}, |
|
|
368 |
{ |
|
|
369 |
"cell_type": "markdown", |
|
|
370 |
"id": "90967102-86d1-4939-9113-4d06ce5bb054", |
|
|
371 |
"metadata": {}, |
|
|
372 |
"source": [ |
|
|
373 |
"K Neighbors Classifier (KNN)\n" |
|
|
374 |
] |
|
|
375 |
}, |
|
|
376 |
{ |
|
|
377 |
"cell_type": "code", |
|
|
378 |
"execution_count": null, |
|
|
379 |
"id": "2092a5bc-4602-4aa6-adb3-34ee677f8134", |
|
|
380 |
"metadata": {}, |
|
|
381 |
"outputs": [ |
|
|
382 |
{ |
|
|
383 |
"name": "stdout", |
|
|
384 |
"output_type": "stream", |
|
|
385 |
"text": [ |
|
|
386 |
"0.7980456026058632\n", |
|
|
387 |
"0.7142857142857143\n" |
|
|
388 |
] |
|
|
389 |
} |
|
|
390 |
], |
|
|
391 |
"source": [ |
|
|
392 |
"from sklearn.neighbors import KNeighborsClassifier\n", |
|
|
393 |
"\n", |
|
|
394 |
"knn = KNeighborsClassifier()\n", |
|
|
395 |
"knn.fit(A_training, B_training)\n", |
|
|
396 |
"# model predictions \n", |
|
|
397 |
"\n", |
|
|
398 |
"B_pred = knn.predict(A_testing)\n", |
|
|
399 |
"# accuracy score\n", |
|
|
400 |
"\n", |
|
|
401 |
"print(accuracy_score(B_training, knn.predict(A_training)))\n", |
|
|
402 |
"\n", |
|
|
403 |
"knn_acc = accuracy_score(B_testing, knn.predict(A_testing))\n", |
|
|
404 |
"print(knn_acc)" |
|
|
405 |
] |
|
|
406 |
}, |
|
|
407 |
{ |
|
|
408 |
"cell_type": "markdown", |
|
|
409 |
"id": "da68f26d-4291-4076-bf2c-f20dd524c6e7", |
|
|
410 |
"metadata": {}, |
|
|
411 |
"source": [ |
|
|
412 |
"Support Vector Machine (SVM)" |
|
|
413 |
] |
|
|
414 |
}, |
|
|
415 |
{ |
|
|
416 |
"cell_type": "code", |
|
|
417 |
"execution_count": null, |
|
|
418 |
"id": "a27c4a3c-15e7-492d-88a6-526ddfc968cd", |
|
|
419 |
"metadata": {}, |
|
|
420 |
"outputs": [ |
|
|
421 |
{ |
|
|
422 |
"data": { |
|
|
423 |
"text/plain": [ |
|
|
424 |
"{'C': 1, 'gamma': 0.0001}" |
|
|
425 |
] |
|
|
426 |
}, |
|
|
427 |
"execution_count": 8, |
|
|
428 |
"metadata": {}, |
|
|
429 |
"output_type": "execute_result" |
|
|
430 |
} |
|
|
431 |
], |
|
|
432 |
"source": [ |
|
|
433 |
"from sklearn.svm import SVC\n", |
|
|
434 |
"from sklearn.model_selection import GridSearchCV\n", |
|
|
435 |
"\n", |
|
|
436 |
"svc = SVC(probability=True)\n", |
|
|
437 |
"parameters = {\n", |
|
|
438 |
" 'gamma' : [0.0001, 0.001, 0.01, 0.1],\n", |
|
|
439 |
" 'C' : [0.01, 0.05, 0.5, 0.1, 1, 10, 15, 20]\n", |
|
|
440 |
"}\n", |
|
|
441 |
"\n", |
|
|
442 |
"grid_search = GridSearchCV(svc, parameters)\n", |
|
|
443 |
"grid_search.fit(A_training, B_training)\n", |
|
|
444 |
"# best parameters\n", |
|
|
445 |
"\n", |
|
|
446 |
"grid_search.best_params_\n", |
|
|
447 |
"\n" |
|
|
448 |
] |
|
|
449 |
}, |
|
|
450 |
{ |
|
|
451 |
"cell_type": "code", |
|
