Switch to unified view

a b/research_paper_code/notebooks/compare.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 205,
6
   "id": "third-detector",
7
   "metadata": {},
8
   "outputs": [],
9
   "source": [
10
    "nb_snsps = 100\n",
11
    "phenotypes = None\n",
12
    "\n",
13
    "# phenotypes = ['BMD_1_100']"
14
   ]
15
  },
16
  {
17
   "cell_type": "code",
18
   "execution_count": 206,
19
   "id": "streaming-definition",
20
   "metadata": {},
21
   "outputs": [],
22
   "source": [
23
    "import math\n",
24
    "import pandas as pd\n",
25
    "\n",
26
    "if phenotypes is None:\n",
27
    "    # That means all\n",
28
    "    import glob\n",
29
    "\n",
30
    "    csvs_ge = glob.glob('out/ge_*.csv')\n",
31
    "    csvs_lm = glob.glob('out/lm_*.csv')\n",
32
    "    \n",
33
    "    names_ge = [x[7:].split(\".\")[0] for x in csvs_ge]\n",
34
    "    names_lm = [x[7:].split(\".\")[0] for x in csvs_lm]\n",
35
    "    phenotypes = set(names_ge).intersection(names_lm)"
36
   ]
37
  },
38
  {
39
   "cell_type": "code",
40
   "execution_count": 207,
41
   "id": "moderate-eight",
42
   "metadata": {},
43
   "outputs": [
44
    {
45
     "name": "stdout",
46
     "output_type": "stream",
47
     "text": [
48
      "Best variant and it's pvalue for each phenotype\n"
49
     ]
50
    },
51
    {
52
     "data": {
53
      "text/html": [
54
       "<div>\n",
55
       "<style scoped>\n",
56
       "    .dataframe tbody tr th:only-of-type {\n",
57
       "        vertical-align: middle;\n",
58
       "    }\n",
59
       "\n",
60
       "    .dataframe tbody tr th {\n",
61
       "        vertical-align: top;\n",
62
       "    }\n",
63
       "\n",
64
       "    .dataframe thead th {\n",
65
       "        text-align: right;\n",
66
       "    }\n",
67
       "</style>\n",
68
       "<table border=\"1\" class=\"dataframe\">\n",
69
       "  <thead>\n",
70
       "    <tr style=\"text-align: right;\">\n",
71
       "      <th></th>\n",
72
       "      <th>pheno</th>\n",
73
       "      <th>p</th>\n",
74
       "    </tr>\n",
75
       "  </thead>\n",
76
       "  <tbody>\n",
77
       "    <tr>\n",
78
       "      <th>10</th>\n",
79
       "      <td>testisweight_1_79646</td>\n",
80
       "      <td>4.521024e-18</td>\n",
81
       "    </tr>\n",
82
       "    <tr>\n",
83
       "      <th>19</th>\n",
84
       "      <td>abBMD_1_79646</td>\n",
85
       "      <td>1.110221e-14</td>\n",
86
       "    </tr>\n",
87
       "    <tr>\n",
88
       "      <th>27</th>\n",
89
       "      <td>tibia_1_79646</td>\n",
90
       "      <td>1.843551e-08</td>\n",
91
       "    </tr>\n",
92
       "    <tr>\n",
93
       "      <th>0</th>\n",
94
       "      <td>D1TOTDIST10_1_79646</td>\n",
95
       "      <td>5.792651e-08</td>\n",
96
       "    </tr>\n",
97
       "    <tr>\n",
98
       "      <th>37</th>\n",
99
       "      <td>D1ctrtime0to30_1_79646</td>\n",
100
       "      <td>6.901068e-08</td>\n",
101
       "    </tr>\n",
102
       "    <tr>\n",
103
       "      <th>4</th>\n",
104
       "      <td>D2TOTDIST25_1_79646</td>\n",
105
       "      <td>7.173318e-08</td>\n",
106
       "    </tr>\n",
107
       "    <tr>\n",
108
       "      <th>7</th>\n",
109
       "      <td>soleus_1_79646</td>\n",
110
       "      <td>8.342285e-08</td>\n",
111
       "    </tr>\n",
112
       "    <tr>\n",
113
       "      <th>2</th>\n",
114
       "      <td>D2hact0to15_1_79646</td>\n",
115
       "      <td>1.678204e-07</td>\n",
116
       "    </tr>\n",
117
       "    <tr>\n",
118
       "      <th>42</th>\n",
119
       "      <td>D2ctrtime0to15_1_79646</td>\n",
120
       "      <td>1.861225e-07</td>\n",
121
       "    </tr>\n",
122
       "    <tr>\n",
123
       "      <th>34</th>\n",
124
       "      <td>D3TOTDIST15_1_79646</td>\n",
125
       "      <td>3.161540e-07</td>\n",
126
       "    </tr>\n",
127
       "    <tr>\n",
128
       "      <th>13</th>\n",
129
       "      <td>gastroc_1_79646</td>\n",
130
       "      <td>5.044782e-07</td>\n",
131
       "    </tr>\n",
132
       "    <tr>\n",
133
       "      <th>30</th>\n",
134
       "      <td>D3vact0to15_1_79646</td>\n",
135
       "      <td>5.469865e-07</td>\n",
136
       "    </tr>\n",
137
       "    <tr>\n",
138
       "      <th>60</th>\n",
139
       "      <td>EDL_1_79646</td>\n",
140
       "      <td>5.569678e-07</td>\n",
141
       "    </tr>\n",
142
       "    <tr>\n",
143
       "      <th>41</th>\n",
144
       "      <td>D3TOTDIST25_1_79646</td>\n",
145
       "      <td>5.849949e-07</td>\n",
146
       "    </tr>\n",
147
       "    <tr>\n",
148
       "      <th>16</th>\n",
149
       "      <td>D2hact0to30_1_79646</td>\n",
150
       "      <td>5.898484e-07</td>\n",
151
       "    </tr>\n",
152
       "    <tr>\n",
153
       "      <th>58</th>\n",
154
       "      <td>D1totaldist0to15_1_79646</td>\n",
155
       "      <td>7.152997e-07</td>\n",
156
       "    </tr>\n",
157
       "    <tr>\n",
158
       "      <th>43</th>\n",
159
       "      <td>D2TOTDIST5_1_79646</td>\n",
160
       "      <td>8.427636e-07</td>\n",
161
       "    </tr>\n",
162
       "    <tr>\n",
163
       "      <th>51</th>\n",
164
       "      <td>D3totaldist0to30_1_79646</td>\n",
165
       "      <td>9.002542e-07</td>\n",
166
       "    </tr>\n",
167
       "    <tr>\n",
168
       "      <th>59</th>\n",
169
       "      <td>pp12PPIavg_1_79646</td>\n",
170
       "      <td>1.194845e-06</td>\n",
171
       "    </tr>\n",
172
       "    <tr>\n",
173
       "      <th>5</th>\n",
174
       "      <td>D1ctrtime0to15_1_79646</td>\n",
175
       "      <td>1.262349e-06</td>\n",
176
       "    </tr>\n",
177
       "    <tr>\n",
178
       "      <th>66</th>\n",
179
       "      <td>startle_1_79646</td>\n",
180
       "      <td>1.300837e-06</td>\n",
181
       "    </tr>\n",
182
       "    <tr>\n",
183
       "      <th>15</th>\n",
184
       "      <td>TA_1_79646</td>\n",
185
       "      <td>1.374193e-06</td>\n",
186
       "    </tr>\n",
187
       "    <tr>\n",
188
       "      <th>49</th>\n",
189
       "      <td>D3vact0to30_1_79646</td>\n",
190
       "      <td>1.384376e-06</td>\n",
191
       "    </tr>\n",
192
       "    <tr>\n",
193
       "      <th>8</th>\n",
194
       "      <td>D1totaldist0to30_1_79646</td>\n",
195
       "      <td>1.508047e-06</td>\n",
196
       "    </tr>\n",
197
       "    <tr>\n",
198
       "      <th>56</th>\n",
199
       "      <td>D3TOTDIST30_1_79646</td>\n",
200
       "      <td>1.905392e-06</td>\n",
201
       "    </tr>\n",
202
       "    <tr>\n",
203
       "      <th>14</th>\n",
204
       "      <td>AvAltContextD3_1_79646</td>\n",
205
       "      <td>1.946489e-06</td>\n",
206
       "    </tr>\n",
207
       "    <tr>\n",
208
       "      <th>54</th>\n",
209
       "      <td>sacweight_1_79646</td>\n",
210
       "      <td>2.519069e-06</td>\n",
211
       "    </tr>\n",
212
       "    <tr>\n",
213
       "      <th>1</th>\n",
214
       "      <td>D1TOTDIST15_1_79646</td>\n",
215
       "      <td>2.704936e-06</td>\n",
216
       "    </tr>\n",
217
       "    <tr>\n",
218
       "      <th>47</th>\n",
219
       "      <td>D2TOTDIST15_1_79646</td>\n",
220
       "      <td>2.749202e-06</td>\n",
221
       "    </tr>\n",
222
       "    <tr>\n",
223
       "      <th>29</th>\n",
224
       "      <td>D2ctrtime0to30_1_79646</td>\n",
225
       "      <td>2.758986e-06</td>\n",
226
       "    </tr>\n",
227
       "    <tr>\n",
228
       "      <th>61</th>\n",
229
       "      <td>D3ctrtime0to15_1_79646</td>\n",
230
       "      <td>2.861410e-06</td>\n",
231
       "    </tr>\n",
232
       "    <tr>\n",
233
       "      <th>32</th>\n",
234
       "      <td>D3TOTDIST5_1_79646</td>\n",
235
       "      <td>2.992418e-06</td>\n",
236
       "    </tr>\n",
237
       "    <tr>\n",
238
       "      <th>65</th>\n",
239
       "      <td>D2vact0to30_1_79646</td>\n",
240
       "      <td>3.072521e-06</td>\n",
241
       "    </tr>\n",
242
       "    <tr>\n",
243
       "      <th>23</th>\n",
244
       "      <td>D3TOTDIST20_1_79646</td>\n",
245
       "      <td>3.278628e-06</td>\n",
246
       "    </tr>\n",
247
       "    <tr>\n",
248
       "      <th>36</th>\n",
249
       "      <td>D1hact0to15_1_79646</td>\n",
250
       "      <td>3.315070e-06</td>\n",
251
       "    </tr>\n",
252
       "    <tr>\n",
253
       "      <th>38</th>\n",
254
       "      <td>D3ctrtime0to30_1_79646</td>\n",
255
       "      <td>3.331037e-06</td>\n",
256
       "    </tr>\n",
257
       "    <tr>\n",
258
       "      <th>33</th>\n",
259
       "      <td>AvToneD3_1_79646</td>\n",
260
       "      <td>3.555516e-06</td>\n",
261
       "    </tr>\n",
262
       "    <tr>\n",
263
       "      <th>52</th>\n",
264
       "      <td>taillength_1_79646</td>\n",
265
       "      <td>3.605960e-06</td>\n",
266
       "    </tr>\n",
267
       "    <tr>\n",
268
       "      <th>12</th>\n",
269
       "      <td>D2vact0to15_1_79646</td>\n",
270
       "      <td>3.704444e-06</td>\n",
271
       "    </tr>\n",
272
       "    <tr>\n",
273
       "      <th>35</th>\n",
274
       "      <td>bw1_1_79646</td>\n",
275
       "      <td>4.694337e-06</td>\n",
276
       "    </tr>\n",
277
       "    <tr>\n",
278
       "      <th>9</th>\n",
279
       "      <td>PPIavg_1_79646</td>\n",
280
       "      <td>4.943340e-06</td>\n",
281
       "    </tr>\n",
282
       "    <tr>\n",
283
       "      <th>28</th>\n",
284
       "      <td>D2totaldist0to15_1_79646</td>\n",
285
       "      <td>4.998420e-06</td>\n",
286
       "    </tr>\n",
287
       "    <tr>\n",
288
       "      <th>63</th>\n",
289
       "      <td>D3totaldist0to15_1_79646</td>\n",
290
       "      <td>5.237983e-06</td>\n",
291
       "    </tr>\n",
292
       "    <tr>\n",
293
       "      <th>25</th>\n",
294
       "      <td>AvContextD2_1_79646</td>\n",
295
       "      <td>5.414419e-06</td>\n",
296
       "    </tr>\n",
297
       "    <tr>\n",
298
       "      <th>22</th>\n",
299
       "      <td>D1hact0to30_1_79646</td>\n",
300
       "      <td>6.372553e-06</td>\n",
301
       "    </tr>\n",
302
       "    <tr>\n",
303
       "      <th>46</th>\n",
304
       "      <td>plantaris_1_79646</td>\n",
305
       "      <td>6.387974e-06</td>\n",
306
       "    </tr>\n",
307
       "    <tr>\n",
308
       "      <th>57</th>\n",
309
       "      <td>pp6PPIavg_1_79646</td>\n",
310
       "      <td>6.947052e-06</td>\n",
311
       "    </tr>\n",
312
       "    <tr>\n",
