|
a |
|
b/research_paper_code/src/gemma.R |
|
|
1 |
# SUMMARY |
|
|
2 |
# ------- |
|
|
3 |
# This file defines some functions that I use for QTL mapping in |
|
|
4 |
# GEMMA. Here is an overview of the functions defined in this file: |
|
|
5 |
# |
|
|
6 |
# write.gemma.pheno(file,phenotype,pheno) |
|
|
7 |
# write.gemma.covariates(file,covariates,pheno) |
|
|
8 |
# write.gemma.map(file,map) |
|
|
9 |
# write.gemma.geno(file,geno,map) |
|
|
10 |
# read.gemma.assoc(file) |
|
|
11 |
# run.gemma(phenotype,covariates,pheno,geno,map,gemmadir,gemma.exe, |
|
|
12 |
# chromosomes) |
|
|
13 |
# run.gemma.norr(phenotype,covariates,pheno,geno,map,gemmadir,gemma.exe) |
|
|
14 |
# |
|
|
15 |
# FUNCTION DEFINITIONS |
|
|
16 |
# ---------------------------------------------------------------------- |
|
|
17 |
# Write the phenotype data to a file in the format used by GEMMA. Each |
|
|
18 |
# line of the file contains one phenotype observation. |
|
|
19 |
write.gemma.pheno <- function (file, phenotype, pheno) { |
|
|
20 |
y <- pheno[phenotype] |
|
|
21 |
if (is.numeric(y)) |
|
|
22 |
y <- round(y,digits = 6) |
|
|
23 |
write.table(y,file,quote = FALSE,row.names = FALSE,col.names = FALSE) |
|
|
24 |
} |
|
|
25 |
|
|
|
26 |
# ---------------------------------------------------------------------- |
|
|
27 |
# Write the covariate data to a file in the format used by GEMMA. Each |
|
|
28 |
# line corresponds to a sample. We must include an additional |
|
|
29 |
# covariate for the intercept. |
|
|
30 |
write.gemma.covariates <- function (file, covariates, pheno) { |
|
|
31 |
if (is.null(covariates)) { |
|
|
32 |
write.table(data.frame(rep(1,nrow(pheno))),file,sep = " ", |
|
|
33 |
quote = FALSE,row.names = FALSE,col.names = FALSE) |
|
|
34 |
} else { |
|
|
35 |
write.table(cbind(1,data.frame(lapply(pheno[covariates],function (x) { |
|
|
36 |
if (is.numeric(x)) |
|
|
37 |
round(x,digits=6) |
|
|
38 |
else |
|
|
39 |
x |
|
|
40 |
}))),file,sep = " ",quote = FALSE,row.names = FALSE,col.names = FALSE) |
|
|
41 |
} |
|
|
42 |
} |
|
|
43 |
|
|
|
44 |
# ---------------------------------------------------------------------- |
|
|
45 |
# Write the SNP information to a space-delimited text file in the |
|
|
46 |
# format used by GEMMA. This file contains one line per SNP, with |
|
|
47 |
# three columns: (1) SNP label, (2) base-pair position, (3) |
|
|
48 |
# chromosome. |
|
|
49 |
write.gemma.map <- function (file, map) |
|
|
50 |
write.table(map[c("id","pos","chr")],file,sep = " ",quote = FALSE, |
|
|
51 |
row.names = FALSE,col.names = FALSE) |
|
|
52 |
|
|
|
53 |
# ---------------------------------------------------------------------- |
|
|
54 |
# Store the mean genotypes as a space-delimited text file in the |
|
|
55 |
# format used by GEMMA, in which we have one row per SNP, and one |
|
|
56 |
# column per sample. The first three column give the SNP label, and |
|
|
57 |
# the two alleles. |
|
|
58 |
write.gemma.geno <- function (file, geno, map) { |
|
|
59 |
geno <- t(geno) |
|
|
60 |
geno <- as.data.frame(geno,check.names = FALSE) |
|
|
61 |
geno <- round(geno,digits = 3) |
|
|
62 |
geno <- cbind(map[c("id","ref","alt")],geno) |
|
|
63 |
write.table(geno,file,sep = " ",quote = FALSE,row.names = FALSE, |
|
|
64 |
col.names = FALSE) |
|
|
65 |
} |
|
|
66 |
|
|
|
67 |
# ---------------------------------------------------------------------- |
|
|
68 |
# Reads in the association results from GEMMA, and returns a data |
|
|
69 |
# frame containing three columns: chromosome number ("chr"); base-pair |
|
|
70 |
# position ("pos"); and the base-10 logarithm of the p-value ("log10p"). |
|
|
71 |
read.gemma.assoc <- function (file) { |