|
452 |
"execution_count": null, |
|
|
453 |
"id": "d8da6a6f-eba3-4a66-b61f-04a58313de41", |
|
|
454 |
"metadata": {}, |
|
|
455 |
"outputs": [ |
|
|
456 |
{ |
|
|
457 |
"data": { |
|
|
458 |
"text/plain": [ |
|
|
459 |
"0.7557643609222977" |
|
|
460 |
] |
|
|
461 |
}, |
|
|
462 |
"execution_count": 9, |
|
|
463 |
"metadata": {}, |
|
|
464 |
"output_type": "execute_result" |
|
|
465 |
} |
|
|
466 |
], |
|
|
467 |
"source": [ |
|
|
468 |
"# best score \n", |
|
|
469 |
"\n", |
|
|
470 |
"grid_search.best_score_" |
|
|
471 |
] |
|
|
472 |
}, |
|
|
473 |
{ |
|
|
474 |
"cell_type": "code", |
|
|
475 |
"execution_count": null, |
|
|
476 |
"id": "0627d35c-f004-499b-be77-0fe0380aa002", |
|
|
477 |
"metadata": {}, |
|
|
478 |
"outputs": [ |
|
|
479 |
{ |
|
|
480 |
"name": "stdout", |
|
|
481 |
"output_type": "stream", |
|
|
482 |
"text": [ |
|
|
483 |
"1.0\n", |
|
|
484 |
"0.6428571428571429\n", |
|
|
485 |
" precision recall f1-score support\n", |
|
|
486 |
"\n", |
|
|
487 |
" 0 0.66 0.93 0.77 100\n", |
|
|
488 |
" 1 0.46 0.11 0.18 54\n", |
|
|
489 |
"\n", |
|
|
490 |
" accuracy 0.64 154\n", |
|
|
491 |
" macro avg 0.56 0.52 0.48 154\n", |
|
|
492 |
"weighted avg 0.59 0.64 0.56 154\n", |
|
|
493 |
"\n" |
|
|
494 |
] |
|
|
495 |
} |
|
|
496 |
], |
|
|
497 |
"source": [ |
|
|
498 |
"svc = SVC(C = 10, gamma = 0.01, probability=True)\n", |
|
|
499 |
"svc.fit(A_training, B_training)\n", |
|
|
500 |
"# model predictions \n", |
|
|
501 |
"\n", |
|
|
502 |
"B_pred = svc.predict(A_testing)\n", |
|
|
503 |
"# accuracy score\n", |
|
|
504 |
"\n", |
|
|
505 |
"print(accuracy_score(B_training, svc.predict(A_training)))\n", |
|
|
506 |
"\n", |
|
|
507 |
"svc_acc = accuracy_score(B_testing, svc.predict(A_testing))\n", |
|
|
508 |
"print(svc_acc)\n", |
|
|
509 |
"# classification report\n", |
|
|
510 |
"\n", |
|
|
511 |
"print(classification_report(B_testing, B_pred))" |
|
|
512 |
] |
|
|
513 |
}, |
|
|
514 |
{ |
|
|
515 |
"cell_type": "markdown", |
|
|
516 |
"id": "e4b77944-3ceb-4b80-a738-e8e5a99e009d", |
|
|
517 |
"metadata": {}, |
|
|
518 |
"source": [ |
|
|
519 |
"DECISION TREE" |
|
|
520 |
] |
|
|
521 |
}, |
|
|
522 |
{ |
|
|
523 |
"cell_type": "code", |
|
|
524 |
"execution_count": null, |
|
|
525 |
"id": "fe80f32d-ba91-4297-a9d7-6232a48b434c", |
|
|
526 |
"metadata": {}, |
|
|
527 |
"outputs": [ |
|
|
528 |
{ |
|
|
529 |
"name": "stdout", |
|
|
530 |
"output_type": "stream", |
|
|
531 |
"text": [ |
|
|
532 |
"Fitting 5 folds for each of 8640 candidates, totalling 43200 fits\n" |
|
|
533 |
] |
|
|
534 |
}, |
|
|
535 |
{ |
|
|
536 |
"data": { |
|
|
537 |
"text/html": [ |
|
|
538 |