313
       "      <th>44</th>\n",
314
       "      <td>D1TOTDIST25_1_79646</td>\n",
315
       "      <td>7.262472e-06</td>\n",
316
       "    </tr>\n",
317
       "    <tr>\n",
318
       "      <th>64</th>\n",
319
       "      <td>D2TOTDIST10_1_79646</td>\n",
320
       "      <td>7.333816e-06</td>\n",
321
       "    </tr>\n",
322
       "    <tr>\n",
323
       "      <th>55</th>\n",
324
       "      <td>D3hact0to30_1_79646</td>\n",
325
       "      <td>7.936938e-06</td>\n",
326
       "    </tr>\n",
327
       "    <tr>\n",
328
       "      <th>31</th>\n",
329
       "      <td>D3hact0to15_1_79646</td>\n",
330
       "      <td>7.968502e-06</td>\n",
331
       "    </tr>\n",
332
       "    <tr>\n",
333
       "      <th>20</th>\n",
334
       "      <td>PreTrainD1_1_79646</td>\n",
335
       "      <td>8.610831e-06</td>\n",
336
       "    </tr>\n",
337
       "    <tr>\n",
338
       "      <th>24</th>\n",
339
       "      <td>AvToneD1_1_79646</td>\n",
340
       "      <td>9.298063e-06</td>\n",
341
       "    </tr>\n",
342
       "    <tr>\n",
343
       "      <th>62</th>\n",
344
       "      <td>pp3PPIavg_1_79646</td>\n",
345
       "      <td>9.343953e-06</td>\n",
346
       "    </tr>\n",
347
       "    <tr>\n",
348
       "      <th>53</th>\n",
349
       "      <td>PPIweight_1_79646</td>\n",
350
       "      <td>9.463255e-06</td>\n",
351
       "    </tr>\n",
352
       "    <tr>\n",
353
       "      <th>45</th>\n",
354
       "      <td>D1vact0to30_1_79646</td>\n",
355
       "      <td>1.020309e-05</td>\n",
356
       "    </tr>\n",
357
       "    <tr>\n",
358
       "      <th>48</th>\n",
359
       "      <td>D2totaldist0to30_1_79646</td>\n",
360
       "      <td>1.022280e-05</td>\n",
361
       "    </tr>\n",
362
       "    <tr>\n",
363
       "      <th>11</th>\n",
364
       "      <td>D1vact0to15_1_79646</td>\n",
365
       "      <td>1.196616e-05</td>\n",
366
       "    </tr>\n",
367
       "    <tr>\n",
368
       "      <th>39</th>\n",
369
       "      <td>D3TOTDIST10_1_79646</td>\n",
370
       "      <td>1.212057e-05</td>\n",
371
       "    </tr>\n",
372
       "    <tr>\n",
373
       "      <th>3</th>\n",
374
       "      <td>D2TOTDIST30_1_79646</td>\n",
375
       "      <td>1.515221e-05</td>\n",
376
       "    </tr>\n",
377
       "    <tr>\n",
378
       "      <th>50</th>\n",
379
       "      <td>fastglucose_1_79646</td>\n",
380
       "      <td>1.578499e-05</td>\n",
381
       "    </tr>\n",
382
       "    <tr>\n",
383
       "      <th>21</th>\n",
384
       "      <td>D2TOTDIST20_1_79646</td>\n",
385
       "      <td>1.616208e-05</td>\n",
386
       "    </tr>\n",
387
       "    <tr>\n",
388
       "      <th>6</th>\n",
389
       "      <td>D1TOTDIST5_1_79646</td>\n",
390
       "      <td>1.629690e-05</td>\n",
391
       "    </tr>\n",
392
       "    <tr>\n",
393
       "      <th>18</th>\n",
394
       "      <td>bw0_1_79646</td>\n",
395
       "      <td>1.894521e-05</td>\n",
396
       "    </tr>\n",
397
       "    <tr>\n",
398
       "      <th>40</th>\n",
399
       "      <td>D1TOTDIST30_1_79646</td>\n",
400
       "      <td>2.025443e-05</td>\n",
401
       "    </tr>\n",
402
       "    <tr>\n",
403
       "      <th>26</th>\n",
404
       "      <td>p120b4_1_79646</td>\n",
405
       "      <td>2.308234e-05</td>\n",
406
       "    </tr>\n",
407
       "    <tr>\n",
408
       "      <th>17</th>\n",
409
       "      <td>D1TOTDIST20_1_79646</td>\n",
410
       "      <td>2.548773e-05</td>\n",
411
       "    </tr>\n",
412
       "  </tbody>\n",
413
       "</table>\n",
414
       "</div>"
415
      ],
416
      "text/plain": [
417
       "                       pheno             p\n",
418
       "10      testisweight_1_79646  4.521024e-18\n",
419
       "19             abBMD_1_79646  1.110221e-14\n",
420
       "27             tibia_1_79646  1.843551e-08\n",
421
       "0        D1TOTDIST10_1_79646  5.792651e-08\n",
422
       "37    D1ctrtime0to30_1_79646  6.901068e-08\n",
423
       "4        D2TOTDIST25_1_79646  7.173318e-08\n",
424
       "7             soleus_1_79646  8.342285e-08\n",
425
       "2        D2hact0to15_1_79646  1.678204e-07\n",
426
       "42    D2ctrtime0to15_1_79646  1.861225e-07\n",
427
       "34       D3TOTDIST15_1_79646  3.161540e-07\n",
428
       "13           gastroc_1_79646  5.044782e-07\n",
429
       "30       D3vact0to15_1_79646  5.469865e-07\n",
430
       "60               EDL_1_79646  5.569678e-07\n",
431
       "41       D3TOTDIST25_1_79646  5.849949e-07\n",
432
       "16       D2hact0to30_1_79646  5.898484e-07\n",
433
       "58  D1totaldist0to15_1_79646  7.152997e-07\n",
434
       "43        D2TOTDIST5_1_79646  8.427636e-07\n",
435
       "51  D3totaldist0to30_1_79646  9.002542e-07\n",
436
       "59        pp12PPIavg_1_79646  1.194845e-06\n",
437
       "5     D1ctrtime0to15_1_79646  1.262349e-06\n",
438
       "66           startle_1_79646  1.300837e-06\n",
439
       "15                TA_1_79646  1.374193e-06\n",
440
       "49       D3vact0to30_1_79646  1.384376e-06\n",
441
       "8   D1totaldist0to30_1_79646  1.508047e-06\n",
442
       "56       D3TOTDIST30_1_79646  1.905392e-06\n",
443
       "14    AvAltContextD3_1_79646  1.946489e-06\n",
444
       "54         sacweight_1_79646  2.519069e-06\n",
445
       "1        D1TOTDIST15_1_79646  2.704936e-06\n",
446
       "47       D2TOTDIST15_1_79646  2.749202e-06\n",
447
       "29    D2ctrtime0to30_1_79646  2.758986e-06\n",
448
       "61    D3ctrtime0to15_1_79646  2.861410e-06\n",
449
       "32        D3TOTDIST5_1_79646  2.992418e-06\n",
450
       "65       D2vact0to30_1_79646  3.072521e-06\n",
451
       "23       D3TOTDIST20_1_79646  3.278628e-06\n",
452
       "36       D1hact0to15_1_79646  3.315070e-06\n",
453
       "38    D3ctrtime0to30_1_79646  3.331037e-06\n",
454
       "33          AvToneD3_1_79646  3.555516e-06\n",
455
       "52        taillength_1_79646  3.605960e-06\n",
456
       "12       D2vact0to15_1_79646  3.704444e-06\n",
457
       "35               bw1_1_79646  4.694337e-06\n",
458
       "9             PPIavg_1_79646  4.943340e-06\n",
459
       "28  D2totaldist0to15_1_79646  4.998420e-06\n",
460
       "63  D3totaldist0to15_1_79646  5.237983e-06\n",
461
       "25       AvContextD2_1_79646  5.414419e-06\n",
462
       "22       D1hact0to30_1_79646  6.372553e-06\n",
463
       "46         plantaris_1_79646  6.387974e-06\n",
464
       "57         pp6PPIavg_1_79646  6.947052e-06\n",
465
       "44       D1TOTDIST25_1_79646  7.262472e-06\n",
466
       "64       D2TOTDIST10_1_79646  7.333816e-06\n",
467
       "55       D3hact0to30_1_79646  7.936938e-06\n",
468
       "31       D3hact0to15_1_79646  7.968502e-06\n",
469
       "20        PreTrainD1_1_79646  8.610831e-06\n",
470
       "24          AvToneD1_1_79646  9.298063e-06\n",
471
       "62         pp3PPIavg_1_79646  9.343953e-06\n",
472
       "53         PPIweight_1_79646  9.463255e-06\n",
473
       "45       D1vact0to30_1_79646  1.020309e-05\n",
474
       "48  D2totaldist0to30_1_79646  1.022280e-05\n",
475
       "11       D1vact0to15_1_79646  1.196616e-05\n",
476
       "39       D3TOTDIST10_1_79646  1.212057e-05\n",
477
       "3        D2TOTDIST30_1_79646  1.515221e-05\n",
478
       "50       fastglucose_1_79646  1.578499e-05\n",
479
       "21       D2TOTDIST20_1_79646  1.616208e-05\n",
480
       "6         D1TOTDIST5_1_79646  1.629690e-05\n",
481
       "18               bw0_1_79646  1.894521e-05\n",
482
       "40       D1TOTDIST30_1_79646  2.025443e-05\n",
483
       "26            p120b4_1_79646  2.308234e-05\n",
484
       "17       D1TOTDIST20_1_79646  2.548773e-05"
485
      ]
486
     },
487
     "metadata": {},
488
     "output_type": "display_data"
489
    }
490
   ],
491
   "source": [
492
    "best_pheno_snp = pd.DataFrame(columns=('pheno', 'p'))\n",
493
    "\n",
494
    "for i,p in enumerate(phenotypes):\n",
495
    "    ge_snps = pd.read_csv(f\"out/ge_{p}.csv\", nrows=3)\n",
496
    "    best_pheno_snp.loc[i] = [p, ge_snps['p'][0]]\n",
497
    "\n",
498
    "best_pheno_snp = best_pheno_snp.sort_values(by=['p'])\n",
499
    "print(\"Best variant and it's pvalue for each phenotype\")\n",
500
    "pd.set_option('display.max_rows', None)\n",
501
    "display(best_pheno_snp)\n",
502
    "pd.set_option('display.max_rows', 60)"
503
   ]
504
  },
505
  {
506
   "cell_type": "code",
507
   "execution_count": 212,
508
   "id": "small-musician",
509
   "metadata": {},
510
   "outputs": [
511
    {
512
     "data": {
513
      "text/html": [
514
       "<div>\n",
515
       "<style scoped>\n",
516
       "    .dataframe tbody tr th:only-of-type {\n",
517
       "        vertical-align: middle;\n",
518
       "    }\n",
519
       "\n",
520
       "    .dataframe tbody tr th {\n",
521
       "        vertical-align: top;\n",
522
       "    }\n",
523
       "\n",
524
       "    .dataframe thead th {\n",
525
       "        text-align: right;\n",
526
       "    }\n",
527
       "</style>\n",
528
       "<table border=\"1\" class=\"dataframe\">\n",
529
       "  <thead>\n",
530
       "    <tr style=\"text-align: right;\">\n",
531
       "      <th></th>\n",
532
       "      <th>pheno</th>\n",
533
       "      <th>p</th>\n",
534
       "    </tr>\n",
535
       "  </thead>\n",
536
       "  <tbody>\n",
537
       "    <tr>\n",
538
       "      <th>10</th>\n",
539
       "      <td>testisweight_1_79646</td>\n",
540
       "      <td>4.521024e-18</td>\n",
541
       "    </tr>\n",
542
       "    <tr>\n",
543
       "      <th>19</th>\n",
544
       "      <td>abBMD_1_79646</td>\n",
545
       "      <td>1.110221e-14</td>\n",
546
       "    </tr>\n",
547
       "    <tr>\n",
548
       "      <th>27</th>\n",
549
       "      <td>tibia_1_79646</td>\n",
550
       "      <td>1.843551e-08</td>\n",
551
       "    </tr>\n",
552
       "    <tr>\n",
553
       "      <th>0</th>\n",
554
       "      <td>D1TOTDIST10_1_79646</td>\n",
555
       "      <td>5.792651e-08</td>\n",
556
       "    </tr>\n",
557
       "    <tr>\n",
558
       "      <th>37</th>\n",
559
       "      <td>D1ctrtime0to30_1_79646</td>\n",
560
       "      <td>6.901068e-08</td>\n",
561
       "    </tr>\n",
562
       "    <tr>\n",
563
       "      <th>4</th>\n",
564
       "      <td>D2TOTDIST25_1_79646</td>\n",
565
       "      <td>7.173318e-08</td>\n",
566
       "    </tr>\n",
567
       "    <tr>\n",
568
       "      <th>7</th>\n",
569
       "      <td>soleus_1_79646</td>\n",
570