|
|
72 |
gwscan <- read.table(file,sep = "\t",header = TRUE,check.names = FALSE, |
|
|
73 |
quote = "",stringsAsFactors = FALSE) |
|
|
74 |
rownames(gwscan) <- gwscan$rs |
|
|
75 |
gwscan <- gwscan[c("chr","ps","p_lrt")] |
|
|
76 |
gwscan <- transform(gwscan,p_lrt = -log10(p_lrt)) |
|
|
77 |
colnames(gwscan) <- c("chr","pos","log10p") |
|
|
78 |
return(gwscan) |
|
|
79 |
} |
|
|
80 |
|
|
|
81 |
# ---------------------------------------------------------------------- |
|
|
82 |
# This function maps QTLs using GEMMA, writing all the files required |
|
|
83 |
# by GEMMA to the directory specified by "gemmadir". The QTLs are |
|
|
84 |
# mapped separately for each chromosome, in which the kinship matrix |
|
|
85 |
# is computed using all markers except the markers on the given |
|
|
86 |
# chromosome. |
|
|
87 |
run.gemma <- function (phenotype, covariates, pheno, geno, map, |
|
|
88 |
gemmadir, gemma.exe, chromosomes = NULL) { |
|
|
89 |
|
|
|
90 |
# Give summary of analysis. |
|
|
91 |
cat("Mapping QTLs for",phenotype,"in",nrow(pheno),"mice, ") |
|
|
92 |
if (!is.null(covariates)) { |
|
|
93 |
cat("controlling for ",paste(covariates,collapse=" + "),".\n",sep="") |
|
|
94 |
} else { |
|
|
95 |
cat("with no covariates included.\n") |
|
|
96 |
} |
|
|
97 |
|
|
|
98 |
# Write the phenotype and covariate data to separate files. |
|
|
99 |
cat("Writing phenotype and covariate data to file.\n") |
|
|
100 |
write.gemma.pheno(paste0(gemmadir,"/pheno.txt"),phenotype,pheno) |
|
|
101 |
write.gemma.covariates(paste0(gemmadir,"/covariates.txt"),covariates,pheno) |
|
|
102 |
|
|
|
103 |
# We will map QTLs on these chromosomes. |
|
|
104 |
if (is.null(chromosomes)) |
|
|
105 |
chromosomes <- levels(map$chr) |
|
|
106 |
|
|
|
107 |
# Repeat for each chromosome. |
|
|
108 |
scans <- vector("list",length(chromosomes)) |
|
|
109 |
names(scans) <- chromosomes |
|
|
110 |
|
|
|
111 |
for (chr in chromosomes) { |
|
|
112 |
# Compute the kinship matrix using all markers that are *not* on |
|
|
113 |
# the chromosome. |
|
|
114 |
cat("Mapping QTLs on chromosome ",chr,".\n",sep="") |
|
|
115 |
cat(" * Computing kinship matrix.\n") |
|
|
116 |
markers <- which(map$chr != chr) |
|
|
117 |
K <- tcrossprod(center.columns(geno[,markers])) / length(markers) |
|
|
118 |
|
|
|
119 |
# Save the kinship matrix to a text file. |
|
|
120 |
cat(" * Writing kinship matrix to file.\n") |
|
|
121 |
write.table(round(K,digits = 6),paste0(gemmadir,"/kinship.txt"),sep = " ", |
|
|
122 |
quote = FALSE,row.names = FALSE,col.names = FALSE) |
|
|
123 |
|
|
|
124 |
# Write out the mean genotypes and map information for all markers |
|
|
125 |
# on the chromosome. |
|
|
126 |
markers <- which(map$chr == chr) |
|
|
127 |
cat(" * Writing to file genotypes for ",length(markers), |
|
|
128 |
" markers on chromosome ",chr,".\n",sep="") |
|
|
129 |
write.gemma.geno(paste0(gemmadir,"/geno.txt"),geno[,markers],map[markers,]) |
|
|
130 |
cat(" * Writing genetic map for",length(markers), |
|
|
131 |
"markers on chromosome",chr,"to file.\n") |
|
|
132 |
write.gemma.map(paste0(gemmadir,"/map.txt"),map[markers,]) |
|
|
133 |
|
|
|
134 |
|
|
|
135 |
# Set the local directory to the location of the GEMMA files. |
|
|
136 |
srcdir <- getwd() |
|
|
137 |
setwd(gemmadir) |
|
|
138 |
|
|
|
139 |
# Now we are finally ready to run GEMMA for all markers on the |
|
|
140 |
# chromosome using the kinship matrix computed using all the |
|
|
141 |
# markers *not* on the chromosome. |
|
|
142 |
cat(" * Computing p-values for ",length(markers), |
|
|
143 |
" markers on chromosome ",chr,".\n",sep="") |
|
|
144 |
|
|
|
145 |
system(paste(gemma.exe,"-g geno.txt -a map.txt -p pheno.txt", |