"<style>#sk-container-id-1 {color: black;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>GridSearchCV(cv=5, estimator=DecisionTreeClassifier(), n_jobs=-1,\n", |
|
|
539 |
" param_grid={'criterion': ['gini', 'entropy'],\n", |
|
|
540 |
" 'max_depth': range(2, 32),\n", |
|
|
541 |
" 'min_samples_leaf': range(1, 10),\n", |
|
|
542 |
" 'min_samples_split': range(2, 10),\n", |
|
|
543 |
" 'splitter': ['best', 'random']},\n", |
|
|
544 |
" verbose=1)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" ><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">GridSearchCV</label><div class=\"sk-toggleable__content\"><pre>GridSearchCV(cv=5, estimator=DecisionTreeClassifier(), n_jobs=-1,\n", |
|
|
545 |
" param_grid={'criterion': ['gini', 'entropy'],\n", |
|
|
546 |
" 'max_depth': range(2, 32),\n", |
|
|
547 |
" 'min_samples_leaf': range(1, 10),\n", |
|
|
548 |
" 'min_samples_split': range(2, 10),\n", |
|
|
549 |
" 'splitter': ['best', 'random']},\n", |
|
|
550 |
" verbose=1)</pre></div></div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" ><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">estimator: DecisionTreeClassifier</label><div class=\"sk-toggleable__content\"><pre>DecisionTreeClassifier()</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" ><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">DecisionTreeClassifier</label><div class=\"sk-toggleable__content\"><pre>DecisionTreeClassifier()</pre></div></div></div></div></div></div></div></div></div></div>" |
|
|
551 |
], |
|
|
552 |
"text/plain": [ |
|
|
553 |
"GridSearchCV(cv=5, estimator=DecisionTreeClassifier(), n_jobs=-1,\n", |
|
|
554 |
" param_grid={'criterion': ['gini', 'entropy'],\n", |
|
|
555 |
" 'max_depth': range(2, 32),\n", |
|
|
556 |
" 'min_samples_leaf': range(1, 10),\n", |
|
|
557 |
" 'min_samples_split': range(2, 10),\n", |
|
|
558 |
" 'splitter': ['best', 'random']},\n", |
|
|
559 |
" verbose=1)" |
|
|
560 |
] |
|
|
561 |
}, |
|
|
562 |
"execution_count": 11, |
|
|
563 |
"metadata": {}, |
|
|
564 |
"output_type": "execute_result" |
|
|
565 |
} |
|
|
566 |
], |
|
|
567 |
"source": [ |
|
|
568 |
"from sklearn.tree import DecisionTreeClassifier\n", |
|
|
569 |
"\n", |
|
|
570 |
"dtc = DecisionTreeClassifier()\n", |
|
|
571 |
"\n", |
|
|
572 |
"parameters = {\n", |
|
|
573 |
" 'criterion' : ['gini', 'entropy'],\n", |
|
|
574 |
" 'max_depth' : range(2, 32, 1),\n", |
|
|
575 |
" 'min_samples_leaf' : range(1, 10, 1),\n", |
|
|
576 |
" 'min_samples_split' : range(2, 10, 1),\n", |
|
|
577 |
" 'splitter' : ['best', 'random']\n", |
|
|
578 |
"}\n", |
|
|
579 |
"\n", |
|
|
580 |
"grid_search_dt = GridSearchCV(dtc, parameters, cv = 5, n_jobs = -1, verbose = 1)\n", |
|
|
581 |
"grid_search_dt.fit(A_training, B_training)" |
|
|
582 |
] |
|
|
583 |
}, |
|
|
584 |
{ |
|
|
585 |
"cell_type": "code", |
|
|
586 |
"execution_count": null, |
|
|
587 |
"id": "3500946f-0e9a-4d31-b076-35c851e1ca69", |
|
|
588 |
"metadata": {}, |
|
|
589 |
"outputs": [ |
|
|
590 |
{ |
|
|
591 |
"data": { |
|
|
592 |
"text/html": [ |
|
|
593 |
"<style>#sk-container-id-2 {color: black;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>DecisionTreeClassifier(criterion='entropy', max_depth=19, min_samples_leaf=4,\n", |
|
|
594 |
" min_samples_split=6, splitter='random')</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" checked><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">DecisionTreeClassifier</label><div class=\"sk-toggleable__content\"><pre>DecisionTreeClassifier(criterion='entropy', max_depth=19, min_samples_leaf=4,\n", |
|
|
595 |
" min_samples_split=6, splitter='random')</pre></div></div></div></div></div>" |
|
|
596 |
], |
|
|
597 |
"text/plain": [ |
|
|
598 |
"DecisionTreeClassifier(criterion='entropy', max_depth=19, min_samples_leaf=4,\n", |
|
|
599 |
" min_samples_split=6, splitter='random')" |
|
|
600 |
] |
|
|
601 |
}, |
|
|
602 |
"execution_count": 12, |
|
|
603 |
"metadata": {}, |
|
|
604 |
"output_type": "execute_result" |
|
|
605 |
} |
|
|
606 |
], |
|
|
607 |
"source": [ |
|
|
608 |
"# best score\n", |
|
|
609 |
"\n", |
|
|
610 |
"grid_search_dt.best_score_\n", |
|
|
611 |
"dtc = DecisionTreeClassifier(criterion= 'entropy', max_depth= 19, min_samples_leaf= 4, min_samples_split= 6, splitter= 'random')\n", |
|
|
612 |
"dtc.fit(A_training, B_training)" |
|
|
613 |
] |
|
|
614 |
}, |
|
|
615 |
{ |
|
|
616 |
"cell_type": "code", |
|
|
617 |
"execution_count": null, |
|
|
618 |
"id": "73fa053a-be12-46d6-9315-fb8d5d557b7c", |
|
|
619 |
"metadata": {}, |
|
|
620 |
"outputs": [ |
|
|
621 |
{ |
|
|
622 |
"name": "stdout", |
|
|
623 |
"output_type": "stream", |
|
|
624 |
"text": [ |
|
|
625 |
"0.8224755700325733\n", |
|
|
626 |
"0.6883116883116883\n" |
|
|
627 |
] |
|
|
628 |
} |
|
|
629 |
], |
|
|
630 |
"source": [ |
|
|
631 |
"B_pred = dtc.predict(A_testing)\n", |
|
|
632 |
"# accuracy score\n", |
|
|
633 |
"\n", |
|
|
634 |
"print(accuracy_score(B_training, dtc.predict(A_training)))\n", |
|
|
635 |
"\n", |
|
|
636 |
"dtc_acc = accuracy_score(B_testing, dtc.predict(A_testing))\n", |
|
|
637 |
"print(dtc_acc)" |
|
|
638 |
] |
|
|
639 |
}, |
|
|
640 |
{ |
|
|
641 |
"cell_type": "code", |
|
|
642 |
"execution_count": null, |
|
|
643 |
"id": "f7f0b47c-f612-4fb1-b06f-9c074da06bb7", |
|
|
644 |
"metadata": {}, |
|
|
645 |