|
|
146 |
"-c covariates.txt -k kinship.txt -notsnp -lmm 2", |
|
|
147 |
"-lmin 0.01 -lmax 100"), |
|
|
148 |
ignore.stdout = TRUE) |
|
|
149 |
|
|
|
150 |
# Restore the working directory. |
|
|
151 |
setwd(srcdir) |
|
|
152 |
|
|
|
153 |
# Load the results of the GEMMA association analysis. |
|
|
154 |
scans[[chr]] <- |
|
|
155 |
read.gemma.assoc(paste0(gemmadir,"/output/result.assoc.txt")) |
|
|
156 |
} |
|
|
157 |
|
|
|
158 |
|
|
|
159 |
|
|
|
160 |
# Merge the mapping results from all chromosomes into a single table. |
|
|
161 |
gwscan <- do.call(rbind,scans) |
|
|
162 |
rownames(gwscan) <- do.call(c,lapply(scans,rownames)) |
|
|
163 |
class(gwscan) <- c("scanone","data.frame") |
|
|
164 |
|
|
|
165 |
# Return the genome-wide scan. |
|
|
166 |
return(gwscan) |
|
|
167 |
} |
|
|
168 |
|
|
|
169 |
# ---------------------------------------------------------------------- |
|
|
170 |
# This function maps QTLs using GEMMA without the "realized |
|
|
171 |
# relatedness" matrix to account for population structure. |
|
|
172 |
run.gemma.norr <- function (phenotype, covariates, pheno, geno, map, |
|
|
173 |
gemmadir, gemma.exe) { |
|
|
174 |
|
|
|
175 |
|
|
|
176 |
# Give summary of analysis. |
|
|
177 |
cat("Mapping QTLs for",phenotype,"in",nrow(pheno),"mice, ") |
|
|
178 |
if (!is.null(covariates)) { |
|
|
179 |
cat("controlling for ",paste(covariates,collapse=" + "),".\n",sep="") |
|
|
180 |
} else { |
|
|
181 |
cat("with no covariates included.\n") |
|
|
182 |
} |
|
|
183 |
|
|
|
184 |
# Write the phenotype and covariate data to separate files. |
|
|
185 |
cat("Writing phenotype and covariate data to file.\n") |
|
|
186 |
write.gemma.pheno(paste0(gemmadir,"/pheno.txt"),phenotype,pheno) |
|
|
187 |
write.gemma.covariates(paste0(gemmadir,"/covariates.txt"),covariates,pheno) |
|
|
188 |
|
|
|
189 |
# Write out the mean genotypes and map information for all markers. |
|
|
190 |
cat("Writing SNP and genotype data to file.\n") |
|
|
191 |
write.gemma.map(paste0(gemmadir,"/map.txt"),map) |
|
|
192 |
write.gemma.geno(paste0(gemmadir,"/geno.txt"),geno,map) |
|
|
193 |
|
|
|
194 |
# Write out the kinship matrix to file. |
|
|
195 |
cat("Writing identity kinship matrix to file.\n"); |
|
|
196 |
write.table(diag(nrow(pheno)),paste0(gemmadir,"/kinship.txt"), |
|
|
197 |
sep = " ",quote = FALSE,row.names = FALSE, |
|
|
198 |
col.names = FALSE) |
|
|
199 |
# cat("Writing full kinship matrix to file.\n"); |
|
|
200 |
# K <- tcrossprod(center.columns(geno)) / nrow(map) |
|
|
201 |
# write.table(round(K,digits = 6),paste0(gemmadir,"/kinship.txt"), |
|
|
202 |
# sep = " ",quote = FALSE,row.names = FALSE, |
|
|
203 |
# col.names = FALSE) |
|
|
204 |
|
|
|
205 |
# Set the local directory to the location of the GEMMA files. |
|
|
206 |
srcdir <- getwd() |
|
|
207 |
setwd(gemmadir) |
|
|
208 |
# Now we are finally ready to run GEMMA for all markers. |
|
|
209 |
cat("Computing p-values for",nrow(map),"candidate markers.\n") |
|
|
210 |
system(paste(gemma.exe,"-g geno.txt -a map.txt -p pheno.txt", |
|
|
211 |
"-c covariates.txt -k kinship.txt -notsnp -lmm 2", |
|
|
212 |
"-lmin 0.01 -lmax 100"), |
|
|
213 |
ignore.stdout = TRUE) |
|
|
214 |
|
|
|
215 |
# Restore the working directory. |
|
|
216 |
setwd(srcdir) |
|
|
217 |
|
|
|
218 |
# Load the results of the GEMMA association analysis. |
|
|
219 |
gwscan <- read.gemma.assoc(paste0(gemmadir,"/output/result.assoc.txt")) |
|
|
220 |
class(gwscan) <- c("scanone","data.frame") |
|
|
221 |
|
|
|
222 |
# Restore the working directory. |
|
|
223 |
setwd(srcdir) |
|
|
224 |
|
|
|
225 |
# Return the genome-wide scan. |
|
|
226 |
return(gwscan) |
|
|
227 |
} |