"outputs": [ |
|
|
646 |
{ |
|
|
647 |
"name": "stdout", |
|
|
648 |
"output_type": "stream", |
|
|
649 |
"text": [ |
|
|
650 |
" precision recall f1-score support\n", |
|
|
651 |
"\n", |
|
|
652 |
" 0 0.74 0.80 0.77 100\n", |
|
|
653 |
" 1 0.57 0.48 0.52 54\n", |
|
|
654 |
"\n", |
|
|
655 |
" accuracy 0.69 154\n", |
|
|
656 |
" macro avg 0.65 0.64 0.64 154\n", |
|
|
657 |
"weighted avg 0.68 0.69 0.68 154\n", |
|
|
658 |
"\n" |
|
|
659 |
] |
|
|
660 |
} |
|
|
661 |
], |
|
|
662 |
"source": [ |
|
|
663 |
"# classification report\n", |
|
|
664 |
"\n", |
|
|
665 |
"print(classification_report(B_testing, B_pred))" |
|
|
666 |
] |
|
|
667 |
}, |
|
|
668 |
{ |
|
|
669 |
"cell_type": "code", |
|
|
670 |
"execution_count": null, |
|
|
671 |
"id": "55fde2ec-b707-47d5-8556-6b461a71f5dd", |
|
|
672 |
"metadata": {}, |
|
|
673 |
"outputs": [ |
|
|
674 |
{ |
|
|
675 |
"data": { |
|
|
676 |
"text/html": [ |
|
|
677 |
"<div>\n", |
|
|
678 |
"<style scoped>\n", |
|
|
679 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
680 |
" vertical-align: middle;\n", |
|
|
681 |
" }\n", |
|
|
682 |
"\n", |
|
|
683 |
" .dataframe tbody tr th {\n", |
|
|
684 |
" vertical-align: top;\n", |
|
|
685 |
" }\n", |
|
|
686 |
"\n", |
|
|
687 |
" .dataframe thead th {\n", |
|
|
688 |
" text-align: right;\n", |
|
|
689 |
" }\n", |
|
|
690 |
"</style>\n", |
|
|
691 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
692 |
" <thead>\n", |
|
|
693 |
" <tr style=\"text-align: right;\">\n", |
|
|
694 |
" <th></th>\n", |
|
|
695 |
" <th>Model</th>\n", |
|
|
696 |
" <th>Score</th>\n", |
|
|
697 |
" </tr>\n", |
|
|
698 |
" </thead>\n", |
|
|
699 |
" <tbody>\n", |
|
|
700 |
" <tr>\n", |
|
|
701 |
" <th>0</th>\n", |
|
|
702 |
" <td>Logistic Regression</td>\n", |
|
|
703 |
" <td>75.32</td>\n", |
|
|
704 |
" </tr>\n", |
|
|
705 |
" <tr>\n", |
|
|
706 |
" <th>1</th>\n", |
|
|
707 |
" <td>KNN</td>\n", |
|
|
708 |
" <td>71.43</td>\n", |
|
|
709 |
" </tr>\n", |
|
|
710 |
" <tr>\n", |
|
|
711 |
" <th>3</th>\n", |
|
|
712 |
" <td>Decision Tree Classifier</td>\n", |
|
|
713 |
" <td>68.83</td>\n", |
|
|
714 |
" </tr>\n", |
|
|
715 |
" <tr>\n", |
|
|
716 |
" <th>2</th>\n", |
|
|
717 |
" <td>SVM</td>\n", |
|
|
718 |
" <td>64.29</td>\n", |
|
|
719 |
" </tr>\n", |
|
|
720 |
" </tbody>\n", |
|
|
721 |
"</table>\n", |
|
|
722 |
"</div>" |
|
|
723 |
], |
|
|
724 |
"text/plain": [ |
|
|
725 |
" Model Score\n", |
|
|
726 |
"0 Logistic Regression 75.32\n", |
|
|
727 |
"1 KNN 71.43\n", |
|
|
728 |
"3 Decision Tree Classifier 68.83\n", |
|
|
729 |
"2 SVM 64.29" |
|
|
730 |
] |
|
|
731 |
}, |
|
|
732 |
"execution_count": 15, |
|
|
733 |
"metadata": {}, |
|
|
734 |
"output_type": "execute_result" |
|
|
735 |
} |
|
|
736 |
], |
|
|
737 |
"source": [ |
|
|
738 |
"models = pd.DataFrame({\n", |
|
|
739 |
" 'Model': ['Logistic Regression', 'KNN', 'SVM', 'Decision Tree Classifier'],\n", |
|
|
740 |
" 'Score': [100*round(log_reg_acc,4), 100*round(knn_acc,4), 100*round(svc_acc,4), 100*round(dtc_acc,4)]\n", |
|
|
741 |
"})\n", |
|
|
742 |
"models.sort_values(by = 'Score', ascending = False)" |
|
|
743 |
] |
|
|
744 |
}, |
|
|
745 |
{ |
|
|
746 |
"cell_type": "code", |
|
|
747 |
"execution_count": null, |
|
|
748 |
"id": "24684911-cbad-474c-8743-fcf517c7e01c", |
|
|
749 |
"metadata": {}, |
|
|
750 |
"outputs": [], |
|
|
751 |
"source": [] |
|
|
752 |
}, |
|
|
753 |
{ |
|
|
754 |
"cell_type": "code", |
|
|
755 |
"execution_count": null, |
|
|
756 |
"id": "41401323-1a4c-4091-8bc2-7797137c0f65", |
|
|
757 |
"metadata": {}, |
|
|
758 |
"outputs": [], |
|
|
759 |
"source": [ |
|
|
760 |
"import pickle\n", |
|
|
761 |
"filename = 'C:/Users/Dell/OneDrive/Desktop/DM PROJECT/diabetes_model.pkl'\n", |
|
|
762 |
"pickle.dump(log_reg, open(filename, 'wb'))" |
|
|
763 |
] |
|
|
764 |
}, |
|
|
765 |
{ |
|
|
766 |
"cell_type": "code", |
|
|
767 |
"execution_count": null, |
|
|
768 |
"id": "b1b7f82b-c26e-437a-8a01-c2bfd34e7268", |
|
|
769 |
"metadata": {}, |
|
|
770 |
"outputs": [], |
|
|
771 |
"source": [ |
|
|
772 |
"'''import pickle\n", |
|
|
773 |
"def load_model(path):\n", |
|
|
774 |
" with open(path, 'rb') as file:\n", |
|
|
775 |
" model = pickle.load(file)\n", |
|
|
776 |
"diabetes_model = load_model(r'C:\\Users\\DELL\\Desktop\\app\\diabetes_model.pkl')\n", |
|
|
777 |
"def predict(inputs):\n", |
|
|
778 |
" return diabetes_model.predict(inputs)'''" |
|
|
779 |
] |
|
|
780 |
}, |
|
|
781 |
{ |
|
|
782 |
"cell_type": "code", |
|
|
783 |
"execution_count": null, |
|
|
784 |
"id": "2ef4b8e2-d3d0-4a14-b512-c618d848c8d8", |
|
|
785 |
"metadata": {}, |
|
|
786 |
"outputs": [], |
|
|
787 |
"source": [] |
|
|
788 |
} |
|
|
789 |
], |
|
|
790 |
"metadata": { |
|
|
791 |
"kernelspec": { |
|
|
792 |
"display_name": "Python 3", |
|
|
793 |
"language": "python", |
|
|
794 |
"name": "python3" |
|
|
795 |
}, |
|
|
796 |
"language_info": { |
|
|
797 |
"codemirror_mode": { |
|
|
798 |
"name": "ipython", |
|
|
799 |
"version": 3 |
|
|
800 |
}, |
|
|
801 |
"file_extension": ".py", |
|
|
802 |
"mimetype": "text/x-python", |
|
|
803 |
"name": "python", |
|
|
804 |
"nbconvert_exporter": "python", |
|
|
805 |
"pygments_lexer": "ipython3", |
|
|
806 |
"version": "3.12.3" |
|
|
807 |
} |
|
|
808 |
}, |
|
|
809 |
"nbformat": 4, |
|
|
810 |
"nbformat_minor": 5 |
|
|
811 |
} |