       "      <td>8.342285e-08</td>\n",
571
       "    </tr>\n",
572
       "  </tbody>\n",
573
       "</table>\n",
574
       "</div>"
575
      ],
576
      "text/plain": [
577
       "                     pheno             p\n",
578
       "10    testisweight_1_79646  4.521024e-18\n",
579
       "19           abBMD_1_79646  1.110221e-14\n",
580
       "27           tibia_1_79646  1.843551e-08\n",
581
       "0      D1TOTDIST10_1_79646  5.792651e-08\n",
582
       "37  D1ctrtime0to30_1_79646  6.901068e-08\n",
583
       "4      D2TOTDIST25_1_79646  7.173318e-08\n",
584
       "7           soleus_1_79646  8.342285e-08"
585
      ]
586
     },
587
     "metadata": {},
588
     "output_type": "display_data"
589
    }
590
   ],
591
   "source": [
592
    "# We look only at phenotypes that give a pvalue larger than 1e-8\n",
593
    "display(best_pheno_snp[best_pheno_snp['p']<1e-7])\n",
594
    "phenotypes = list(best_pheno_snp[best_pheno_snp['p']<1e-7]['pheno'])"
595
   ]
596
  },
597
  {
598
   "cell_type": "code",
599
   "execution_count": 213,
600
   "id": "demanding-season",
601
   "metadata": {},
602
   "outputs": [],
603
   "source": [
604
    "# Find the closest results between ge (gemma) and lm (linear model)\n",
605
    "diff_phenos = pd.DataFrame(columns=('pheno', 'diff'))\n",
606
    "\n",
607
    "for i,p in enumerate(phenotypes):\n",
608
    "    ge_snps = pd.read_csv(f\"out/ge_{p}.csv\", nrows=nb_snsps)\n",
609
    "    lm_snps = pd.read_csv(f\"out/lm_{p}.csv\", nrows=nb_snsps)\n",
610
    "    \n",
611
    "    # Compute how far the SNP-s in gemma (best result) are from the ones in lm \n",
612
    "    total_diffs = 0\n",
613
    "    for idx,row in ge_snps.iterrows():\n",
614
    "        lookup_snp = lm_snps[lm_snps['snp']==row['snp']]\n",
615
    "        if lookup_snp.shape[0] > 0:\n",
616
    "            total_diffs += abs(lookup_snp.iloc[0,0]-row[0])\n",
617
    "        else:\n",
618
    "            total_diffs += nb_snsps\n",
619
    "    diff_phenos.loc[i] = [p, total_diffs]"
620
   ]
621
  },
622
  {
623
   "cell_type": "code",
624
   "execution_count": 214,
625
   "id": "assisted-jenny",
626
   "metadata": {},
627
   "outputs": [
628
    {
629
     "name": "stdout",
630
     "output_type": "stream",
631
     "text": [
632
      "                    pheno  diff\n",
633
      "1           abBMD_1_79646   911\n",
634
      "6          soleus_1_79646   968\n",
635
      "4  D1ctrtime0to30_1_79646  1037\n",
636
      "2           tibia_1_79646  2835\n",
637
      "0    testisweight_1_79646  3228\n",
638
      "5     D2TOTDIST25_1_79646  3672\n",
639
      "3     D1TOTDIST10_1_79646  4768\n"
640
     ]
641
    }
642
   ],
643
   "source": [
644
    "pd.set_option('display.max_rows', None)\n",
645
    "print(diff_phenos.sort_values(by=['diff']))\n",
646
    "pd.set_option('display.max_rows', 60)"
647
   ]
648
  },
649
  {
650
   "cell_type": "code",
651
   "execution_count": 218,
652
   "id": "liberal-costa",
653
   "metadata": {},
654
   "outputs": [
655
    {
656
     "data": {
657
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAe7UlEQVR4nO3de5xVdb3/8dcbRAbSRJA4KBKolPlIQRjMwpSyTD0pesrb8Sh2KH5pF3uUFdnlWHrO0YfVqVOaP8ySFDWvoWYaPxTvcrFARfKOOQo6oqhIKMjn98f6Dm6HGWYNM2vvmVnv5+OxHntdvmutz3fDfPZ3f9fa36WIwMzMyqNXrQMwM7PqcuI3MysZJ34zs5Jx4jczKxknfjOzknHiNzMrGSd+65IkXSDp+13tXJIulnRW0TGZFcmJ3zpE0jJJn+jgMU6SdFfluoj4YkSc2bHo8unMc0kKSbvlKLe1pKvT+xeSJuY8/p8kra6Y3pT0YMX2j0iaL+k1SQ9I2q/Z/oMlXSbpFUkvS5rZwjkGSmps/m8iqb+k8yW9mPa/I0/M1vVsVesAzErsLuBnwFV5d4iIQyqXJc0Fbk3zA4EbgC8C1wLHATdI2iUiXk67XAssAIYDa4APtnCac4ClbNownE6WMz4AvASMyRu3dTER4cnTFk3AJcAG4B/AauBbwL7APcAqYDEwsaL8ScCTwGvAU8DxZElkLfBWOsaqVPZi4Kw0vwNwYzrmS8CdZEnpc8ANFcd/DLiqYvkZYEya3x2YnfZ/BDi6otzGc6XlbwHLgeeAzwMB7FZR9jzgj6ke84Bd07Y7UtnXU12Oyfk+NlS+T+14/0ek921EWv40sKRZmUeBKWn+IGAZ0Hszx/wIcG96b++qWL878Crw7lr/v/PU8cldPbbFIuIE4O/AYRGxDTCTLCGeBQwETgOuSd0L7wL+FzgkIrYlSzCLImIpWQv13ojYJiIGtHCqb5Alx8HAEOB0sgR7O/BRSb0k7QhsDXwYQNIuwDbAA+ncs4HLgPcAxwLnS9qj+YkkHQx8HfgEsBswsYV4jgV+CGwPPA78Z3o/9k/bR6e6/L7NN7FjTgTujIhlFevUrIx4u1W/L9mH3gxJKyUtkHTAxoJSb+CXwJfJ3t9K+wBPAz9MXT0PSvpM51XFqsmJ3zrTvwE3RcRNEbEhImYDC4FD0/YNwAcl9YuI5RGxJOdx1wFDgfdGxLqIuDMyTd8exgD7A7cAz0naHTiALCluIGsJL4uI30bE+oj4K3ANcFQL5zoa+G1ELImINcAZLZS5LiLmR8R6sg+7MTnr0dlOJPsG0uReYEdJx0nqI2kysCvQP20fRtbqvw34J+AnwCxJO6TtXwXmRcT9LZxrGNkHyCvAjmQfDjMkfaBzq2TV4MRvnem9wFGSVjVNwH7A0Ih4HTiGrHW/XNIfU4LO41yylvWfJT0paVrFttvJWuX7p/m5ZEn/gLTcFNeHmsV1PFnya25Hsi6iJs+0UGZFxfwasm8WVZUu2v4TcHXTuohYCUwi+8byPHAw8P/Ivi1B1iW3LCIuSh+gV5DVb0L6xvRV4LutnPIfZB/AZ0XEmxFxO9kHyEGdXjkrnC/uWkdVdgk8A1wSEV9osWDELcAtkvqRdQddCHyUTbsVmu/3Gll3zzckfRC4VdKCiJhDltwPA0YC/0V2HeB4si6fX1bEdXtEfDJHfZaTtW6b7Jxjn1qYDFwbEasrV6aEPB5A0lZk11R+kjY/QPZevWOX9LoP2beqhyUB9AP6SVoB7JT2bc5D+3ZTbvFbRz0P7JLmLwUOk/QpSb0l1UmaKGmYpCGSJqX+9jfILn5uqDjGMElbt3QCSZ+WtJuyjPQK2QXNpn1vBz4G9IuIBrILvwcDg4C/pjI3Au+TdELqAukjaXwr3RRXAp+T9AFJ/YH2/pag8v3YLEl9JdWlxa3T+9W8j76l/fqRdUld3MK2vVP93g38GHgmfeACXAdsL2ly+vf5LNmH3N3An8guFo9J0w/I3r8xEfEW2YXrvwPfkbSVpAlk7/stWLfjxG8d9d/A91L3yTFkXQ2nA41kLe1vkv0/60XWBfEc2Z01BwAnp2PcCiwBVkh6sYVzjCLrslhN1o99fkTcBhARj6b1d6blV8lauXenhNX0jeEgsouyz5F11ZwD9G1+ooj4E9lF6NvIupfuS5veyPl+nEHW971K0tFtlH2ErAtlJ7IE+g+ybqm2HEH2zea2FrZ9C3iR7L0fChzZtCEiXgIOJ7vo/gowDZgUES9GxBsRsaJpStvXpXkiYh3Zv+2haduFwIkR8bcc8VoXowh/WzNrTfpW8BDQN13MNev23OI3a0bSkakbZnuybwY3OOlbT+LEb7ap/wO8ADxBdj3h5M0Xb5mk05sNr9A0/amN/Za0st/xWxKHWXPu6jEzKxm3+M3MSqZb3Me/ww47xIgRI2odhplZt3L//fe/GBGDm6/vFol/xIgRLFy4sNZhmJl1K5Kebmm9u3rMzErGid/MrGSc+M3MSqawPn5J7wcqxyPfhWz8j9+l9SPIHgpxdLz9dKDc1q1bR0NDA2vXru14sFVWV1fHsGHD6NOnT61DMbMSKizxR8QjpHHK0wMeniUbJGoaMCcizk7D604Dvt3e4zc0NLDtttsyYsQIcoxr1WVEBCtXrqShoYGRI0fWOhwzK6FqdfUcCDwREU+TDfQ0I62fQTbgVLutXbuWQYMGdaukDyCJQYMGdctvKmbWM1Qr8R8LXJ7mh0TE8jS/guxRepuQNFXSQkkLGxsbWzxod0v6Tbpr3GbWMxSe+NMY64cDVzXfFtl4ES2OGRER0yOiPiLqBw/e5PcHZma2harxA65DgL9ExPNp+XlJQyNiuaShZINhddgXzn+pMw6z0YWnDOzU45mZdRXVSPzH8XY3D8D1ZI+NOzu9zqpCDGZmXdroHx+7ybrFp11RyLkKTfzpMXufJBvmtsnZwJWSpgBPkz1Crls688wzufTSSxk8eDA777wz48aN48gjj+RLX/oSjY2N9O/fnwsvvJDdd8/7THEzs+IVmvgj4nWyZ59WrltJdpdPt7ZgwQKuueYaFi9ezLp16xg7dizjxo1j6tSpXHDBBYwaNYp58+ZxyimncOutt9Y6XDOzjbrFIG1d0d13382kSZOoq6ujrq6Oww47jLVr13LPPfdw1FFHbSz3xht5H9VqZlYdTvydaMOGDQwYMIBFixbVOhQzs1Z5rJ4tNGHCBG644QbWrl3L6tWrufHGG+nfvz8jR47kqquyO1cjgsWLF9c4UjOzd+oxLf5q3345fvx4Dj/8cPbaay+GDBnCnnvuyXbbbcfMmTM5+eSTOeuss1i3bh3HHnsso0ePrmpsZmab02MSfy2cdtppnHHGGaxZs4b999+fcePGMXLkSG6++eZah2Zm1ion/g6YOnUqDz/8MGvXrmXy5MmMHTu21iGZmbXJib8DLrvsslqHYGbWbr64a2ZWMk78ZmYl464eM7Mq6+xBJdvLLX4zs5LpMS3+lka264g8o+Jts802rF69ulPPa2ZWNLf4zcxKxom/E8ydO5cDDjiASZMmscsuuzBt2jRmzpzJPvvsw5577skTTzxR6xDNzDZy4u8kixcv5oILLmDp0qVccsklPProo8yfP5/Pf/7z/OIXv6h1eGZmGznxd5Lx48czdOhQ+vbty6677spBBx0EwJ577smyZctqG5yZWQUn/k7St2/fjfO9evXauNyrVy/Wr19fq7DMzDbhxG9mVjI95nbOoh5KbGbW0/SYxF8LTffwT5w4kYkTJ25cP3fu3I3zzbeZmdWau3rMzEqm0MQvaYCkqyX9TdJSSR+WNFDSbEmPpdfti4zBzMzeqegW/8+BmyNid2A0sBSYBsyJiFHAnLS8RSKiU4Kstu4at5n1DIUlfknbAfsDFwFExJsRsQqYBMxIxWYAR2zJ8evq6li5cmW3S6IRwcqVK6mrq6t1KGZWUkVe3B0JNAK/lTQauB84FRgSEctTmRXAkJZ2ljQVmAowfPjwTbYPGzaMhoYGGhsbCwi9WHV1dQwbNqzWYZhZSRWZ+LcCxgJfiYh5kn5Os26diAhJLTbZI2I6MB2gvr5+kzJ9+vRh5MiRnR+1mVkPV2QffwPQEBHz0vLVZB8Ez0saCpBeXygwBjMza6awxB8RK4BnJL0/rToQeBi4Hpic1k0GZhUVg5mZbaroH3B9BZgpaWvgSeBzZB82V0qaAjwNHF1wDGZmVqHQxB8Ri4D6FjYdWOR5zcysdf7lrplZyTjxm5mVjBO/mVnJOPGbmZWME7+ZWck48ZuZlYwTv5lZyTjxm5mVjBO/mVnJOPGbmZWME7+ZWck48ZuZlYwTv5lZyTjxm5mVjBO/mVnJOPGbmZWME7+ZWck48ZuZlYwTv5lZyTjxm5mVjBO/mVnJbFXkwSUtA14D3gLWR0S9pIHA74ERwDLg6Ih4ucg4zMzsbdVo8X8sIsZERH1angbMiYhRwJy0bGZmVVKLrp5JwIw0PwM4ogYxmJmVVtGJP4A/S7pf0tS0bkhELE/zK4AhLe0oaaqkhZIWNjY2FhymmVl5FNrHD+wXEc9Keg8wW9LfKjdGREiKlnaMiOnAdID6+voWy5iZWfsV2uKPiGfT6wvAdcA+wPOShgKk1xeKjMHMzN6psMQv6V2Stm2aBw4CHgKuByanYpOBWUXFYGZmmyqyq2cIcJ2kpvNcFhE3S1oAXClpCvA0cHSBMZiZWTOFJf6IeBIY3cL6lcCBRZ3XzMw2z7/cNTMrGSd+M7OSceI3MysZJ34zs5JpM/FLmpBux0TSv0n6qaT3Fh+amZkVIU+L/1fAGkmjgW8ATwC/KzQqMzMrTJ7Evz4igmxwtV9GxHnAtsWGZWZmRclzH/9rkr4DnAB8VFIvoE+xYZmZWVHytPiPAd4A/j0iVgDDgHMLjcrMzArTZuJPyf4yYHtJhwFvRoT7+M3Muqk8d/V8HpgP/AvwWeA+Sf9edGBmZlaMPH383wT2TmPsIGkQcA/wmyIDMzOzYuTp419J9sD0Jq+ldWZm1g3lafE/DsyTNIvsUYqTgAckfR0gIn5aYHxmZtbJ8iT+J9LUpOnBKb6X38ysG2oz8UfED6sRiJmZVUebiV/S+4DTgBGV5SPi48WFZWZmRcnT1XMVcAHwa+CtYsMxM7Oi5Un86yPiV4VHYmZmVZHnds4bJJ0iaaikgU1T4ZGZmVkh8rT4J6fXb1asC2CXzg/HzMyKlueunpEdOYGk3sBC4NmI+LSkkcAVwCDgfuCEiHizI+cwM7P88ozVc5SkbdP89yRdK2nvdpzjVGBpxfI5wP9ExG7Ay8CU9gRsZmYdk6eP//sR8Zqk/YBPABeR3eXTJknDgH8muyMISQI+DlydiswAjmhnzGZm1gF5En/TLZz/DEyPiD8CW+c8/s+AbwEb0vIgYFVErE/LDcBOLe0oaaqkhZIWNjY25jydmZm1JU/if1bS/yV7IMtNkvrm2U/Sp4EXIuL+LQksIqZHRH1E1A8ePHhLDmFmZi3Ic1fP0cDBwI8jYpWkobzzDp/WTAAOl3QoUAe8G/g5MEDSVqnVPwx4dstCNzOzLZHnCVxrIuLaiHgsLS+PiD/n2O87ETEsIkYAxwK3RsTxwG1kD3SB7FbRWa0cwszMCpCnq6ezfRv4uqTHyfr8L6pBDGZmpZWnq6fDImIuMDfNPwnsU43zmpnZpjbb4pfUW9Jt1QrGzMyKt9nEHxFvARskbVeleMzMrGB5unpWAw9Kmg283rQyIr5aWFRmZlaYPIn/2jSZmVkPkGeQthmS+gHDI+KRKsRkZmYFyvML3MOARcDNaXmMpOsLjsvMzAqS5z7+M8huv1wFEBGL8Fj8ZmbdVp7Evy4iXmm2bkOLJc3MrMvLc3F3iaR/BXpLGgV8Fbin2LDMzKwoeRL/V4DvAm8AlwO3AGcWGVRn+sL5L22y7sJT/MhgMyuvPHf1rAG+K+mcbDFeKz4sMzMrSp67esZLehB4gOyHXIsljSs+NDMzK0Kerp6LgFMi4k6A9AjG3wJ7FRmYmZkVI9ejF5uSPkBE3AWs30x5MzPrwlpt8Usam2ZvT49evBwIskcwzi0+NDMzK8Lmunp+0mz5Pyrmo4BYzMysClpN/BHxsWoGYmZm1dHmxV1JA4ATgRGV5T0ss5lZ95Tnrp6bgPuAB/FQDWZm3V6exF8XEV8vPBIzM6uKPLdzXiLpC5KGShrYNBUemZmZFSJP4n8TOBe4F7g/TQvb2klSnaT56Ze+SyT9MK0fKWmepMcl/V7S1h2pgJmZtU+exP8NYLeIGBERI9OUZzz+N4CPR8RoYAxwsKR9gXOA/4mI3YCXgSlbGLuZmW2BPIn/cWBNew8cmdVpsU+aAvg4cHVaPwM4or3HNjOzLZfn4u7rwCJJt5G14oF8t3NK6k3WNbQbcB7wBLAqIpqGfGgAdmpl36nAVIDhw4fnCNPMzPLIk/j/kKZ2i4i3gDHptwDXAbu3Y9/pwHSA+vp6/1LYzKyT5BmPf0ZHTxIRq9I3hg8DAyRtlVr9w4BnO3p8MzPLL894/E9JerL5lGO/wamlj6R+wCeBpcBtwGdTscnArC2O3szM2i1PV099xXwdcBSQ5z7+ocCM1M/fC7gyIm6U9DBwhaSzgL+SjfdvZmZVkqerZ2WzVT+TdD/wgzb2ewDYu4X1TwL7tCdIMzPrPHkGaRtbsdiL7BtAnm8KZmbWBeVJ4JXj8q8HlgFHFxKNmZkVLk9Xj8flNzPrQfJ09fQFPsOm4/H/qLiwzMysKHm6emYBr5D9AveNNsqamVkXlyfxD4uIgwuPxMzMqiLPIG33SNqz8EjMzKwq8rT49wNOkvQUWVePyAbf3KvQyMzMrBB5Ev8hhUdhZmZVk+d2zqerEYiZmVVHnj5+MzPrQZz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGQKS/ySdpZ0m6SHJS2RdGpaP1DSbEmPpdfti4rBzMw2VWSLfz3wjYjYA9gX+JKkPYBpwJyIGAXMSctmZlYlhSX+iFgeEX9J868BS4GdgEnAjFRsBnBEUTGYmdmmqtLHL2kEsDcwDxgSEcvTphXAkFb2mSppoaSFjY2N1QjTzKwUCk/8krYBrgG+FhGvVm6LiACipf0iYnpE1EdE/eDBg4sO08ysNApN/JL6kCX9mRFxbVr9vKShaftQ4IUiYzAzs3cq8q4eARcBSyPipxWbrgcmp/nJwKyiYjAzs03leebulpoAnAA8KGlRWnc6cDZwpaQpwNPA0QXGYGZmzRSW+CPiLkCtbD6wqPOamdnm+Ze7ZmYl48RvZlYyTvxmZiXjxG9mVjJO/GZmJePEb2ZWMk78ZmYl48RvZlYyTvxmZiXjxG9mVjJO/GZmJePEb2ZWMk78ZmYl48RvZlYyTvxmZiVT5INYuqzRPz52k3WLT7uiBpGYmVWfW/xmZiXjxG9mVjJO/GZmJePEb2ZWMk78ZmYlU1jil/QbSS9Ieqhi3UBJsyU9ll63L+r8ZmbWsiJb/BcDBzdbNw2YExGjgDlp2czMqqiwxB8RdwAvNVs9CZiR5mcARxR1fjMza1m1+/iHRMTyNL8CGNJaQUlTJS2UtLCxsbE60ZmZlUDNLu5GRACxme3TI6I+IuoHDx5cxcjMzHq2aif+5yUNBUivL1T5/GZmpVftxH89MDnNTwZmVfn8ZmalV+TtnJcD9wLvl9QgaQpwNvBJSY8Bn0jLZmZWRYWNzhkRx7Wy6cCizmlmZm3zL3fNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSqYmiV/SwZIekfS4pGm1iMHMrKyqnvgl9QbOAw4B9gCOk7RHteMwMyurWrT49wEej4gnI+JN4ApgUg3iMDMrpa1qcM6dgGcqlhuADzUvJGkqMDUtrpb0SJFB6Zu/B9gBeLHI83QhZaoruL49WY+ta8pLzbWnvu9taWUtEn8uETEdmF7Nc0paGBH11TxnrZSpruD69mRlqit0Tn1r0dXzLLBzxfKwtM7MzKqgFol/ATBK0khJWwPHAtfXIA4zs1KqeldPRKyX9GXgFqA38JuIWFLtOFpR1a6lGitTXcH17cnKVFfohPoqIjojEDMz6yb8y10zs5Jx4jczK5nSJX5Jv5H0gqSHWtl+vKQHJD0o6R5Jo6sdY2dqq74V5cZLWi/ps9WKrbPlqaukiZIWSVoi6fZqxtfZcvxf3k7SDZIWp/p+rtoxdhZJO0u6TdLDqS6ntlBGkv43DQXzgKSxtYi1o3LWtWN5KiJKNQH7A2OBh1rZ/hFg+zR/CDCv1jEXWd9UpjdwK3AT8Nlax1zgv+0A4GFgeFp+T61jLri+pwPnpPnBwEvA1rWOewvrOhQYm+a3BR4F9mhW5lDgT4CAfbvr327OunYoT5WuxR8Rd5D9AbS2/Z6IeDkt3kf2O4Nuq636Jl8BrgFeKD6i4uSo678C10bE31P5nl7fALaVJGCbVHZ9NWLrbBGxPCL+kuZfA5aSjQJQaRLwu8jcBwyQNLTKoXZYnrp2NE+VLvG30xSyFkSPJWkn4EjgV7WOpQreB2wvaa6k+yWdWOuACvZL4APAc8CDwKkRsaG2IXWcpBHA3sC8ZptaGg6m+YdDt7KZulZqd57qskM21Jqkj5G9ofvVOpaC/Qz4dkRsyBqGPdpWwDjgQKAfcK+k+yLi0dqGVZhPAYuAjwO7ArMl3RkRr9Y0qg6QtA3Zt9Ovded65JGnrluap5z4WyBpL+DXwCERsbLW8RSsHrgiJf0dgEMlrY+IP9Q0qmI0ACsj4nXgdUl3AKPJ+lB7os8BZ0fWEfy4pKeA3YH5tQ1ry0jqQ5YIZ0bEtS0U6THDweSoa4fylLt6mpE0HLgWOKEHtwQ3ioiRETEiIkYAVwOn9NCkDzAL2E/SVpL6k40Ku7TGMRXp72TfbpA0BHg/8GRNI9pC6TrFRcDSiPhpK8WuB05Md/fsC7wSEcurFmQnyVPXjuap0rX4JV0OTAR2kNQA/AfQByAiLgB+AAwCzk+t4PXRjUf+y1HfHqOtukbEUkk3Aw8AG4BfR8Rmb3PtynL8254JXCzpQbI7Xb4dEd11+OIJwAnAg5IWpXWnA8NhY31vIruz53FgDdk3nu4oT107lKc8ZIOZWcm4q8fMrGSc+M3MSsaJ38ysZJz4zcxKxonfzKyLyTu4Yir7Xklz0qBtcyW1OXyDE79ZFyPp15L2SPOnN9t2T22isiq7GDg4Z9kfk41RtBfwI+C/29rBt3OadWGSVkfENrWOw6ovjdNzY0R8MC3vCpxHNtLqGuALEfE3SUuAgyPimfTjr1ci4t2bO7Zb/NalSfq+pEck3SXpckmnpfW7Sro5DbZ2p6Td0/qL05js90h6sun5AunXnOdKeiiNYX5MWj9R0u2SZqXyZ6exzuencrumcoMlXSNpQZomtBDrSek4cyU9Juk/KrZ9PZ37IUlfS+veJemPysbLf6giprmS6iWdDfRT9vyAmWnb6hz1mSvpakl/kzQzJQPr/qYDX4mIccBpwPlp/WLgX9L8kWQjsg7a7JFqPfa0J0+tTcB4skHG6sjGJX8MOC1tmwOMSvMfAm5N8xcDV5E1avYAHk/rPwPMJnv2wBCy4QyGkv3ydVWa70s2tssP0z6nAj9L85cB+6X54WQ/p28e70nAcrJfVPYDHiIbC2kc2eiY7yIbHnkJ2YiLnwEurNh/u/Q6F6hP86ubnWN1jvq8QjZOTS/g3qa4PXWvCRhBetZC+n/zj/T30DQtTdt2JBu+4a/Az8nGpBqwuWOXbsgG61YmALMiYi2wVtINsHHUwo8AV1U0ZvtW7PeHyIYffjiNUQPZ6IWXR8RbwPPKnr41HngVWBBpTBdJTwB/Tvs8CHwszX8C2KPifO+WtE1ErG4W8+xIA2ZJujadN4DrIhscrmn9R4GbgZ9IOofsK/2d7XhvNlef+RHRkM61iCyB3NWOY1vX0wtYFRFjmm+IiOdILf70t/GZiFi1uYM58Vt31OofQfJGxXyebo7K8hsqljfw9t9IL2Df9CG0Oc0vmrV6ES0iHlX2eMBDgbMkzYmIH+WIty2V9XkL/513exHxqqSnJB0VEVel7ru9ImKxpB2Al1Jj5zvAb9o6nvv4rSu7GzhMUl1qyXwasj8C4ClJR8HG/u62njl6J3CMpN6SBpM9trA9wxP/mexJZaRzjmml3CclDZTUDzgi1eFO4AhJ/SW9i6wf9k5JOwJrIuJS4Fyyxyg2t07ZEL2dXR/rwpQNwHcv8H5JDZKmAMcDUyQtJusunJSKTwQekfQoWbfff7Z1fLcErMuKiAWSricbTfN5sq6XV9Lm44FfSfoe2YiUV5Bd5GrNdcCHU5kAvhURK5ouCufwVeA8SQ+Q/d3cAXyxhXLzycZRHwZcGhELIbvozNuJ+dcR8VdJnwLOlbQBWAec3MLxpgMPSPpLRBzfifWxLiwijmtl0ya3eEbE1WRDqufm2zmtS2vqR1c2fv4dwNRIzyPtaiSdRHZR9su1jsVsc9zit65uurIfM9UBM7pq0jfrTtziNzMrGV/cNTMrGSd+M7OSceI3MysZJ34zs5Jx4jczK5n/Dy7RU7n9Gi7YAAAAAElFTkSuQmCC\n",
658
      "text/plain": [
659
       "<Figure size 432x288 with 1 Axes>"
660
      ]
661
     },
662
     "metadata": {
663
      "needs_background": "light"
664
     },
665
     "output_type": "display_data"
666
    },
667
    {
668
     "data": {
669
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEWCAYAAAC0Q+rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAh1ElEQVR4nO3de5xVdb3/8dcbRCbFK0weFBHy0MVCDUas4yXsYkoWWVrw81dYKRlaesrTz+qUptWvMjv9ypTAON4vmZpWZnos0jRFNFC846Xj4A3xqCCiIJ/fH+s7utnsmVkz7LXX7OH9fDzWY6/1Xd+1vp+9Zs3+7HXZ36WIwMzMrAgDyg7AzMz6LycZMzMrjJOMmZkVxknGzMwK4yRjZmaFcZIxM7PCOMmYmVlhnGSsaUk6XNJfy47DzDrnJGP9lqS5klZJWiHpeUk3SBpbMf8kSSHp2Krljk3lJ6XpiZLWpvWskNQu6VeS9sgZxymS7pK0pmOdOZb5ekV7KyS9lGIYlubvIOlKSc+meI6qWn6gpO9IelzSckl/l7R1jXauT+91kxrb4BFJL0q6V9Kb88RtVs1Jxvq7YyJiCLAtMBc4r2r+A8Cnq8qmpfJKj6f1bAG8C7gPuFHS+3LEsBj4KvD7vEFHxPciYkjHAPwAmBsRz6Qq5wOPANsBHwK+J2m/ilV8G/gX4N3AlsCngFWVbUg6DBhU3bakI4DPpfUOAQ4CnqmuZ5aHk4z1eZJOkPRQ+kZ+j6SD152t09ORyn2dfehHxKvAxcAuVbNuAzaT9Pa0srcDLam81noiItoj4lvAWWQf/l2KiHMi4g/A8u7q1iJJZInwnDQ9BJgIfDciVkfEQuDXwGfT/G2A44AjI+IfKeZFEbGqYp1bASeSJb/Ktgak8n+NiHvSsg9FxLO9id3MScaawUPAPsBWZN/Qz5c0PM3bM80fRvbheLmkbatXIGlT4DDglhrrP4/Xj2amsf7RTmcuB8ZJ2jxn/d7aB3gjcFmaVtVrx/g70vhYYA1wiKQnJT0g6eiqdX4POBN4sqp8RBreIemxdMrs2yn5mPWYdxzr8yLi0oh4PCLWRsQlwIPAhDT7aeAn6Rv9JcD9ZKd5OvxU0nNkRxHHkCWpaucDUyUNAqak6TweJ/tw37qHb6mnpgG/jogVABGxHLgJ+KakFknjgI8Dm6X6I8gS8puB0cAhwEmSPgAgqQ3YC/hZjbZGpNf9yZLVfsBUstNnZj3mJGN9nqRPS1og6bmUMN5BduQCsCTW7Ur8H8D2FdNfioitgTeQXVv4taRdK9cfEf9Ndt3ke8CDEfFYztB2AAJ4rmfvKD9JmwGHkk6VVTiMLIE8RnZEcj7Qnua9lF5PjoiXIuJOslOFk9IRyRnAsRGxpkaTHcv+MCKei4hHgV8Ak+r0lmwj4yRjfZqknYDZZEchQ1PCWMTrp4p2SNcsOowkO8JYRzoKupEsmexfo6lzga+k17wOBu6IiBd7sExPHQw8S3bTwmvStZaDIqI1IvYkS7rz0uw7O6pVLpJetwTagEskPcnr157aJe1DdiT4SifLmvXYJt1XMSvV5mQfcksBJH2G1689QHat4kuSzgA+CrwNuLrWiiS9m+zC/901Zl9CdiRwU1fBpIS2PXBEGj7S3RtIp+EGkn2p20RSC7A63YzQnWnAuVVHa0h6W4r3ZeATZInzbQAR8ZCkG4FvSPoS8Cay04BTgedZ90hvR7LkNB5YGhGvSLoE+Kqkv5OddpsOnJojVrP1+EjG+rSIuAc4Dfgb8BTZdYLKRHArMIbsFtvvAodExLKK+ad3/NaE7IL+v6c7varbeSki/isiXqqel2yf1rGC7Nv/WGBiRFyb423MJjsNNRX4Rhr/VHcLSdoBeC+1j64+CDwM/A9wFHBARCytmD8V2AlYRnbr9Dcj4vp0t9iTHQMpeQNPRcQrafyY9D4fJ9vuFwJzcrxPs/XIT8Y0M7Oi+EjGzMwK4yRjtoEk7VPVBcyKilN0XS03s5PlZjYqdrOi+XSZmZkVpl/dXTZs2LAYNWpU2WGYmTWN22+//ZmIaC1q/f0qyYwaNYr58+eXHYaZWdOQ9I8i1+9rMmZmVhgnGTMzK4yTjJmZFaZfXZOpZfXq1bS3t7Nq1aruK/cxLS0tjBgxgkGD1nuulJlZU+j3Saa9vZ0tttiCUaNGsW4/in1bRLBs2TLa29sZPXp02eGYmfVKvz9dtmrVKoYOHdpUCQZAEkOHDm3KIzAzsw79PskATZdgOjRr3GZmHTaKJGNmZuXo99dkqh15xrN1Xd/sGes9Tt7MzJKNLsmYmTWLWl+K562csV7ZwuMvbkQ4veIk0wCnnHIK559/Pq2trey4446MHz+egw8+mKOPPpqlS5ey2WabMXv2bN761reWHaqZWV05yRTstttu47LLLmPhwoWsXr2acePGMX78eKZPn87MmTMZM2YMt956KzNmzOBPf/pT2eGamdWVk0zBbrrpJiZPnkxLSwstLS18+MMfZtWqVdx8880ceuihr9V7+eWXS4zSzKwYTjIlWLt2LVtvvTULFiwoOxQzs0L5FuaC7bXXXvz2t79l1apVrFixgt/97ndsttlmjB49mksvvRTIft2/cOHCkiM1M6u/je5IptG3HO+xxx585CMfYdddd2W77bZj7NixbLXVVlxwwQV84Qtf4Dvf+Q6rV69mypQp7Lbbbg2NzcysaBtdkinD8ccfz0knncTKlSvZd999GT9+PKNHj+aaa64pOzQzs0I5yTTA9OnTueeee1i1ahXTpk1j3LhxZYdkZtYQTjINcOGFF5YdgplZKXzh38zMCuMkY2ZmhXGSMTOzwhR2TUbSHOAg4OmIeEcquwR4S6qyNfBcROxeY9lHgeXAq8CaiGgrKk4zMytOkRf+zwZOB87tKIiIT3aMSzoNeL6L5feLiGfqHdRuP5pS1/Xl6f10yJAhrFixoq7tmpk1g8KSTETcIGlUrXnKHvn4CeC9RbVvZmblK+uazD7AUxHxYCfzA7hW0u2Spne1IknTJc2XNH/p0qV1D7Se5s6dy3ve8x4mT57Mm970Jk444QQuuOACJkyYwNixY3nooYfKDtHMrK7KSjJTgYu6mL93RIwDDgSOlrRvZxUjYlZEtEVEW2tra73jrLuFCxcyc+ZM7r33Xs477zweeOAB5s2bxxFHHMHPfvazssMzM6urhicZSZsAHwMu6axORCxJr08DVwATGhNd8fbYYw+GDx/O4MGD2Xnnndl///0BGDt2LI8++mi5wZmZ1VkZRzLvB+6LiPZaMyVtLmmLjnFgf2BRA+Mr1ODBg18bHzBgwGvTAwYMYM2aNWWFZWZWiMKSjKSLgL8Bb5HULulzadYUqk6VSdpe0tVpcjvgr5IWAvOA30eEe5I0M2tCRd5dNrWT8sNrlD0OTErjDwOF9Xmf55ZjMzOrD3eQ2QAdv5GZOHEiEydOfK187ty5r41XzzMz6w/crYyZmRXGScbMzAqzUSSZiCg7hF5p1rjNzDr0+yTT0tLCsmXLmu4DOyJYtmwZLS0tZYdiZtZr/f7C/4gRI2hvb6evdzlTS0tLCyNGjCg7DDOzXuv3SWbQoEGMHj267DDMzDZK/f50mZmZlcdJxszMCuMkY2ZmhXGSMTOzwjjJmJlZYZxkzMysME4yZmZWGCcZMzMrjJOMmZkVxknGzMwK4yRjZmaFKSzJSJoj6WlJiyrKTpK0RNKCNEzqZNkDJN0vabGkE4qK0czMilXkkczZwAE1yv8jInZPw9XVMyUNBH4OHAjsAkyVtEuBcZqZWUEKSzIRcQPwbC8WnQAsjoiHI+IV4GJgcl2DMzOzhijjmswxku5Mp9O2qTF/B+Cxiun2VFaTpOmS5kua34zPjDEz688anWTOBHYGdgeeAE7b0BVGxKyIaIuIttbW1g1dnZmZ1VFDk0xEPBURr0bEWmA22amxakuAHSumR6QyMzNrMg1NMpKGV0weDCyqUe02YIyk0ZI2BaYAVzUiPjMzq6/CHr8s6SJgIjBMUjtwIjBR0u5AAI8Cn091twfOiohJEbFG0jHAH4GBwJyIuLuoOM3MrDiFJZmImFqj+Jed1H0cmFQxfTWw3u3NZmbWXPyLfzMzK4yTjJmZFcZJxszMCuMkY2ZmhXGSMTOzwjjJmJlZYZxkzMysME4yZmZWGCcZMzMrjJOMmZkVxknGzMwK4yRjZmaFcZIxM7PCOMmYmVlhnGTMzKwwTjJmZlaYwh5aZma2sTvyjGdrls9bOWO9soXHX1x0OKXwkYyZmRWm2yQjaS9Jm6fx/y3px5J2yrHcHElPS1pUUXaqpPsk3SnpCklbd7Lso5LukrRA0vwevB8zM+tD8hzJnAmslLQb8BXgIeDcHMudDRxQVXYd8I6I2BV4APhaF8vvFxG7R0RbjrbMzKwPypNk1kREAJOB0yPi58AW3S0UETcAz1aVXRsRa9LkLcCIHsZrZmZNJE+SWS7pa8CngN9LGgAMqkPbnwX+0Mm8AK6VdLuk6XVoy8zMSpAnyXwSeBn4bEQ8SXb0ceqGNCrpG8Aa4IJOquwdEeOAA4GjJe3bxbqmS5ovaf7SpUs3JCwzM6uzbpNMSiwXAttI+jDwSkTkuSZTk6TDgYOAw9JpuFptLkmvTwNXABO6iG9WRLRFRFtra2tvwzIzswLkubvsCGAe8DHgEOAWSZ/tTWOSDgC+CnwkIlZ2UmdzSVt0jAP7A4tq1TUzs74tz48x/w14Z0QsA5A0FLgZmNPVQpIuAiYCwyS1AyeS3U02GLhOEsAtEXGUpO2BsyJiErAdcEWavwlwYURc04v3ZmZmJcuTZJYByyuml6eyLkXE1BrFv+yk7uPApDT+MLBbjrjMzKyPy5NkFgO3SrqS7K6vycCdkr4MEBE/LjA+MzNrYnmSzENp6HBleu32tzJmZrZx6zbJRMS3GxGImZn1P90mGUlvBo4HRlXWj4j3FheWmZn1B3lOl10KzATOAl4tNhwzM+tP8iSZNRFxZuGRmJlZv5OnW5nfSpohabikbTuGwiMzM7Oml+dIZlp6/beKsgDeVP9wzMysP8lzd9noRgRiZmb9T56+yw6t6Evs3yVdLumdxYdmZmbNLs81mW9GxHJJewPvJ+saZmaxYZmZWX+QJ8l03Lb8IWBWRPwe2LS4kMzMrL/Ik2SWSPoF2cPLrpY0OOdyZma2kcuTLD4B/BH4YEQ8B2zLuneamZmZ1ZTn7rKVwOUV008ATxQZlJmZ9Q8+7WVmZoVxkjEzs8J0mWQkDZT050YFY2Zm/UuXSSYiXgXWStqqQfGYmVk/kud02QrgLkm/lPTTjiHPyiXNkfS0pEUVZdtKuk7Sg+l1m06WnZbqPChpWq06ZmbWt+VJMpcD3wRuAG6vGPI4GzigquwE4PqIGANcn6bXkXp5PhHYE5gAnNhZMjIzs74rzy3M50h6AzAyIu7vycoj4gZJo6qKJwMT0/g5wFzg/1TV+SBwXUQ8CyDpOrJkdVFP2jczs3Ll6SDzw8AC4Jo0vbukqzagze3Sb20AngS2q1FnB+Cxiun2VFYrvumS5kuav3Tp0g0Iy8zM6i3P6bKTyE5ZPQcQEQuo07NkIiLInk2zIeuYFRFtEdHW2tpaj7DMzKxO8iSZ1RHxfFXZ2g1o8ylJwwHS69M16iwBdqyYHpHKzMysieRJMndL+l/AQEljJP0MuHkD2ryK15+2OQ24skadPwL7S9omXfDfP5WZmVkTyZNkvgi8HXiZ7ML7C8BxeVYu6SLgb8BbJLVL+hzwfeADkh4kez7N91PdNklnAaQL/qcAt6Xh5I6bAMzMrHnk7SDzG5J+kE3G8rwrj4ipncx6X42684EjKqbnAHPytmVmZn1PnrvL9pB0F3An2Y8yF0oaX3xoZmbW7Lo9kiF73PKMiLgRID2G+T+BXYsMzMzMml+uxy93JBiAiPgrsKa4kMzMrL/o9EhG0rg0+pf0+OWLyH7T8kmyX+mbmZl1qavTZadVTZ9YMb5BP6A0M7ONQ6dJJiL2a2QgVo4jz1j/zvDZM7YtIRKzvqnW/8i8lTPWK1t4/MWNCKfpdHvhX9LWwKeBUZX1I+JLhUVlZmb9Qp67y64GbgHuYsO6kzEzs41MniTTEhFfLjwSMzPrd/LcwnyepCMlDU9Ptdw2PVTMzMysS3mOZF4BTgW+wet3lQV16u7fzMz6rzxJ5ivAP0fEM0UHY2Zm/Uue02WLgZVFB2JmZv1PniOZF4EFkv5M1t0/4FuYzcyse3mSzG/SYGZm1iN5nidzTiMCMTOz/ifPL/4foUZfZRHhu8v6qd1+NGW9MneZYWa9ked0WVvFeAtwKODfyZiZWbe6vbssIpZVDEsi4ifAh3rboKS3SFpQMbwg6biqOhMlPV9R51u9bc/MzMqT53TZuIrJAWRHNnmOgGqKiPuB3dO6BwJLgCtqVL0xIg7qbTtmZla+PMmi8rkya4BHgU/Uqf33AQ9FxD/qtD4zM+tD8txdVuRzZaaQPXGzlndLWgg8DhwfEXfXqiRpOjAdYOTIkYUEaWZmvZPndNlg4OOs/zyZkzekYUmbAh8BvlZj9h3AThGxQtIkst/pjKm1noiYBcwCaGtr8xM7zcz6kDzdylwJTCY7VfZixbChDgTuiIinqmdExAsRsSKNXw0MkjSsDm2amVkD5bkmMyIiDiig7al0cqpM0j8BT0VESJpAlgyXFRCDmZkVKE+SuVnS2Ii4q16NStoc+ADw+YqyowAiYiZwCPAFSWuAl4ApEeFTYWZmTSZPktkbODz98v9lQEBExK69bTQiXgSGVpXNrBg/HTi9t+s3M7O+IU+SObDwKMzMrF/Kcwuzf8NiZma9kufuMjMzs15xkjEzs8I4yZiZWWGcZMzMrDBOMmZmVhgnGTMzK4yTjJmZFcZJxszMCtPrJ1yamTWDI894tmb57BnbNjiSjZOPZMzMrDBOMmZmVhgnGTMzK4yTjJmZFcZJxszMCuMkY2ZmhXGSMTOzwpSWZCQ9KukuSQskza8xX5J+KmmxpDsljSsjTjMz672yf4y5X0Q808m8A4ExadgTODO9mplZk+jLp8smA+dG5hZga0nDyw7KzMzyK/NIJoBrJQXwi4iYVTV/B+Cxiun2VPZEZSVJ04HpACNHjiwuWqu7Wt19zFs5Y72yhcdf3IhwcmvWuJtZrW2+od3C7PajKeuV+W9Wf2UeyewdEePITosdLWnf3qwkImZFRFtEtLW2ttY3QjMz2yClJZmIWJJenwauACZUVVkC7FgxPSKVmZlZkyglyUjaXNIWHePA/sCiqmpXAZ9Od5m9C3g+Ip7AzMyaRlnXZLYDrpDUEcOFEXGNpKMAImImcDUwCVgMrAQ+U1KsZmbWS6UkmYh4GNitRvnMivEAjm5kXGZmVl99+RZmMzNrck4yZmZWGCcZMzMrjJOMmZkVxknGzMwKU3YHmWa9srF27bKxvu9a3C1Mc/CRjJmZFcZJxszMCuMkY2ZmhXGSMTOzwjjJmJlZYZxkzMysME4yZmZWGCcZMzMrjJOMmZkVxknGzMwK425l6iBvVx/Q/7u9cFcf3Suza5iy2q7VbqPatnL5SMbMzArT8CQjaUdJf5Z0j6S7JR1bo85ESc9LWpCGbzU6TjMz23BlnC5bA3wlIu6QtAVwu6TrIuKeqno3RsRBJcRnZmZ10vAjmYh4IiLuSOPLgXuBHRodh5mZFa/UazKSRgHvBG6tMfvdkhZK+oOktzc2MjMzq4fS7i6TNAS4DDguIl6omn0HsFNErJA0CfgNMKaT9UwHpgOMHDmyuIDNzKzHSjmSkTSILMFcEBGXV8+PiBciYkUavxoYJGlYrXVFxKyIaIuIttbW1kLjNjOzninj7jIBvwTujYgfd1Lnn1I9JE0gi3NZ46I0M7N6KON02V7Ap4C7JC1IZV8HRgJExEzgEOALktYALwFTIiJKiNXMzDZAw5NMRPwVUDd1TgdOb0xEZmZWFHcrkzRrVx/u0qZ3yvx7m21M3K2MmZkVxknGzMwK4yRjZmaFcZIxM7PCOMmYmVlhnGTMzKwwTjJmZlYYJxkzMyuMk4yZmRXGScbMzArjbmWs12p1zWJmVslHMmZmVhgnGTMzK4yTjJmZFcZJxszMCuMkY2ZmhXGSMTOzwjjJmJlZYUpJMpIOkHS/pMWSTqgxf7CkS9L8WyWNKiFMMzPbQA1PMpIGAj8HDgR2AaZK2qWq2ueA/4mIfwb+A/hBY6M0M7N6KONIZgKwOCIejohXgIuByVV1JgPnpPFfA++TpAbGaGZmdaCIaGyD0iHAARFxRJr+FLBnRBxTUWdRqtOeph9KdZ6psb7pwPQ0+RZgGbBevT5mGI6xXpohTsdYH46xfirj3CkiWotqqOn7LouIWcCsjmlJ8yOircSQuuUY66cZ4nSM9eEY66eRcZZxumwJsGPF9IhUVrOOpE2ArciOUMzMrImUkWRuA8ZIGi1pU2AKcFVVnauAaWn8EOBP0ejzemZmtsEafrosItZIOgb4IzAQmBMRd0s6GZgfEVcBvwTOk7QYeJYsEeU1q/sqpXOM9dMMcTrG+nCM9dOwOBt+4d/MzDYe/sW/mZkVxknGzMyKExGlDmR3kf0ZuAe4Gzi2Rh0BPwUWA3cC46rmbwm0A6dXlF0DLEzrnAkMTOXbAtcBD6bXbbpro4QYTwXuS+u5Atg6lY8CXgIWpGFmydvyJLI7ATvimVSxzNdSG/cDHywxxksq4nsUWNDdtiwqxop5VwGLKqb7zD7ZRYw93idLiPEkerg/lhRnn9kngblpm3S0+cZUPjjFuRi4FRiVZ1vWGvpCkhnesTGALYAHgF2q6kwC/pA24ruAW6vm/z/gwqqNt2XFhr8MmJKmfwickMZPAH7QXRslxLg/sEka/0FFjKMqd9Y+sC1PAo6vEccuZB/4g4HRwEO8/qHf0BirljsN+FZ327KoGFP5x1J55YdOn9knu4ixx/tkCTH2eH8sI86+tE+SJZm2Gu3NICU5shuvLsmzLWsNpZ8ui4gnIuKONL4cuBfYoaraZODcyNwCbC1pOICk8cB2wLVV630hjW4CbApExbo6uqw5B/hod200OsaIuDYi1qR5t5D9lqhbJWzLzkwGLo6IlyPiEbJvPRPKjDF1S/QJ4KJuYi8sRklDgC8D36mxrj6xT3YWY2/2yRK2Y2c63R/LjLMv7JNdqNwnK7v26nJb1lJ6kqmUelt+J9nhWaUdgMcqptuBHSQNIPsmcHwn6/sj8DSwnGxDAWwXEU+k8SfJNnynbZQUY6XPkn076TBa0t8l/UXSPrXW2eA4j5F0p6Q5krbpqo0SYwTYB3gqIh6sKOt2W9Y5xlPSvJVV5X1pn+wsxko93icbGGOv98cGxwl9Y58E+E9JCyR9s6KPyNfWlb5cPA8M7ayNTtYL9KEkk7L+ZcBxFd9KuzMDuDpSH2fVIuKDZIeZg4H31pgfdP+tvLQYJX0DWANckIqeAEZGxDvJviFdKGnLEuM8E9gZ2D3FdlrOtsr4e09l3W+M3W7LesYoaXdg54i4oquFy9wn88TYm32ygTH2en9scJwdSt0nk8MiYixZwtsH+FTOdebWJ/oukzSIbMNdEBGX16jSWVc07wb2kTQDGAJsKmlFRLz2jJqIWCXpSrLDvOuApyQNj4gn0qHk0920UUaMSDocOAh4X/rgISJeBl5O47cr6zj0zcD8MuKMiKcq2p0N/K6bNhoeY2pvE7Jz4+Mr6nW5LesdI/APoE3So2T/d2+UNDciJtJH9sluYuzVPtnIGHu7P5a0LUvfJyPihIhYktpbLulCslNf51asq13rdu2Vp1uwdUUXF2waMZBdpDoX+EkXdT7Euhe05tWoczjpglbakMPT+CZkd0kck6ZPZd2LrD/sro0SYjyA7C6S1qrlW3n9Avqb0h932xLjHF6xzL+SnasFeDvrXhx8uCLuhsZYsT3/kndbFhFjVfko1r9zq/R9spsYe7xPlhBjj/fHMuLsK/sk2f/KsDQ+iOwU81Fp+mjWvfD/qzzbstbQF45k9iI7RLtL0oJU9nVgJEBEzASuJrtzYjHZ+c3PdLPOzYGrJA0mOyX4Z7LbWgG+D/xK0ufIvm18IpV31UajYzyd7I94XTpFektEHAXsC5wsaTWwlmyHeLbEOH+YTgsE2a2Yn0/t3C3pV2QfSmuAoyPi1ZJihOyfpPrialfbsogYu9JX9smu9GafbHSMvdkfy4gT+sY+ORj4YzpCGgj8FzA7zavZtVeObbkedytjZmaF6TMX/s3MrP9xkjEzs8I4yZiZWWGcZMzMrDBOMmZmTSr1bPC0pEU56u4k6frUI8JcSbm6q9pQTjJmTUjSWZJ2SeNfr5p3czlRWQnOJvvNTR4/IuvbbFfgZOD/FhVUJd/CbNbk0q+3h5Qdh5Uj9WX2u4h4R5reGfg52Y87VwJHRsR9ku4GDoiIx1IfZc9HxHrdUtWbj2Ss6aWO/e6X9FdJF0k6PpXvLOkaSbdLulHSW1P52ZJ+KulmSQ9LOiSVS9KpkhZJukvSJ1P5RGUdFl6Z6n9f0mGS5qV6O6d6rZIuk3RbGvaqEevhaT1zJT0o6cSKeV9ObS+SdFwq21zS7yUtTOUdMc2V1Cbp+8AblHVweEGatyLH+5kr6deS7pN0QfrQsf5hFvDFiBhP1inmGal8IVlXNgAHA1tIGlp4NF11B+DBQ18fgD3IHrbUQvacjQdJzxQBrgfGpPE9gT+l8bOBS8m+ZO0CLE7lHyfr72wgWU/I/03W4eZE4Dle73xzCfDttMyxpK4+yJ7VsXcaHwncWyPew8k6QhwKvAFYBLSR9WF1F1nvBUPIHkz1zhTT7Irlt0qvc0nPAQFWVLWxIsf7eZ6s36kBwN864vbQfAMV3dakfafywWcLOvZDYHvgcuDvZM+WaSc9fK7IoS90K2O2IfYCroyIVcAqSb+F13qr/Rfg0oov6YMrlvtNRKwF7pHU0bX+3sBFkXWT8ZSkv5AlsReA2yJ1x6+s48KO53LcBeyXxt8P7FLR3paShkTEiqqYr4uIZWldl6d2A7giIl6sKN+H7Imfp0n6AdkpkRt7sG26ej/zIvXKm7opGQX8tQfrtr5pAPBcROxePSMiHicdyaT/j49HxHNFB+QkY/1Vp/9sycsV43lOFVXWX1sxvZbX/48GAO9KCa8r1RdCO70wGhEPSBpH1ifVdyRdHxEn54i3O5Xv51X8WdAvRMQLkh6RdGhEXJpOg+4aEQslDQOeTV+uvgbMaURMviZjze4m4MOSWtK3s4PgtSdlPiLpUHjt+sRu3azrRuCTkgZKaiXrsHBeD2K5Fvhix4Syzhpr+YCkbSW9gewpmDeltj8qaTNJm5OdM79R0vbAyog4n6y35nE11rdaWSeH9X4/1sdJuojsdOdbJLUr62T1MOBzkhaSnXadnKpPBO6X9ADZ6dPvNiJGf3uxphYRt0m6CrgTeIrs9NXzafZhwJmS/p2sK/OLyS5+duYKsmdvLCQ7uvhqRDzZccNADl8Cfi7pTrL/rRuAo2rUm0f2XJARwPkR0fG8kLN5PQmcFRF/l/RB4FRJa4HVwBdqrG8WcKekOyLisDq+H+vjImJqJ7PWu605In5N7afvFsq3MFvT67juIWkzsg/26ZGeh97XKHvwV1tEHFN2LGaN4CMZ6w9mKfthYgtwTl9NMGYbIx/JmJlZYXzh38zMCuMkY2ZmhXGSMTOzwjjJmJlZYZxkzMysMP8fuvGoDmWTHZUAAAAASUVORK5CYII=\n",
670
      "text/plain": [
671
       "<Figure size 432x288 with 1 Axes>"
672
      ]
673
     },
674
     "metadata": {
675
      "needs_background": "light"
676
     },
677
     "output_type": "display_data"
678
    },
679
    {
680
     "data": {
681
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAb4UlEQVR4nO3de5QV5Znv8e8PgrSIkaB9CAoENJ44ThCEhjHBSYgTHXVG0XgJjqOYRDvRmMQVScbcJt5mjVmamBmj8UA0oqJOVAxq1MSj4jUBUWlA8R4S2+MFURCCIJfn/FHVutN0967u3lfq91mrFlVv3Z5d7P3st99691uKCMzMLD/6VDsAMzOrLCd+M7OcceI3M8sZJ34zs5xx4jczyxknfjOznHHiNzPLGSd+qxuSRkhaK6lvujxP0slZtjWz9znxW02TtFzSZwEi4s8RMTAiNhfbrzvbdnHu7STdlMYQkiZn3O/O9EunbXpX0pKC9Z+UtEDSGkmLJe3fbv9GSddJWi3pLUmzOzjHYEkrJD3UrnyApMskvZHu/0DPXr1tyz5Q7QDMatxDwE+BG7PuEBGHFC5Lmgfcm84PBm4DvgLMAY4DbpO0e0S8le4yB3gUGAGsAz7ewWl+BCxj68rbDJLP9d8AbwJjs8Zt+eEav9UsSdeQJL/b0przt9Oad2GFZY+09vy2pLlpYkXSyMJtJX1B0rK0lv2ipC8XO39EvBsRP42Ih4Ae/eUgaSTw98DVadEngVcj4saI2BwR1wIrgM+l2x8EDAe+FRGrI2JjRDzR7pifJPky+GW78r2Aw4HmiFiRHv+xnsRt2zYnfqtZEXEC8GfgsIgYCPyqg81OBL4IDAU2Af/dyeFeB/4Z+CDwBeBiSeNKHnTH8T0YEcsLytRuG/F+rX4/4BlglqSVkh6V9On3NkzuWfwMOB1oP9DWROBPwDlpU88SSUeV7qXYtsKJ3+rdNRGxNCL+AvwAOLajG7oR8ZuIeCES9wO/I6mJl9uJwFUFy78HdpV0nKR+kqYBewAD0vXDgIOA+4APAz8G5kraJV3/dWB+JzX5YSRfIKuBXUm+HGZJ+pvSviSrd078Vu9eKpj/E9AP2KX9RpIOkfQHSW9KWgUc2tF2pZTetP0wcFNbWUSsBKYA3wReAw4G/i/Qmm7yDrA8Iq5Im3luIHmNkyTtSpL4v9fJKd8BNgLnp81U95N8gRxU8hdndc03d63WFRs3fHjB/AiSxPdGYbmk/sDNJLXvuRGxUdKv2brJpdSmAXMiYm1hYZqQJ6SxfQB4kaRmD7AYOKzdcdquwUSSJq2nJAFsD2wv6VVgt3Tf9jzuum3FNX6rda8Bu3ex/l8l7S1pAHAucFMHXTi3A/qT3ETdJOkQMtaCJfWX1NB2HEkNSrNukf22B47lr5t52tbtmzbzfBC4CHgpIn6brr4F+JCkaZL6SjqapAnnYeBOYCRJT52xwL8DTwBj09f8AMk9ke9I+oCkScBngN9iVsCJ32rdfwLfT5tnju5g/TUkyfVVoIGkKeSvRMSatPxXwFvAvwC3Zjz/MyRNKLuRJNB3gI9k2O8IYBVJU0t73yb5q+Qlkhr8kQWxvknSM2c6SVv9WcCUiHgjIjZExKttU7p+YzpPRGwkaUY6NF03EzgxIp7O+FotJ+QncJmZ5Ytr/GZmOePEb7km6bvthldom+4sst+Tnex3fKViN+spN/WYmeVMXXTn3GWXXWLkyJHVDsPMrK489thjb0REY/vyukj8I0eOZOHChdUOw8ysrkj6U0flbuM3M8sZJ34zs5xx4jczy5m6aOM3MyunjRs30trayvr166sdSo80NDQwbNgw+vXrl2l7J34zy73W1lZ23HFHRo4cSYahmGpKRLBy5UpaW1sZNWpUpn3c1GNmubd+/Xp23nnnukv6AJLYeeedu/XXihO/mRnUZdJv093YnfjNzHLGbfxmZu2cctmbJT3ezNMGl/R4veXEb2ZV01GCrbUkuS1y4jczqxHnnXce1157LY2NjQwfPpzx48dz5JFH8tWvfpUVK1YwYMAAZs6cyV577dWr8zjxm5nVgEcffZSbb76ZlpYWNm7cyLhx4xg/fjzNzc1cfvnl7LnnnsyfP5/TTjuNe++9t1fncuI3M6sBDz/8MFOmTKGhoYGGhgYOO+ww1q9fzyOPPMIxxxzz3nYbNmzo9bmc+M3MatSWLVsYNGgQixYtKulx3Z3TzKwGTJo0idtuu43169ezdu1abr/9dgYMGMCoUaO48cYbgeRXui0tLb0+l2v8ZmbtVKNn0YQJEzj88MPZZ599GDJkCKNHj2annXZi9uzZnHrqqZx//vls3LiRqVOnMmbMmF6dy4nfzKxGTJ8+nbPPPpt169bxqU99ivHjxzNq1Cjuuuuukp7Hid/MrEY0Nzfz1FNPsX79eqZNm8a4cePKch4nfjOzGnHddddV5Dy+uWtmljNO/GZmOePEb2aWM2VL/JIaJC2Q1CLpSUnnpOVXSfqjpEXpNLZcMZiZ2dbKeXN3A3BARKyV1A94SNKd6bpvRcRNZTy3mVmPjbloakmP1zL9hqLbDBw4kLVr15b0vJ0pW+KPiADaXkW/dIpync/MzLIpaxu/pL6SFgGvA3dHxPx01X9IWizpYkn9O9m3WdJCSQtXrFhRzjDNzGrGvHnz+PSnP82UKVPYfffdOeuss5g9ezYTJ05k9OjRvPDCC70+R1kTf0RsjoixwDBgoqSPA98B9gImAIOBf+tk3xkR0RQRTY2NjeUM08ysprS0tHD55ZezbNkyrrnmGp599lkWLFjAySefzCWXXNLr41ekV09ErALuAw6OiFcisQH4JTCxEjGYmdWLCRMmMHToUPr3788ee+zBQQcdBMDo0aNZvnx5r49fzl49jZIGpfPbAwcCT0sampYJOAJYWq4YzMzqUf/+77eA9+nT573lPn36sGnTpl4fv5y9eoYCsyT1JfmC+VVE3C7pXkmNgIBFwFfKGIOZmbVTzl49i4F9Oyg/oFznNDMrhSzdL+uZB2kzM6sBbX34J0+ezOTJk98rnzdv3nvz7df1lIdsMDPLGSd+M7OcceI3MyN5nm296m7sTvxmlnsNDQ2sXLmyLpN/RLBy5UoaGhoy7+Obu2aWe8OGDaO1tZV6HR6moaGBYcOGZd7eid/Mcq9fv36MGjWq2mFUjJt6zMxyxonfzCxnnPjNzHLGid/MLGec+M3McsaJ38wsZ5z4zcxyxonfzCxnnPjNzHLGid/MLGec+M3McqacD1tvkLRAUoukJyWdk5aPkjRf0vOS/kfSduWKwczMtlbOGv8G4ICIGAOMBQ6WtB/wI+DiiPgo8BbwpTLGYGZm7ZQt8UdibbrYL50COAC4KS2fBRxRrhjMzGxrZR2WWVJf4DHgo8ClwAvAqojYlG7SCuzWyb7NQDPAiBEjyhmmmW1Dxlw0dauyluk3VCGS2lXWm7sRsTkixgLDgInAXt3Yd0ZENEVEU2NjY7lCNDPLnYr06omIVcB9wCeAQZLa/tIYBrxciRjMzCxRzl49jZIGpfPbAwcCy0i+AI5ON5sGzC1XDGZmtrVytvEPBWal7fx9gF9FxO2SngJukHQ+8ARwRRljMDOzdsqW+CNiMbBvB+UvkrT3m5lZFfhh62ZWUzrqlQPumVNKHrLBzCxnnPjNzHLGid/MLGec+M3McsY3d82sbp1y2ZvVDqEuucZvZpYzTvxmZjnjxG9mljNO/GZmOePEb2aWM078ZmY548RvZpYzTvxmZjnjxG9mljNO/GZmOePEb2aWM078ZmY5UzTxS5okaYd0/l8l/UTSRzLsN1zSfZKekvSkpG+k5WdLelnSonQ6tPcvw8zMsspS4/85sE7SGOBM4AXg6gz7bQLOjIi9gf2Ar0raO113cUSMTac7ehK4mZn1TJbEvykiApgC/CwiLgV2LLZTRLwSEY+n82uAZcBuvQnWzMx6L0viXyPpO8AJwG8k9QH6deckkkYC+wLz06LTJS2WdKWkD3XnWGZm1jtZEv/ngQ3AFyPiVWAYcGHWE0gaCNwMnBERb5M0He0BjAVeAX7cyX7NkhZKWrhixYqspzMzsyKKJv402V8HfEjSYcC7EZGljR9J/UiS/uyImJMe77WI2BwRW4CZwMROzjsjIpoioqmxsTHjyzEzs2Ky9Oo5GVgAfA44GviDpC9m2E/AFcCyiPhJQfnQgs2OBJZ2N2gzM+u5LM/c/Rawb0SsBJC0M/AIcGWR/SaR3BdYImlRWvZd4DhJY4EAlgNf7nbUZmbWY1kS/0pgTcHymrSsSxHxEKAOVrn7pplZFWVJ/M8D8yXNJamlTwEWS/omQGEzjpmZ1b4sif+FdGozN/23aF9+MzOrPUUTf0ScU4lAzMysMoomfkn/G5gOjCzcPiIOKF9YZmZWLlmaem4ELgd+AWwubzhmZlZuWRL/poj4edkjMTOzisgyZMNtkk6TNFTS4Lap7JGZmVlZZKnxT0v//VZBWQC7lz4cMzMrtyy9ekZVIhAzM6uMLGP1HCNpx3T++5LmSNq3/KGZmVk5ZGnj/0FErJG0P/BZkoHXLi9vWGZmVi5ZEn9bF85/AmZExG+A7coXkpmZlVOWxP+ypP9D8kCWOyT1z7ifmZnVoCwJ/Fjgt8A/RsQqYDB/3cPHzMzqSJZePeuAOQXLr5A8MtHMzOqQm2zMzHLGid/MLGe6TPyS+kq6r1LBmJlZ+XWZ+CNiM7BF0k4VisfMzMosy1g9a0kemH438Je2woj4elc7SRoOXA0MIRnbZ0ZE/Fc6wNv/kIzvvxw4NiLe6lH0ZmbWbVkS/xwKevV0wybgzIh4PB3y4bH0y+Mk4J6IuEDSWcBZwL/14PhmZtYDWbpzzpK0PTAiIp7JeuDCbp/pkA/LgN1IHtY+Od1sFjAPJ34zs4rJMkjbYcAi4K50eaykW7tzEkkjgX2B+cCQ9EsB4FWSpqCO9mmWtFDSwhUrVnTndGZm1oUs3TnPBiYCqwAiYhHdGItf0kDgZuCMiHi7cF1EBEn7/1YiYkZENEVEU2NjY9bTmZlZEVkS/8aIWN2ubEuWg0vqR5L0Z0dE232C1yQNTdcPBV7PGqyZmfVelsT/pKR/AfpK2lPSJcAjxXaSJJIhnJdFxE8KVt3K+0/1mgbM7WbMZmbWC1kS/9eAvwU2ANcDbwNnZNhvEnACcICkRel0KHABcKCk50jG97+gJ4GbmVnPZB2k7XuSfpQsxposB46IhwB1svofsodoZmallKVXzwRJS4DFJD/kapE0vvyhmZlZOWT5AdcVwGkR8SBA+gjGXwL7lDMwMzMrj0yPXmxL+vBeE86m8oVkZmbl1GmNX9K4dPb+9NGL15P0uf88ya9tzcysDnXV1PPjdss/LJjv8EdXZmZW+zpN/BHxmUoGYmZmlVH05q6kQcCJJMMov7d9sWGZzcysNmXp1XMH8AdgCRmHajAzs9qVJfE3RMQ3yx6JmZlVRJbunNdIOkXSUEmD26ayR2ZmZmWRpcb/LnAh8D3e780TdGNoZrN6NuaiqVuVtUy/oQqRmJVGlsR/JvDRiHij3MGYmVn5ZWnqeR5YV+5AzMysMrLU+P8CLJJ0H8nQzIC7c5qZ1assif/X6WRmZtuALOPxz6pEIGZmVhlZfrn7RzoYmyci3KvHzKwOZWnqaSqYbwCOAdyP38ysThXt1RMRKwumlyPip8A/FdtP0pWSXpe0tKDsbEkvt3sGr5mZVVCWpp5xBYt9SP4CyPKXwlXAz4Cr25VfHBEXZQ3QzMxKK0sCLxyXfxOwHDi22E4R8YCkkT0Ly8zMyiVLr55Sj8t/uqQTgYXAmRHxVkcbSWoGmgFGjBhR4hDMzPIrS1NPf+Aoth6P/9wenO/nwHkkvYTOI/lr4osdbRgRM4AZAE1NTX7il5lZiWRp6pkLrAYeo+CXuz0REa+1zUuaCdzem+OZmVn3ZUn8wyLi4FKcTNLQiHglXTwSWNrV9mZmVnpZEv8jkkZHxJLuHFjS9cBkYBdJrSQPa58saSxJU89y4MvditbMzHotS+LfHzgp/QXvBkBARMQ+Xe0UEcd1UHxF90M0M7NSypL4Dyl7FGZmVjFZunP+qRKBmJlZZWR5EIuZmW1DnPjNzHLGid/MLGec+M3McsaJ38wsZ5z4zcxyxonfzCxnnPjNzHLGid/MLGec+M3McsaJ38wsZ5z4zcxyxonfzCxnnPjNzHImy3j8ZrlwymVvVjsEs4pwjd/MLGfKlvglXSnpdUlLC8oGS7pb0nPpvx8q1/nNzKxj5azxXwUc3K7sLOCeiNgTuCddNjOzCipb4o+IB4D2jaZTgFnp/CzgiHKd38zMOlbpm7tDIuKVdP5VYEhnG0pqBpoBRowYUYHQSq+jm4UzTxtchUjMzN5XtZu7ERFAdLF+RkQ0RURTY2NjBSMzM9u2VTrxvyZpKED67+sVPr+ZWe5VOvHfCkxL56cBcyt8fjOz3Ctnd87rgd8DH5PUKulLwAXAgZKeAz6bLpuZWQWV7eZuRBzXyap/KNc5zcysOP9y18wsZ5z4zcxyxonfzCxnnPjNzHLGid/MLGc8Hr+ZWYmMuWjqVmUt02+oQiRdc43fzCxnnPjNzHLGid/MLGec+M3McsaJ38wsZ9yrp8Lq5a6/mW27XOM3M8sZJ34zs5xx4jczyxknfjOznHHiNzPLGSd+M7OcqUp3TknLgTXAZmBTRDRVIw4zszyqZj/+z0TEG1U8v5lZLrmpx8wsZ6qV+AP4naTHJDVXKQYzs1yqVlPP/hHxsqT/Bdwt6emIeKBwg/QLoRlgxIgR1YjRzGybVJUaf0S8nP77OnALMLGDbWZERFNENDU2NlY6RDOzbVbFE7+kHSTt2DYPHAQsrXQcZmZ5VY2mniHALZLazn9dRNxVhTjMzHKp4ok/Il4ExlT6vGZmlnB3TjOznHHiNzPLGSd+M7OcceI3M8sZJ34zs5zZ5h+2fsplb25VNvO0wVWIxMysNrjGb2aWM078ZmY548RvZpYzTvxmZjnjxG9mljPbfK+e3uqoV9CCdadtVdYy/YZKhJNZrfVmGnPR1K3KunPNeru/Wal19BmrF67xm5nljBO/mVnOOPGbmeWME7+ZWc7k8uZuXm8UVup19/amVz3fNKtHnV3veujEUK+q3fnCNX4zs5xx4jczy5mqJH5JB0t6RtLzks6qRgxmZnlV8cQvqS9wKXAIsDdwnKS9Kx2HmVleVaPGPxF4PiJejIh3gRuAKVWIw8wslxQRlT2hdDRwcEScnC6fAPxdRJzebrtmoDld/BjwTEUDzW4X4I1qB1GDfF0652vTOV+bzvXk2nwkIhrbF9Zsd86ImAHMqHYcxUhaGBFN1Y6j1vi6dM7XpnO+Np0r5bWpRlPPy8DwguVhaZmZmVVANRL/o8CekkZJ2g6YCtxahTjMzHKp4k09EbFJ0unAb4G+wJUR8WSl4yihmm+OqhJfl8752nTO16ZzJbs2Fb+5a2Zm1eVf7pqZ5YwTv5lZzjjxZ1BsiAlJJ0laIWlROp1cjTirQdKVkl6XtLST9ZL03+m1WyxpXKVjrIYM12WypNUF75l/r3SM1SJpuKT7JD0l6UlJ3+hgm9y9bzJel9K8byLCUxcTyQ3oF4Ddge2AFmDvdtucBPys2rFW6fp8ChgHLO1k/aHAnYCA/YD51Y65Rq7LZOD2asdZpWszFBiXzu8IPNvBZyp375uM16Uk7xvX+IvzEBNdiIgHgK4G0J8CXB2JPwCDJA2tTHTVk+G65FZEvBIRj6fza4BlwG7tNsvd+ybjdSkJJ/7idgNeKlhupeP/jKPSP0lvkjS8g/V5lfX65dEnJLVIulPS31Y7mGqQNBLYF5jfblWu3zddXBcowfvGib80bgNGRsQ+wN3ArCrHY7XvcZJxVMYAlwC/rm44lSdpIHAzcEZEvF3teGpFketSkveNE39xRYeYiIiVEbEhXfwFML5CsdUDD9HRgYh4OyLWpvN3AP0k7VLlsCpGUj+S5DY7IuZ0sEku3zfFrkup3jdO/MUVHWKiXdvj4SRtc5a4FTgx7aWxH7A6Il6pdlDVJunDkpTOTyT5LK6sblSVkb7uK4BlEfGTTjbL3fsmy3Up1fumZkfnrBXRyRATks4FFkbErcDXJR0ObCK5oXdS1QKuMEnXk/Q02EVSK/BDoB9ARFwO3EHSQ+N5YB3whepEWlkZrsvRwKmSNgHvAFMj7baRA5OAE4AlkhalZd8FRkCu3zdZrktJ3jcessHMLGfc1GNmljNO/GZmOePEb2aWM078ZmY548RvZlZjig3y127bj0i6Jx05YJ6kYcX2ceI3qzGSfiFp73T+u+3WPVKdqKzCrgIOzrjtRSTjGu0DnAv8Z7Ed3J3TrIZJWhsRA6sdh1VeOl7P7RHx8XR5D+BSoJHktw2nRMTTkp4EDo6Il9Ifd62OiA92dWzX+K2mSfqBkmchPCTpeknT0/I9JN0l6TFJD0raKy2/Kh3H/RFJL0o6Oi2XpAslLZW0RNLn0/LJku6XNDfd/gJJx0takG63R7pdo6SbJT2aTpM6iPWk9DjzJD0n6YcF676ZnnuppDPSsh0k/SYdcGtpQUzzJDVJugDYXsm467PTdWszvJ55SgYLfFrS7LZfelrdmwF8LSLGA9OBy9LyFuBz6fyRwI6Sdu7ySNUeg9qTp84mYAKwCGggGZ/8OWB6uu4eYM90/u+Ae9P5q4AbSSo1e5MMqQ1wFMkAen2BIcCfScY/nwysSuf7k4wHc066zzeAn6bz1wH7p/MjSH5W3z7ek4BXgJ2B7YGlQBPJ2E1LgB2AgcCTJCMvHgXMLNh/p/TfeUBTOr+23TnWZng9q0nGtukD/L4tbk/1NQEjSZ/nkL5v3kk/D23TsnTdrsAc4Angv0hGMh3U1bE9ZIPVsknA3IhYD6yXdBu8N3rhJ4EbCyqz/Qv2+3VEbAGekjQkLdsfuD4iNgOvSbqf5IvlbeDRSMeBkfQC8Lt0nyXAZ9L5zwJ7F5zvg5IGRjpgVoG7I2Jleqw56XkDuCUi/lJQ/vfAXcCPJf2I5E/6B7txbbp6PQsiojU91yKSBPJQN45ttacPsCoixrZfERH/j7TGn342joqIVV0dzInf6lGnH4LUhoL5LM0chdtvKVjewvufkT7AfumXUFfa3zTr9CZaRDyr5JGChwLnS7onIs7NEG8xha9nM/6c172IeFvSHyUdExE3ps13+0REi5LROd9MKzvfAa4sdjy38Vstexg4TFJDWpP5Z0g+BMAfJR0D77V3jylyrAeBz0vqK6mR5NGIC7oRy++Ar7UtSBrbyXYHShosaXvgiPQ1PAgcIWmApB1I2mEflLQrsC4irgUuJHlUY3sblQzVW+rXYzVMySB/vwc+JqlV0peA44EvSWohaS5sexLgZOAZSc+SNPv9R7HjuyZgNSsiHpV0K7AYeI2k6WV1uvp44OeSvk8y6uUNJDe5OnML8Il0mwC+HRGvtt0UzuDrwKWSFpN8bh4AvtLBdgtIxlMfBlwbEQshuenM+4n5FxHxhKR/BC6UtAXYCJzawfFmAIslPR4Rx5fw9VgNi4jjOlm1VRfPiLgJuKk7x3d3Tqtpbe3okgaQJNvmSJ9LWmsknURyU/b0asdi1hXX+K3WzVDyY6YGYFatJn2zeuIav5lZzvjmrplZzjjxm5nljBO/mVnOOPGbmeWME7+ZWc78f3EnFmOQLYGiAAAAAElFTkSuQmCC\n",
682
      "text/plain": [
683
       "<Figure size 432x288 with 1 Axes>"
684
      ]
685
     },
686
     "metadata": {
687
      "needs_background": "light"
688
     },
689
     "output_type": "display_data"
690
    },
691
    {
692
     "data": {
693
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAckklEQVR4nO3de5QdZZnv8e8vENKEhEtCL04kxAQGL0hISEJGDUJQREQhIKB4PBiOQJSLwII4B3HmiMKsIwPinMMImSAMIAHO4SYXAWUBkZsSgibcIlfj2BggBAkJEEjIc/6ot3G7s7u70t21L12/z1q1ui5vvfXU3t1P137r3W8pIjAzs/IY1OgAzMysvpz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfcpO0VNJbklZJek3Sg5K+IWlQ2r6PpHskrZS0tGK/MZJWV0wh6Y2K5U+kch+XdHeqf6WkWyTtkrZ9paL8W5LWV9aZJ75U5jJJZ1csHy3p92mflyTdJmm4pNsr6l8r6Z2K5TmSNpN0XTpmSJpe9VpJ0jmSVqTpHEnK8RrPlfRUOr+jcr4vc6pe37clrarY/uH0uq6U9KykQ6r2HyrpQkmvpDL31jjGZpKWSOqoWr+JpLMl/Tm9hr+TtHWeuK2BIsKTp1wTsBTYN81vBRwE/AH4j7RuKnAkMAtY2k09Afxd1bqPAauBk4HhwAjgbOAvwI5VZacDHRsbX1p/GXB2mt8beAnYPS2PAGYCw6vqfW+finWbAacAewLLgOlV278OPAWMBrYHngS+keM1PgH4FLAQOKqX79NlwKVpflPgaeBUYBPgk8AbwAcqyl8JXAO0pzKTa9T5HeDe6tc9vUd3A+8HBOwKtDX6d9VTD78jjQ7AU+tMlYm1Yt1UYD2wa8W6fXuR+O8DLqxR9nbgiqp1PSb+ruKrSvyzgZ/lOO8NEn/V9o4aif9BYFbF8tHAbzbitb6/N4kf2AJYBeydlncl+4eqijK/BM5K8x8CXge27KbOccAS4LOVrzuwTap7p0b/bnrauMlNPdYnEbGALPF9ord1SBoKfBy4tsbm/wd8urd19xDfQ8BnJH1P0jRJQ3p7nBo+AiyuWF6c1hXtUGA52dV5VzqvzCH7x/hH4HupqecxSYdWlb8AOAN4q2r9eGAdcJikFyU9LemEPp+BFc6J3/rDn8maSXprBNnv4rIa25YB2/ahbugivoi4D/gCMAn4ObBC0vmSNunj8QCGASsrllcCw/K08/fRTLJPSJ2jLz4FvAx8S9JgSfuRNXENTdtHk/0TWAm8DzgRuFzShwHS/YBNIuLGGscaTdak9gGyTwWHAWdK6vU/aqsPJ37rD9sDr/Zh/7+QNceMqrFtFPBKH+qGbuKLiNsj4kCyfwwzgKOAY/p4PMiaQLasWN4SWF2RkPudpDFkzWBXdK6LiLXAwcDngBeB08g+RXXepH0LWEvWlPVORPwKuAfYT9IWwL8AJ3VxyM5PAN+PiLci4lGyewUH9ONpWQGc+K1PJO1Blljv720dEfEG8Gvg8Bqbvwjc1du688YXEesj4i6yG5W7dlc2pyeACRXLE9K6Ih0JPBARz1eujIhHI2LviBgZEZ8BdgQWpM2P1qin85/TzsBY4D5JLwI3AKNSs87Yin2jxr7WxJz4rVckbSnp82RXeFdGxGOSBklqAwZnRdQmabOcVZ4OzJR0UupOuU3qdvkx4Hv9EV+NMjMkHZGOJUlTyZpBfpPzGEPS+QJsls63synnCuBUSdtLeh/ZlfZlOercLNUpYHCqM+/f6VdrHUPSbqmeoZJmk32K6ix3L/CfwLclbSppGrAP8AvgcWAHYGKajiHrBTUR+FNEPEd2U/476bX4MHAEcGvOeK1RGn132VPrTGS9Zt4i6zWykuwq/QSyNmDImhmiappfo54NevWk9XsC88maSV4na3fftUa56XTdq6fL+FKZy/hrr569yD5NvJL2eRr4hxr1vrdPjeNVn+/YtE1kzSSvpulfqOhZ081rPL9GndNz7Pcxsm6aw2tsO5esOW01WS+p6h5VH0mv1Rtk3U4P6eIYG7zuZJ+m7kh1Pw98vdG/p556npTePDMzKwk39ZiZlYwTv1kd6W+Hnqicur3xq78dQqJyOqNesdvA4aYeM7OS2bSoilPPhHuBIek410XEdyWNI+tpMRJ4BDgyIt7prq5tt902xo4dW1SoZmYD0iOPPPJKRLRXry8s8QNvA5+MiNWSBgP3S7qdbLCoH0XENZLmkI1hclF3FY0dO5aFCxcWGKqZ2cAj6Y+11hfWxh+Z1WlxcJqCbHTA69L6y8m+VWhmZnVS6M3dNFb3IrKxQu4EngNei4h1qUgHWT9gMzOrk0ITf0S8GxETyQZzmko2BGwukmZJWihp4fLly4sK0cysdIps439PRLwm6R6ybxduLWnTdNU/Gnihi33mAnMBpkyZ4q5HZlaYtWvX0tHRwZo1axodSq+0tbUxevRoBg8enKt8kb162oG1KelvTjam+jlkI/8dRtazZyZwU1ExmJnl0dHRwfDhwxk7dizFj5zdvyKCFStW0NHRwbhx43LtU2RTzyjgHkmPAg8Dd0bErcD/IBu86lmyLp2XFBiDmVmP1qxZw8iRI1su6QNIYuTIkRv1aaWwK/7Ixubevcb658na+83MmkYrJv1OGxu7h2wwMyuZutzcNTNrJcde2JcHym3o4uP78mTS/ufEb2YNUyvBNluSHIic+M3MmsRZZ53FlVdeSXt7OzvssAOTJ0/mkEMO4YQTTmD58uUMHTqUiy++mA99KPdXompy4jczawIPP/ww119/PYsXL2bt2rVMmjSJyZMnM2vWLObMmcPOO+/MQw89xPHHH8/dd9/dp2M58ZuZNYEHHniAGTNm0NbWRltbGwceeCBr1qzhwQcf5PDDD3+v3Ntvv93nYznxm5k1qfXr17P11luzaNGifq3X3TnNzJrAtGnTuOWWW1izZg2rV6/m1ltvZejQoYwbN45rr70WyL6lu3jx4j4fy1f8ZmZVGtGzaI899uCggw5it912Y7vttmP8+PFstdVWzJs3j+OOO46zzz6btWvXcsQRRzBhwoQ+HcuJ38ysScyePZszzzyTN998k7322ovJkyczbtw47rjjjn49jhO/mVmTmDVrFk8++SRr1qxh5syZTJo0qZDjOPGbmTWJq666qi7H8c1dM7OSceI3MysZJ34zs5Jx4jczKxnf3DUzqzLhvCP6tb7Fs6/pscywYcNYvXp1vx63K77iNzMrGSd+M7MmMn/+fPbee29mzJjBjjvuyOmnn868efOYOnUq48eP57nnnuvzMZz4zcyazOLFi5kzZw5Llizhpz/9KU8//TQLFizgmGOO4YILLuhz/U78ZmZNZo899mDUqFEMGTKEnXbaif322w+A8ePHs3Tp0j7X78RvZtZkhgwZ8t78oEGD3lseNGgQ69at63P9TvxmZiXj7pxmZlXydL9sZU78ZmZNoLMP//Tp05k+ffp76+fPn//efPW23nJTj5lZyTjxm5mVTGGJX9IOku6R9KSkJySdnNafKekFSYvSdEBRMZiZ5RURjQ6h1zY29iLb+NcBp0XEbyUNBx6RdGfa9qOIOK/AY5uZ5dbW1saKFSsYOXIkkhodzkaJCFasWEFbW1vufQpL/BGxDFiW5ldJWgJsX9TxzMx6a/To0XR0dLB8+fJGh9IrbW1tjB49Onf5uvTqkTQW2B14CJgGnCjpq8BCsk8Ff6mxzyxgFsCYMWPqEaaZldTgwYMZN25co8Oom8Jv7koaBlwPnBIRrwMXATsBE8k+Efyw1n4RMTcipkTElPb29qLDNDMrjUITv6TBZEl/XkTcABARL0XEuxGxHrgYmFpkDGZm9reK7NUj4BJgSUScX7F+VEWxQ4DHi4rBzMw2VGQb/zTgSOAxSYvSujOAL0uaCASwFPh6gTGYmVmVInv13A/U6hd1W1HHNDOznvmbu2ZmJePEb2ZWMk78ZmYl48RvZlYyTvxmZiXjxG9mVjJO/GZmJePEb2ZWMk78ZmYl44etmw1QE847YoN1i2df04BIrNn4it/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxkCkv8knaQdI+kJyU9IenktH6EpDslPZN+blNUDGZmtqEir/jXAadFxC7AR4ETJO0CnA7cFRE7A3elZTMzq5PCEn9ELIuI36b5VcASYHtgBnB5KnY5cHBRMZiZ2Ybq0sYvaSywO/AQsF1ELEubXgS262KfWZIWSlq4fPnyeoRpZlYKhSd+ScOA64FTIuL1ym0REUDU2i8i5kbElIiY0t7eXnSYZmalUWjilzSYLOnPi4gb0uqXJI1K20cBLxcZg5mZ/a0eE7+kaZK2SPP/TdL5kt6fYz8BlwBLIuL8ik03AzPT/Ezgpo0P28zMeivPFf9FwJuSJgCnAc8BV+TYbxpwJPBJSYvSdADwA+DTkp4B9k3LZmZWJ5vmKLMuIkLSDODfIuISSUf3tFNE3A+oi82f2pggzcys/+RJ/KskfZvs6v0TkgYBg4sNy8zMipKnqedLwNvA1yLiRWA0cG6hUZmZWWF6TPwp2V8FbCPpQOCdiMjTxm9mZk0oT6+eY4AFwBeAw4DfSPpa0YGZmVkx8rTxfwvYPSJWAEgaCTwIXFpkYGZmVow8bfwrgFUVy6vSOjMza0F5rvifBR6SdBPZ8AozgEclnQpQ9eUsMzNrcnkS/3Np6tT5Tdvh/R+OmZkVrcfEHxHfq0cgZmZWHz0mfkkfAGYDYyvLR8QniwvLzMyKkqep51pgDvAT4N1iwzEzs6LlHavnosIjMTOzusjTnfMWScdLGpUelD5C0ojCIzMzs0LkueLvHDv/WxXrAtix/8MxM7Oi5enVM64egZiZWX3k6dVzOHBHRKyS9I/AJOCsiPhd4dGZWS7HXvhqo0OwFpKnjf+fUtLfk+yJWZeQ9fIxM7MWlCfxd3bh/BwwNyJ+DmxWXEhmZlakPIn/BUn/TvZAltskDcm5n5mZNaE8CfyLwC+Az0TEa8AI/raHj5mZtZA8vXreBG6oWF4GLCsyKDMzK46bbMzMSsaJ38ysZLpN/JI2kXRPvYIxM7PidZv4I+JdYL2kreoUj5mZFSzPWD2rgcck3Qm80bkyIk4qLCozMytMnsR/AxW9eszMrLXl6c55uaTNgTER8VTeiiVdCnweeDkidk3rzgSOBZanYmdExG0bHbWZmfVaj716JB0ILALuSMsTJd2co+7LgP1rrP9RRExMk5O+mVmd5enOeSYwFXgNICIWkWMs/oi4F/CQgWZmTSZP4l8bESur1q3vwzFPlPSopEslbdNVIUmzJC2UtHD58uVdFTMzs42UJ/E/Iem/AptI2lnSBcCDvTzeRcBOwESyYR9+2FXBiJgbEVMiYkp7e3svD2dmZtXyJP5vAh8B3gauBl4HTunNwSLipYh4NyLWAxeTNSGZmVkd5R2k7TuSzskWY1VvDyZpVBrkDeAQ4PHe1mVmZr2T59GLewCXAsPT8krgaxHxSA/7XQ1MB7aV1AF8F5guaSLZw9qXAl/vQ+xmZtYLeb7AdQlwfETcB5AewfgfwG7d7RQRX+6iLjMza6Bcj17sTPoAEXE/sK64kMzMrEhdXvFLmpRmf5UevXg1WRPNl4D5xYdmZmZF6K6pp7qr5Xcr5qOAWMzMrA66TPwRsU89AzEzs/rI06tna+CrwNjK8h6W2cysNeXp1XMb8BvgMfo2VIOZmTWBPIm/LSJOLTwSMzOrizzdOX8q6VhJoySN6JwKj8zMzAqR54r/HeBc4Dv8tTdPkGNoZjMzaz55Ev9pwN9FxCtFB2NmZsXL09TzLPBm0YGYmVl95LnifwNYJOkesqGZAXfnNDNrVXkS/8/SZGZmA0Ce8fgvr0cgZmZWH3m+ufsHaozNExHu1WNm1oLyNPVMqZhvAw4H3I/frB8de+GrNddffLz/1FrJhPOO2GDd4tnXNCCS7vXYqyciVlRML0TEvwKfKz40MzMrQp6mnkkVi4PIPgHk+aRgZmZNKE8CrxyXfx3Zs3K/WEg0ZmZWuDy9ejwuv5nZAJKnqWcIcCgbjsf//eLCMjOzouRp6rkJWAk8QsU3d83MrDXlSfyjI2L/wiMxM7O6yDNI24OSxhceiZmZ1UWeK/49gaPSN3jfBgREROxWaGRmZlaIPIn/s4VHYWZmdZOnO+cfe1OxpEuBzwMvR8Suad0I4P+S9RBaCnwxIv7Sm/rNzKx38rTx99ZlQPVN4dOBuyJiZ+CutGxmZnVUWOKPiHuB6pGnZgCdwzxfDhxc1PHNzKy2eo+5s11ELEvzLwLbdVVQ0ixgFsCYMWPqEJpZ82mV0R6ttRTZ1NOtiAhqjPNfsX1uREyJiCnt7e11jMzMbGCrd+J/SdIogPTz5Tof38ys9Oqd+G8GZqb5mWTDQZiZWR0VlvglXQ38GvigpA5JRwM/AD4t6Rlg37RsZmZ1VNjN3Yj4chebPlXUMc3MrGcNu7lrZmaN4cRvZlYyfnaumTWVWt9dAH9/oT/5it/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGQ8OqeZWROo56ikvuI3MysZJ34zs5Jx4jczKxknfjOzknHiNzMrGSd+M7OSGfDdOY+98NUN1l18/IgGRGJm1hx8xW9mVjJO/GZmJePEb2ZWMg1p45e0FFgFvAusi4gpjYjDzKyMGnlzd5+IeKWBxzczKyU39ZiZlUyjrvgD+KWkAP49IuZWF5A0C5gFMGbMmH49eK1R8IoYAc/Mv2vWjBp1xb9nREwCPgucIGmv6gIRMTcipkTElPb29vpHaGY2QDUk8UfEC+nny8CNwNRGxGFmVkZ1T/yStpA0vHMe2A94vN5xmJmVVSPa+LcDbpTUefyrIuKOBsRhZlZKdU/8EfE8MKHexzUzs4y7c5qZlcyAH52z2fS1e5+7B5q1vlqjBteTr/jNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxk3J2zQI3ustUXrfqQ+lpxL3jz+A3WuQvsX3X1e5r3dWvV1zxv3JD/vFuFr/jNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErG/fibWLP1E67XkNCN6hfe1eud9/sLzfZ+lZWHLu+Zr/jNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxk3J1zgGrkULmtOkxvV9w9sHm5C23v+IrfzKxknPjNzErGid/MrGQakvgl7S/pKUnPSjq9ETGYmZVV3RO/pE2AHwOfBXYBvixpl3rHYWZWVo244p8KPBsRz0fEO8A1wIwGxGFmVkqKiPoeUDoM2D8ijknLRwJ/HxEnVpWbBcxKix8EnqproH2zLfBKo4NogLKeN/jcy3jurXDe74+I9uqVTduPPyLmAnMbHUdvSFoYEVMaHUe9lfW8wedexnNv5fNuRFPPC8AOFcuj0zozM6uDRiT+h4GdJY2TtBlwBHBzA+IwMyulujf1RMQ6SScCvwA2AS6NiCfqHUfBWrKJqh+U9bzB515GLXvedb+5a2ZmjeVv7pqZlYwTv5lZyTjx90FPQ09IOkrSckmL0nRMI+Lsb5IulfSypMe72C5J/ye9Lo9KmlTvGIuQ47ynS1pZ8X7/z3rHWARJO0i6R9KTkp6QdHKNMgP1Pc9z7q33vkeEp15MZDemnwN2BDYDFgO7VJU5Cvi3RsdawLnvBUwCHu9i+wHA7YCAjwIPNTrmOp33dODWRsdZwHmPAial+eHA0zV+1wfqe57n3FvuffcVf++VduiJiLgX6O4JGDOAKyLzG2BrSaPqE11xcpz3gBQRyyLit2l+FbAE2L6q2EB9z/Oce8tx4u+97YE/VSx3UPsX4tD00fc6STvU2D4Q5X1tBqKPSVos6XZJH2l0MP1N0lhgd+Chqk0D/j3v5tyhxd53J/5i3QKMjYjdgDuByxscjxXrt2Rjo0wALgB+1thw+pekYcD1wCkR8Xqj46mnHs695d53J/7e63HoiYhYERFvp8WfAJPrFFujlXJYjoh4PSJWp/nbgMGStm1wWP1C0mCyxDcvIm6oUWTAvuc9nXsrvu9O/L3X49ATVW2cB5G1D5bBzcBXU0+PjwIrI2JZo4MqmqT/IklpfirZ39eKxkbVd+mcLgGWRMT5XRQbkO95nnNvxfe9aUfnbHbRxdATkr4PLIyIm4GTJB0ErCO7KXhUwwLuR5KuJuvJsK2kDuC7wGCAiJgD3EbWy+NZ4E3gvzcm0v6V47wPA46TtA54CzgiUrePFjcNOBJ4TNKitO4MYAwM7PecfOfecu+7h2wwMysZN/WYmZWME7+ZWck48ZuZlYwTv5lZyTjxm5k1mZ4GBKwq+35Jd6URAuZLGt3TPk78Zk1G0k8k7ZLmz6ja9mBjorI6uwzYP2fZ88jGSdoN+D7wv3rawd05zZqYpNURMazRcVj9pbGBbo2IXdPyTsCPgXay70ocGxG/l/QEsH9E/Cl9kWxlRGzZXd2+4remJumflD3z4H5JV0uandbvJOkOSY9Iuk/Sh9L6y9K48A9Kel7SYWm9JJ0r6XFJj0n6Ulo/XdKvJN2Uyv9A0lckLUjldkrl2iVdL+nhNE2rEetRqZ75kp6R9N2KbaemYz8u6ZS0bgtJP0+Dez1eEdN8SVMk/QDYXNkY7/PSttU5zme+skEBfy9pXue3Sq3lzQW+GRGTgdnAhWn9YuALaf4QYLikkd3W1OhxoT156moC9gAWAW1kY6E/A8xO2+4Cdk7zfw/cneYvA64lu6jZhWzobIBDyQbK2wTYDvhPsrHWpwOvpfkhZOPLfC/tczLwr2n+KmDPND+G7Cv81fEeBSwDRgKbA48DU8jGaHoM2AIYBjxBNsrjocDFFftvlX7OB6ak+dVVx1id43xWko2VMwj4dWfcnlprAsaSnv2Qfm/eSn8PndOStO19wA3A74D/TTYy6tbd1e0hG6yZTQNuiog1wBpJt8B7IyV+HLi24mJ2SMV+P4uI9cCTkrZL6/YEro6Id4GXJP2K7B/L68DDkcaVkfQc8Mu0z2PAPml+X2CXiuNtKWlYpMG5KtwZEStSXTek4wZwY0S8UbH+E8AdwA8lnUP2kf6+jXhtujufBRHRkY61iCyB3L8RdVvzGQS8FhETqzdExJ9JV/zpb+PQiHitu8qc+K0VdflHkLxdMZ+nmaOy/PqK5fX89W9kEPDR9E+oO9U3zbq8iRYRTyt7ROEBwNmS7oqI7+eItyeV5/Mu/jtveRHxuqQ/SDo8Iq5NzXe7RcRiZSOBvpoudr4NXNpTfW7jt2b2AHCgpLZ0JfN5yP4IgD9IOhzea++e0ENd9wFfkrSJpHayxygu2IhYfgl8s3NB0sQuyn1a0ghJmwMHp3O4DzhY0lBJW5C1w94n6X3AmxFxJXAu2WMdq61VNixwf5+PNTFlAwL+GvigpA5JRwNfAY6WtJisubDziX/TgackPU3W7PfPPdXvKwFrWhHxsKSbgUeBl8iaXlamzV8BLpL0j2QjZF5DdpOrKzcCH0tlAviHiHix86ZwDicBP5b0KNnfzb3AN2qUW0A2dvto4MqIWAjZTWf+mph/EhG/k/QZ4FxJ64G1wHE16psLPCrptxHxlX48H2tiEfHlLjZt0MUzIq4DrtuY+t2d05paZzu6pKFkyXZWpGegNhtJR5HdlD2x0bGYdcdX/Nbs5ir7MlMbcHmzJn2zVuIrfjOzkvHNXTOzknHiNzMrGSd+M7OSceI3MysZJ34zs5L5/2KCEnxCpjPAAAAAAElFTkSuQmCC\n",
694
      "text/plain": [
695
       "<Figure size 432x288 with 1 Axes>"
696
      ]
697
     },
698
     "metadata": {
699
      "needs_background": "light"
700
     },
701
     "output_type": "display_data"
702
    },
703
    {
704
     "data": {
705
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAhz0lEQVR4nO3de7wVdb3/8dcbRLYKiuCOUFTwUh5vIGytjmbkpcxS7HiJ8hiWxikrs7KiTqfMPB392f1qpCYlXvKWl8qjP5IySRCVLV5KRTExRERREFHQz/ljvluXi32Zvdmz1trO+/l4zGPPfOfy/axZsz9r1ndmfUcRgZmZlUe/egdgZma15cRvZlYyTvxmZiXjxG9mVjJO/GZmJePEb2ZWMk78ZmYl48RvfYKkVZJ2qHccZq8HTvy2HkmLJD0vaaWkFZJmS/q4pH5p/jsl3STpGUmLurHd0yRdmGO5WZJOrCyLiEER8VC3X0y+uD4r6XFJz0o6X9LAinkhaadubOsmScvStlolTaya/yFJj0h6TtJvJQ3Nsc1PSZon6QVJF+SM49j0Ydk2rE6vZXyaP0TSdElPpOG0drbxGUkPp1jvk/SmdpY5v719JGlSWuc5SQslvT1P3FYbTvzWkcMiYjCwPXAm8CXgvDTvOeB84Au9WaEyNT0mJb0bmAocSPZadwC+sQGb/AwwIiI2B6YAF0oakeraDfg5cBwwHFgN/DTHNv8JnEG2z3OJiBnpw3JQRAwCTgIeAu5Ii3wP2BQYBewDHCfpI23rpw/eE4D3AoOA9wFPVtYhaT9gx+q6JR0MnAV8BBgM7J/qtkYRER48vGYAFgEHVZXtA7wM7F5RdhCwqJ31dwNuBJ4ClgJfAQ4BXgTWAquA1rTsLOC/gVuA54EZwEvAmrTcj9NyAeyUxi8gS5h/SMvcArwR+D7wNPA3YK+KeLYGrgCWAQ8DJ1fMuwj4VsX0gcDjafzPqd7nUj0fSOUfAx5Mr+8aYOsO9uM+6XXsk6a/BVxUMX/HtE8G53xfzgAu6OF7ehPw9YrpJ4G9K6a/AtycxvsBjwIHdrK9jYA7gT0r35s0bzZwQr2PYw8dDz7jt1wiYi6wGOj0K7ukwcD/B64nS7g7ATMj4nqyxHdpZGehYypWO47s7HgwcDxwM/CptNynOqjqGOCrwFbAC8Bfyc5mtwIuB76b4ukHXAu0AtuQJfZT0pk+ZB9SrRXbbQWGSxoWEfunsjEplkslHQD8T6p/BPAIcEnVPrhO0hpgDtkH27z26oqIhWSJf70mlN4kaXuys+5fVc+qGt89jY9Mw+6SHk3NPd+o+jb2WeDPEXFXVV39gRagWdKDkhZL+rGkTXrzNdmGceK37vgn0FWb9PvIzpi/ExFrImJlRMzpYp0LIuKeiFgXEWtzxnJVRNweEWuAq4A1EfGriHgJuBTYKy23N9AcEadHxIuRXSf4BTApzR8EPFOx3bbxwR3UeyxwfkTcEREvAF8G3iZpVNsCEfG+tP6hwA0R8XIHdbXV11FdveXDZGfzD1eUXQ9MlTQ4tc9/lKzpB7KkD/AuYA/gncAHyZp+kLQt8B/A19qpazgwADiK7CRhLNl78dVefD22gZz4rTu2IWve6My2wMJubvfRHsSytGL8+XamB6Xx7YGt00XqFZJWkDVrDE/zVwGbV6zbNr6yg3q3JjvLByAiVgHLyfYNFeVrI+IPwLskHd5BXW31dVRXb/kwML2q7GSy/fQAcDVwMdk3OlI5wP+LiBURsYjs2sShqfz7wOkRUf0hVrnujyJiSUQ8Sfbt69B2lrU6ceK3XCTtTZbc/tLFoo+SXSBtT0d9gFeX92Zf4Y8CD0fEkIphcES0JaJ7gMpmpzHA0ohY3sH2/kn2YQKApM2AYcBjHSy/Ea9eAH1NXen21IHA/d18TblJ2pfsw+ryyvKIeCoijo2IN0bEbmS5YG6a/XeyJqjK96Fy/EDg7HQn1OOp7K+SPhQRT5N9gHS0rjUAJ37rlKTNJb2PrB37wohYIKmfpCayr/SS1CRp47TKdcAISadIGpiaEt6S5i0FRuW4c2cpHX94dNdcYKWkL0naRFJ/SbunDzLI2r1PkLSrpCFkTRIXdBLLxcBHJI1Nt31+C5gTEYsk7SLpPameAZL+naxt/U9p3RnAYZLenj4wTgeujIhOz/glbZT2d3+gf9rfG+V8/ZOBK6rrkLSjpGFpf7yH7BrLGQARsZqsueyL6f0bmeZfl1Z/E9kH2Ng0ABxG1uQG8Evg05LeIGlLsusBbetaI6j31WUPjTeQ3dXzPFkTxDNkF04/CfRP8yeQncVVDrMq1t8dmEl2h83jwNRUPozsG8PTwB2pbBZwYlX9byM7C34a+GEqq76r54yK5U+sqn8nYF3F9NZkCfvxtM1bqbhrCfgcWYJ/lixpDayY93FgCbACOKaibCFZs9d1wMhU/i9kF3RXpuVvA95f9do+BPyD7E6hq4GhOd6P09rZ36flWK8pxbHe3TlkF6f/SXZL6Xzg3VXzNyf7sF9J9q3pa4A6qKf6rp4BZHddrUj7/IdAU72Paw+vDkpvlJmZlYSbeszMSsaJ36zOJG1X1b1C5bBdJ+t9pYN1/lDL+K3vcVOPmVnJ5L0zoK622mqrGDVqVL3DMDPrU26//fYnI6K5urxPJP5Ro0Yxb968rhc0M7NXSHqkvXK38ZuZlYwTv5lZyTjxm5mVTJ9o4zczK9LatWtZvHgxa9asqXcoPdLU1MTIkSMZMGBAruWd+M2s9BYvXszgwYMZNWoUkrpeoYFEBMuXL2fx4sWMHj061zpu6jGz0luzZg3Dhg3rc0kfQBLDhg3r1rcVJ34zM+iTSb9Nd2N34jczKxm38ZuZVfnYT7t60Fz3/OKkrp5YWltO/GZWN+0l2EZLkq9HTvxmZg3im9/8JhdeeCHNzc1su+22jB8/nve///188pOfZNmyZWy66ab84he/YJdddtmgepz4zcwawG233cYVV1xBa2sra9euZdy4cYwfP54pU6ZwzjnnsPPOOzNnzhxOOukk/vjHP25QXU78ZmYN4JZbbmHixIk0NTXR1NTEYYcdxpo1a5g9ezZHH330K8u98MILG1xXoYlf0mfJnocawALgI8AIsmd5DgNuB46LiBeLjMPMrC96+eWXGTJkCPPnz+/V7RZ2O6ekbYCTgZaI2B3oD0wCzgK+FxE7kT34+oSiYjAz6yv23Xdfrr32WtasWcOqVau47rrr2HTTTRk9ejSXXXYZkP1Kt7W1dYPrKrqpZyNgE0lrgU2BJcABwIfS/OnAacDPCo7DzCy3etxZtPfee3P44Yez5557Mnz4cPbYYw+22GILZsyYwSc+8QnOOOMM1q5dy6RJkxgzZswG1VVY4o+IxyR9G/gH8DxwA1nTzoqIWJcWWwxs0976kqYAUwC2267Dx46a2evMmG9Pare89dRLahxJ7Z166qmcdtpprF69mv3335/x48czevRorr/++l6tp8imni2BicBoYGtgM+CQvOtHxLSIaImIlubm9Z4cZmb2ujNlyhTGjh3LuHHjOPLIIxk3blwh9RTZ1HMQ8HBELAOQdCWwLzBE0kbprH8k8FiBMZiZ9RkXXXRRTeopsq+efwBvlbSpsh6EDgTuBW4CjkrLTAauLjAGMzOrUljij4g5wOXAHWS3cvYDpgFfAj4n6UGyWzrPKyoGMzNbX6F39UTE14GvVxU/BOxTZL1mZtYxd8tsZlYy7rLBzKxKR7eU9lSeW1EHDRrEqlWrerXejviM38ysZJz4zcwayKxZs3jHO97BxIkT2WGHHZg6dSozZsxgn332YY899mDhwoUbXIcTv5lZg2ltbeWcc87hvvvu49e//jX3338/c+fO5cQTT+RHP/rRBm/fid/MrMHsvffejBgxgoEDB7Ljjjvyrne9C4A99tiDRYsWbfD2nfjNzBrMwIEDXxnv16/fK9P9+vVj3bp1Ha2WmxO/mVnJ+HZOM7Mqr/eeQJ34zcwaQNs9/BMmTGDChAmvlM+aNeuV8ep5PeWmHjOzknHiNzMrGSd+MzOy59n2Vd2N3YnfzEqvqamJ5cuX98nkHxEsX76cpqam3Ov44q6Zld7IkSNZvHgxy5Ytq3coPdLU1MTIkSNzL+/Eb2alN2DAAEaPHl3vMGqmyIetv1nS/IrhWUmnSBoq6UZJD6S/WxYVg5mZra/IRy/+PSLGRsRYYDywGrgKmArMjIidgZlp2szMaqRWF3cPBBZGxCPARGB6Kp8OHFGjGMzMjNol/knAxWl8eEQsSeOPA8PbW0HSFEnzJM3rqxdczMwaUeGJX9LGwOHAZdXzIrt3qt37pyJiWkS0RERLc3NzwVGamZVHLc743wPcERFL0/RSSSMA0t8nahCDmZkltUj8H+TVZh6Aa4DJaXwycHUNYjAzs6TQxC9pM+Bg4MqK4jOBgyU9AByUps3MrEYK/QFXRDwHDKsqW052l4+ZmdWB++oxMysZJ34zs5Jx4jczKxknfjOzknHiNzMrGSd+M7OSceI3MysZJ34zs5Jx4jczKxknfjOzknHiNzMrGSd+M7OSceI3MysZJ34zs5Jx4jczKxknfjOzkin6CVxDJF0u6W+S7pP0NklDJd0o6YH0d8siYzAzs9cq+oz/B8D1EbELMAa4D5gKzIyInYGZadrMzGqksMQvaQtgf+A8gIh4MSJWABOB6Wmx6cARRcVgZmbrK/KMfzSwDPilpDslnZsevj48IpakZR4Hhre3sqQpkuZJmrds2bICwzQzK5ciE/9GwDjgZxGxF/AcVc06ERFAtLdyREyLiJaIaGlubi4wTDOzciky8S8GFkfEnDR9OdkHwVJJIwDS3ycKjMHMzKoUlvgj4nHgUUlvTkUHAvcC1wCTU9lk4OqiYjAzs/VtVPD2Pw3MkLQx8BDwEbIPm99IOgF4BDim4BjMzKxCoYk/IuYDLe3MOrDIes3MrGP+5a6ZWck48ZuZlYwTv5lZyTjxm5mVTJeJX9K+6Re3SPp3Sd+VtH3xoZmZWRHynPH/DFgtaQzweWAh8KtCozIzs8LkSfzrUtcKE4EfR8RPgMHFhmVmZkXJcx//SklfBo4D3i6pHzCg2LDMzKwoec74PwC8AHw0dcMwEji70KjMzKwwXSb+lOwvAraUdBjwYkS4jd/MrI/Kc1fPicBc4N+Ao4BbJX206MDMzKwYedr4vwDsFRHLASQNA2YD5xcZmJmZFSNPG/9yYGXF9MpUZmZmfVCeM/4HgTmSriZ7WtZE4C5JnwOIiO8WGJ+ZmfWyPIl/YRratD04xffym5n1QV0m/oj4Ri0CMTOz2ugy8Ut6E3AqMKpy+Yg4IMe6i8iuCbxE9gvgFklDgUvT9hYBx0TE090P3czMeiJPU89lwDnAuWQJvLveGRFPVkxPBWZGxJmSpqbpL/Vgu2Zm1gN5Ev+6iPhZL9Y5EZiQxqcDs3DiNzOrmTy3c14r6SRJIyQNbRtybj+AGyTdLmlKKhseEUvS+OPA8PZWlDRF0jxJ85YtW5azOjMz60qeM/7J6e8XKsoC2CHHuvtFxGOS3gDcKOlvlTMjIiRFeytGxDRgGkBLS0u7y5iZWffluatndE83HhGPpb9PSLoK2AdYKmlERCyRNAJ4oqfbNzOz7svTV8/Rkgan8a9KulLSXjnW26xivc2AdwF3A9fw6reIybz6uwAzM6uBPG38/xURKyXtBxwEnEd2l09XhgN/kdRK1snb7yLieuBM4GBJD6Ttndmz0M3MrCfytPG33cL5XmBaRPxO0hldrRQRDwFj2ilfDhzYrSjNzKzX5Dnjf0zSz8keyPJ7SQNzrmdmZg0oTwI/Bvhf4N0RsQIYymvv8DEzsz4kz109q4ErK6aXAEs6XsPMzBqZm2zMzErGid/MrGQ6TfyS+ku6qVbBmJlZ8TpN/BHxEvCypC1qFI+ZmRUsz338q4AFkm4EnmsrjIiTC4vKzMwKkyfxX0nFXT1mZta35bmdc7qkTYDtIuLvNYjJzMwKlKeTtsOA+cD1aXqspGsKjsvMzAqS53bO08i6U14BEBHzydcXv5mZNaA8iX9tRDxTVfZyEcGYmVnx8lzcvUfSh4D+knYGTgZmFxuWmZkVJc8Z/6eB3YAXgIuBZ4FTCozJzMwKlLeTtv+UdFY2GSuLD8vMzIqS566evSUtAO4i+yFXq6TxeStI3T7cKem6ND1a0hxJD0q6VNLGPQ/fzMy6K09Tz3nASRExKiJGAZ8EftmNOj4D3FcxfRbwvYjYCXgaOKEb2zIzsw2UJ/G/FBE3t01ExF+AdXk2Lmkk2SMbz03TAg4ALk+LTAeO6Ea8Zma2gTps45c0Lo3+KT168WIgyB7BOCvn9r8PfBEYnKaHASsiou2DYzGwTQf1TwGmAGy33XY5qzMzs650dnH3O1XTX68Yj642LOl9wBMRcbukCd0NLCKmAdMAWlpauqzPzMzy6TDxR8Q7N3Db+wKHSzoUaAI2B34ADJG0UTrrHwk8toH1mJlZN3R5O6ekIcCHgVGVy3fVLXNEfBn4ctrGBODUiDhW0mXAUcAlwGTg6h5FbmZmPZLnl7u/B24FFtA7XTV8CbhE0hnAnWR3DZmZWY3kSfxNEfG5DakkImaRLghHxENknb6ZmVkd5Lmd89eSPiZphKShbUPhkZmZWSHynPG/CJwN/Cev3s0TuGtmM7M+KU/i/zywU0Q8WXQwZmZWvDxNPQ8Cq4sOxMzMaiPPGf9zwHxJN5F1zQx0fTunmZk1pjyJ/7dpMDOz14E8/fFPr0UgZmZWG3l+ufsw7fTNExG+q8fMrA/K09TTUjHeBBwN+D5+M7M+qsu7eiJiecXwWER8n6yPfTMz64PyNPWMq5jsR/YNIM83BTMza0B5Enhlv/zrgEXAMYVEY2ZmhctzV8+G9stvZmYNJE9Tz0DgSNbvj//04sIyM7Oi5GnquRp4Bridil/umplZ35Qn8Y+MiEMKj8TMzGoiTydtsyXt0d0NS2qSNFdSq6R7JH0jlY+WNEfSg5IulbRxt6M2M7Mey5P49wNul/R3SXdJWiDprhzrvQAcEBFjgLHAIZLeCpwFfC8idgKeBk7oYexmZtYDeZp63tOTDUdEAKvS5IA0BHAA8KFUPh04DfhZT+owM7Puy3M75yM93bik/mQXhXcCfgIsBFZExLq0yGJgmw7WnQJMAdhuu+16GoKZmVXJ09TTYxHxUkSMBUaSPWB9l26sOy0iWiKipbm5uagQzcxKp9DE3yYiVgA3AW8Dhkhq+6YxEnisFjGYmVmmsMQvqVnSkDS+CXAwcB/ZB8BRabHJZL8TMDOzGimys7URwPTUzt8P+E1EXCfpXuASSWcAdwLnFRiDmZlVKSzxR8RdwF7tlD9E1t5vZmZ1UJM2fjMzaxxO/GZmJePEb2ZWMk78ZmYl48RvZlYyTvxmZiXjxG9mVjJO/GZmJePEb2ZWMk78ZmYl48RvZlYyTvxmZiXjxG9mVjJO/GZmJePEb2ZWMk78ZmYlU+SjF7eVdJOkeyXdI+kzqXyopBslPZD+bllUDGZmtr4iz/jXAZ+PiF2BtwKflLQrMBWYGRE7AzPTtJmZ1UhhiT8ilkTEHWl8JdmD1rcBJgLT02LTgSOKisHMzNZXkzZ+SaPInr87BxgeEUvSrMeB4R2sM0XSPEnzli1bVoswzcxKofDEL2kQcAVwSkQ8WzkvIgKI9taLiGkR0RIRLc3NzUWHaWZWGoUmfkkDyJL+jIi4MhUvlTQizR8BPFFkDGZm9lpF3tUj4Dzgvoj4bsWsa4DJaXwycHVRMZiZ2fo2KnDb+wLHAQskzU9lXwHOBH4j6QTgEeCYAmMwM7MqhSX+iPgLoA5mH1hUvWZm1jn/ctfMrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSqbI/vitpD7206fWK5u7+qT1ylpPvaQW4ZhZFZ/xm5mVTJGPXjxf0hOS7q4oGyrpRkkPpL9bFlW/mZm1r8gz/guAQ6rKpgIzI2JnYGaaNjOzGios8UfEn4Hqxt6JwPQ0Ph04oqj6zcysfbVu4x8eEUvS+OPA8I4WlDRF0jxJ85YtW1ab6MzMSqBuF3cjIoDoZP60iGiJiJbm5uYaRmZm9vpW68S/VNIIgPT3iRrXb2ZWerVO/NcAk9P4ZODqGtdvZlZ6Rd7OeTHwV+DNkhZLOgE4EzhY0gPAQWnazMxqqLBf7kbEBzuYdWBRdZqZWdf8y10zs5Jx4jczKxknfjOzknHiNzMrGSd+M7OSceI3MysZJ34zs5Jx4jczKxknfjOzknHiNzMrGSd+M7OSceI3MysZJ34zs5Jx4jczK5nCumU2s75rzLcntVveeuolNY7k9eljP31qvbK5q09ar6yo/e0zfjOzkqnLGb+kQ4AfAP2BcyOisCdx1fuTtafaixv6RuxmfUFfzQ29oeZn/JL6Az8B3gPsCnxQ0q61jsPMrKzq0dSzD/BgRDwUES8ClwAT6xCHmVkpKSJqW6F0FHBIRJyYpo8D3hIRn6pabgowJU2+GVgOPFnLWLthKxoztkaNCxo3tkaNCxo3tkaNCxo3tlrFtX1ENFcXNuxdPRExDZjWNi1pXkS01DGkDjVqbI0aFzRubI0aFzRubI0aFzRubPWOqx5NPY8B21ZMj0xlZmZWA/VI/LcBO0saLWljYBJwTR3iMDMrpZo39UTEOkmfAv6X7HbO8yPinhyrTut6kbpp1NgaNS5o3NgaNS5o3NgaNS5o3NjqGlfNL+6amVl9+Ze7ZmYl48RvZlYyDZH4JR0i6e+SHpQ0tZ35x0taJml+Gk6smDdZ0gNpmFzjuL5XEdP9klZUzHupYl6vXryWdL6kJyTd3cF8SfphivsuSeMq5hW2v3LGdmyKaYGk2ZLGVMxblMrnS5pX47gmSHqm4j37WsW8To+DGsT2hYq47k7H1tA0r8h9tq2kmyTdK+keSZ9pZ5maH2s546rXcZYntroda6+IiLoOZBd4FwI7ABsDrcCuVcscD/y4nXWHAg+lv1um8S1rFVfV8p8mu1DdNr2qwH22PzAOuLuD+YcCfwAEvBWYU/T+6kZs/9pWJ1m3HXMq5i0CtqrTPpsAXLehx0ERsVUtexjwxxrtsxHAuDQ+GLi/nf/Nmh9rOeOq13GWJ7a6HWttQyOc8W9IFw7vBm6MiKci4mngRuCQOsX1QeDiXqq7UxHxZ6D9XtwyE4FfReZWYIikERS7v3LFFhGzU90At5L9jqNwOfZZRwrvYqSbsdXyOFsSEXek8ZXAfcA2VYvV/FjLE1cdj7M8+6wjNevOphES/zbAoxXTi2l/Rx2ZvrpdLqntB2B51y0yLiRtD4wG/lhR3CRpnqRbJR3RSzHl1VHsRe6vnjiB7GyxTQA3SLpdWZcdtfY2Sa2S/iBpt1TWMPtM0qZkyfOKiuKa7DNJo4C9gDlVs+p6rHUSV6W6HGddxFbXY61hu2yoci1wcUS8IOk/gOnAAXWOqdIk4PKIeKmibPuIeEzSDsAfJS2IiIV1iq/hSHon2T/kfhXF+6V99gbgRkl/S2fDtXAH2Xu2StKhwG+BnWtUd16HAbdEROW3g8L3maRBZB82p0TEs7257Q2RJ656HWddxFb3Y60Rzvi77MIhIpZHxAtp8lxgfN51i4yrwiSqvn5HxGPp70PALLJP/lrpKPaG6C5D0p5k7+PEiFjeVl6xz54AriL76lsTEfFsRKxK478HBkjaigbZZ0lnx1kh+0zSALIENiMirmxnkbocazniqttx1lVsDXGsFXHhoDsD2beOh8iaStouaOxWtcyIivH3A7fGqxeQHia7eLRlGh9aq7jScruQXSxSRdmWwMA0vhXwAL1/QXAUHV+ofC+vveA2t+j91Y3YtgMeBP61qnwzYHDF+GyyXlxrFdcb295DskTwj7T/ch0HRcaW5m9Bdh1gs1rts/T6fwV8v5Nlan6s5YyrLsdZztjqeqxFRP2beqKDLhwknQ7Mi4hrgJMlHQ6sIzv4j0/rPiXpm2T9/wCcHq/9Glx0XJCdhV0S6V1M/gX4uaSXyb5VnRkR9/ZGXACSLia7M2ArSYuBrwMDUtznAL8nu9viQWA18JE0r7D91Y3YvgYMA34qCWBdZL0UDgeuSmUbARdFxPU1jOso4BOS1gHPA5PSe9rTLkZ6MzbITnhuiIjnKlYtdJ8B+wLHAQskzU9lXyFLqvU81vLEVZfjLGdsdTvW2rjLBjOzkmmENn4zM6shJ34zs5Jx4jczKxknfjOzknHiNzNrMOqi476qZbeXNDP1bDBLUpfdUzjxmzUYSedK2jWNf6Vq3uz6RGU1dgH5+zb6Nll/SXsCpwP/09UKvp3TrIFJWhURg+odh9Ve6uvnuojYPU3vCPwEaCb7zcTHIuJvku4h+xHao8p+oPBMRGze2bZ9xm8NTdJ/pf7J/yLpYkmnpvIdJV2fOtq6WdIuqfwCZf3Dz5b0kKSjUrkkna2sP/sFkj6QyidI+pOkq9PyZyrry31uWm7HtFyzpCsk3ZaGfduJ9fi0nVnK+qD/esW8z6W675Z0SirbTNLvUmddd1fENEtSi6QzgU2U9dk+I81bleP1zFLWmeHfJM1IycD6vmnApyNiPHAq8NNU3gr8Wxp/PzBY0rBOt1TEz4E9eOiNAdgbmA80kfVt/gBwapo3E9g5jb+F1Ec92Vfky8hOanYl6+YW4EiyroH7k/168x9kfadPAFak8YFkfaN8I63zGdJP74GLyDr3guxXmPe1E+/xwBKyX4xuAtwNtJD1LbWArIuAQcA9ZH03HQn8omL9LdLfWUBLGl9VVceqHK/nGbJ+XvoBf22L20PfGqjoxiMdN8+n/4e24b40b2vgSuBO4AdkvXoO6Wzbde+ywawT+wJXR8QaYI2ka+GVng//Fbis4mR2YMV6v42Il4F7JQ1PZfuR9fD6ErBU0p/IPlieBW6LiCVp2wuBG9I6C4B3pvGDgF0r6ttc0qBInW1VuDFSh2CSrkz1BnBVpO4WUvnbgeuB70g6i+wr/c3d2DedvZ65EbE41TWfLIH8pRvbtsbTD1gREWOrZ0TEP0ln/Ol/48iIWNHZxpz4rS/q8J8geaFiPE8zR+XyL1dMv8yr/yP9gLemD6HOVF806/AiWkTcr+xRhYcCZ0iaGRGn54i3K5Wv5yX8f97nRcSzkh6WdHREXJaa7/aMiFZlPXs+lU52vgyc39X23MZvjewW4DBJTelM5n2Q/RMAD0s6Gl5p7x7TyXYAbgY+IKm/pGayxx3O7UYsN5A9XpNU59gOljtY0lBJmwBHpNdwM3CEpE0lbUbWDnuzpK2B1RFxIXA22eMXq61V1s1vb78ea2DKOu77K/BmSYslnQAcC5wgqZWsubDt6VwTgL9Lup+s2e+/u9q+zwSsYUXEbcoeVH8XsJSs6eWZNPtY4GeSvkrWk+UlZBe5OnIV8La0TABfjIjH2y4K53Ay8BNJd5H93/wZ+Hg7y80l64t9JHBhRMyD7KIzrybmcyPiTknvBs5W1ovrWuAT7WxvGnCXpDsi4thefD3WwCLigx3MWu8Wz4i4HLi8O9v37ZzW0Nra0ZU9dvDPwJRIzzRtNJKOJ7so+6l6x2LWGZ/xW6ObpuzHTE3A9EZN+mZ9ic/4zcxKxhd3zcxKxonfzKxknPjNzErGid/MrGSc+M3MSub/AJj6IDMnRUR6AAAAAElFTkSuQmCC\n",
706
      "text/plain": [
707
       "<Figure size 432x288 with 1 Axes>"
708
      ]
709
     },
710
     "metadata": {
711
      "needs_background": "light"
712
     },
713
     "output_type": "display_data"
714
    },
715
    {
716
     "data": {
717
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAcEklEQVR4nO3de5gV1Znv8e8PRDooXtA+HCIiaEyMEVBAo8EomSTGXJQYL8HjMXCikhGN+iSYMWYmwcuc4xyNZzImykA0GkWdEO9GTTwq8UIiouGmqPE6aYOKGBFUEOSdP6oat83u7uqma1fvrt/neerpqlVVq97q3f129apVqxQRmJlZefQqOgAzM6stJ34zs5Jx4jczKxknfjOzknHiNzMrGSd+M7OSceI3MysZJ34zs5Jx4rfMJL0g6R1JqyS9IWmupL+X1Ctdf6akJen65yWdmZYPkbS6YgpJb1Usfzrd7lOS7k33XynpNkl7puuOq9j+HUkbKuvMEl+6zZWSzq9YPkHSk+k+r0i6Q1J/SXdW1L9O0rsVy9Ml7S/pbkmvS1ouabakQRX1Tkv3qzzvXTN8j2dIeio9v0kZP5fpLY6zVtKqivUfT7+vKyU9I+mIFvv3k3SppNfSbe6vcowtJS2V1NSivLek8yX9Nf0e/knSdlnitgJFhCdPmSbgBeBz6fy2wOHA88Av0rLvAaOALYCPAS8CE6rUE8BHWpQdAKwGTgf6AwOA84G/Abu22HYc0NTR+NLyK4Hz0/mDgVeAfdLlAcBEoH+LejfuU1H2ReBoYBugH3AFcFfF+mnANZ34Hp8CfBaYD0zq5Od0JXBFOr8F8DTwHaA38HfAW8BHK7a/BrgeaEy3GV2lzh8A97f8vqef0b3ALoCAvYCGon9WPbXzM1J0AJ7qZ6pMrBVl+wEbgL2qbP9vwCVVyqsl/geAS6tseyfwyxZl7Sb+1uJrkfinAjdnOO9NEn+VbUYBqyqWO5X4K/Z/sDOJH9gKWAUcnC7vRfIHVRXb/A44L53fA3gT2KaNOocBS9M/dk0V5dunde9W9M+mp45NbuqxzRIR84Am4NOV5ZKUlj3eXh2S+gGfAmZXWf0r4PNdHV/qYeALks6RNFZS384eBziITc/1sLQp6HFJJ29G3R1xJLCc5Oq8Nc1X5pD8YXwROCdt6lks6cgW218CnA2806J8OLAeOErSy5KelnTKZp+B5c6J37rCX0maSSpNI/n5+kWG/Qek2y6rsm4ZsOPmBEf1+IiIB4CvkVyt/wZYIeliSb07UrmkEcAPgTMrin8FfJyk+eQk4IeSju1c+B0ykeQ/pObRF58CXgXOlNRH0iEkTVz90vWDSf4IrAQ+DJwKXCXp4wDp/YDeEXFTlWMNJmlS+yjJfwVHAdMkdfoPtdWGE791hZ2A15sXJJ0KfAP4ckSszbD/30iaYwZVWTcIeK0r46sUEXdGxGEkfxjGA5OAE7NWLOkjJM1Rp6d/SJrrfSIi/hoR70XEXOAnJIkxN5KGkDSD/bIijnXAV4EvAy8D3yX5o9R8k/YdYB1JU9a7EfF74D7gEElbAf8XOK2VQzb/B3BuRLwTEYtI7hV8qQtPy3KwRdEBWH2TtC9JYn0wXf4mcBZwUEQ0tbVvs4h4S9IfSG6W3tdi9THAPV0VXxsxbADukXQv7zeDtFf3LsD/J2kvv7qdzYOkiSVPxwMPRcRzHzhwkpAPbl6WNBe4Kl1cVKWe5v8WdgeGAg8kLXdsCWwr6WVg/4p9o8q+1o35it86RdI2kr5CcoV3TUQslnQc8L+Bz7dMPhmcBUyUdFranXL7tNvlAcA5XRFflW3GS5qQHkuS9iNJkH/MUP9OJL1ZfhoR01upu7Le04BbMtS7paQGkj8SfSQ1qKI7aju+QXIjumWdI9J6+kmaSvJfVPN29wP/CXxf0haSxgKfAX4LLAF2BvZOpxNJekHtDfwlIp4luSn/A0l90+ahCcDtGeO1ohR9d9lT/UwkvWbeIek1shL4A0n3w97p+udJmg1WV0zTq9SzSa+etPxAYE6635sk7e7VeguNo/VePa3Gl25zJe/36jmI5L+J19J9nga+V6XejftUlP0oPY/Kc11dsf46YEVa/iRwWsbv8Zy03sppXIb9DiDpptm/yroLSZrTVpM0S7XsUfWJ9Hv1FvAEcEQrx9jk+07y39Rdad3PAd8q+ufUU/uT0g/PzMxKwk09ZmYl48RvVkP64NATlVObzzvog0NIVE5n1yp26zlya+qRtDNJt7KBJO2UMyLiJ5KmkfRrXp5uenZE3JFLEGZmtok8E/8gYFBEPCapP/AoSX/iY0hugl2Uta4dd9wxhg4dmkucZmY91aOPPvpaRDS2LM+tH39ELCN9EjMiVklaStIDoMOGDh3K/PnzuzI8M7MeT9KL1cpr0sYvaSiwD8nYKACnSlok6QpJ27eyz2RJ8yXNX758ebVNzMysE3JP/JK2Bm4AzoiIN4HLgN1IHgJZBvy42n4RMSMixkTEmMbGTf5TMTOzTso18UvqQ5L0Z0XEjQAR8Uok45dsAGaSjA5oZmY1klsbfzos7+XA0oi4uKJ8UNr+D3AEyWPhHbZu3TqamppYs2bN5gdbYw0NDQwePJg+ffoUHYqZlVCeg7SNJRk0arGkBWnZ2cCxkvYm6eL5AvCtzlTe1NRE//79GTp0KOkAUnUhIlixYgVNTU0MGzas6HDMrITy7NXzINVHI+ySPvtr1qypu6QPIIkddtgB37A2s6LU9ZO79Zb0m9Vr3GbWM9R14jczs47rMS9iOenSqi9Y6rSZUzZ5U5+ZWY/QYxK/mVk9G3nRhKrlC6de3+XHcuLfDOeddx7XXHMNjY2N7LzzzowePZojjjiCU045heXLl9OvXz9mzpzJHnvsUXSoZmYbOfF30iOPPMINN9zAwoULWbduHaNGjWL06NFMnjyZ6dOns/vuu/Pwww8zZcoU7r333qLDNTPbyIm/kx566CHGjx9PQ0MDDQ0NHHbYYaxZs4a5c+dy9NFHb9xu7dq1BUZpZrYpJ/4utGHDBrbbbjsWLFhQdChmZq1yd85OGjt2LLfddhtr1qxh9erV3H777fTr149hw4Yxe/ZsIHlKd+HChQVHamb2QT3mir/W3S/33XdfDj/8cEaMGMHAgQMZPnw42267LbNmzeLkk0/m/PPPZ926dUyYMIGRI0fWNDYzs7b0mMRfhKlTpzJt2jTefvttDjroIEaPHs2wYcO46667ig7NzKxVTvybYfLkyTzxxBOsWbOGiRMnMmrUqKJDMrM60NUPnHaUE/9muPbaa4sOwcysw3xz18ysZJz4zcxKxonfzKxknPjNzEqmx9zcbW1ku87KMiLe1ltvzerVq7v0uGZmefMVv5lZyTjxd4E5c+Zw8MEHM378eHbddVfOOussZs2axX777cfw4cN59tlniw7RzGwjJ/4usnDhQqZPn87SpUu5+uqrefrpp5k3bx4nnngil1xySdHhmZlt5MTfRfbdd18GDRpE37592W233TjkkEMAGD58OC+88EKxwZmZVXDi7yJ9+/bdON+rV6+Ny7169WL9+vVFhWVmtgknfjOzkukx3TnzeCGxmVlP1GMSfxGa+/CPGzeOcePGbSyfM2fOxvmW68zMiuamHjOzknHiNzMrmbpO/BFRdAidUq9xm1nPULeJv6GhgRUrVtRdEo0IVqxYQUNDQ9GhmFlJ1e3N3cGDB9PU1MTy5cuLDqXDGhoaGDx4cNFhmFlJ1W3i79OnD8OGDSs6DDOzulO3TT1mZtY5TvxmZiWTW+KXtLOk+yQ9IelxSaen5QMk3S3pz+nX7fOKwczMNpXnFf964LsRsSewP3CKpD2Bs4B7ImJ34J502czMaiS3xB8RyyLisXR+FbAU2AkYD1yVbnYV8NW8YjAzs03VpI1f0lBgH+BhYGBELEtXvQwMbGWfyZLmS5pfj102zcy6q9wTv6StgRuAMyLizcp1kTx9VfUJrIiYERFjImJMY2Nj3mGamZVGrolfUh+SpD8rIm5Mi1+RNChdPwh4Nc8YzMzsg/Ls1SPgcmBpRFxcsepWYGI6PxG4Ja8YzMxsU3k+uTsWOB5YLGlBWnY2cAHwK0knAC8Cx+QYg5mZtZBb4o+IBwG1svqzeR3XzMza5id3zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzEqm3cQvaaykrdL5/ynpYkm75B+amZnlIcsV/2XA25JGAt8FngV+mWtUZmaWmyyJf31EBDAe+GlE/Azon29YZmaWly0ybLNK0veB44FPS+oF9Mk3LDMzy0uWK/6vA2uBb0bEy8Bg4MJcozIzs9y0m/jTZH8tsL2kw4B3I8Jt/GZmdSpLr54TgXnA14CjgD9K+mbegZmZWT6yNPWcCewTEZMiYiIwGviH9naSdIWkVyUtqSibJuklSQvS6UudD93MzDojS+JfAayqWF6VlrXnSuDQKuX/LyL2Tqc7MtRjZmZdKEuvnmeAhyXdAjR361wk6TsAEXFxtZ0i4n5JQ7sqUDMz6xpZrvifBW4mSfoAtwDPk/Tl70x//lMlLUqbgrZvbSNJkyXNlzR/+fLlnTiMmZlV0+4Vf0Sc04XHuww4j+SPyHnAj4GqN4ojYgYwA2DMmDFRbRszM+u4dhO/pI8CU4GhldtHxN919GAR8UpFvTOB2ztah5mZbZ4sbfyzgenAz4H3NudgkgZFxLJ08QhgSVvbm5lZ18uS+NdHxGUdrVjSdcA4YEdJTcCPgHGS9iZp6nkB+FZH6zUzs82TJfHfJmkKcBPJ0A0ARMTrbe0UEcdWKb68Y+GZmVlXy5L4J6Zfz6woC2DXrg/HzMzylqVXz7BaBGJmZrWRZayeoyX1T+f/UdKNkvbJPzQzM8tDlqaef4qI2ZIOBD5HMiTzdOCTuUZmZnXhpEs3vd03c8qAAiKxrLI8udvchfPLwIyI+A2wZX4hmZlZnrIk/pck/TvJC1nukNQ3435mZtYNZUngxwC/Bb4QEW8AA/hgDx8zM6sjWXr1vA3cWLG8DFjW+h5mZtaducnGzKxknPjNzEqmzcQvqbek+2oVjJmZ5a/NxB8R7wEbJG1bo3jMzCxnWR7gWg0slnQ38FZzYUSclltUZmaWmyyJ/0YqevWYmVl9y9Kd8ypJHwKGRMRTNYjJzMxylGWQtsOABcBd6fLekm7NOS4zM8tJlu6c04D9gDcAImIBHovfzKxuZUn86yJiZYuyDXkEY2Zm+ctyc/dxSf8D6C1pd+A0YG6+YZmZWV6yXPF/G/gEyft2rwPeBM7IMSYzM8tR1kHafiDpX5LFWJV/WD3XyIsmbFK2cOr1BURiZmWVpVfPvpIWA4tIHuRaKGl0/qGZmVkesrTxXw5MiYgHANJXMP4CGJFnYGZmlo9Mr15sTvoAEfEgsD6/kMzMLE+tXvFLGpXO/j599eJ1QJC8gnFO/qGZmVke2mrq+XGL5R9VzEcOsZiZWQ20mvgj4jO1DMTMzGqj3Zu7krYDvgEMrdzewzKbmdWnLL167gD+CCzGQzWYmdW9LIm/ISK+k3skPdBJl75edAiGH5ozaylLd86rJZ0kaZCkAc1T7pGZmVkuslzxvwtcCPyA93vzBB6a2cysLmVJ/N8FPhIRr+UdjJmZ5S9LU88zwNt5B2JmZrWR5Yr/LWCBpPtIhmYG2u/OKekK4CvAqxGxV1o2APgPkq6hLwDHRMTfOhW5mZl1SpYr/puBfyZ5+cqjFVN7rgQObVF2FnBPROwO3JMum5lZDWUZj/+qzlQcEfdLGtqieDwwLp2/imTMn3/oTP1mZtY5WZ7cfZ4qY/NERGd69QyMiGXp/MvAwE7UYWZmmyFLG/+YivkG4Ghgs/vxR0RIanWwN0mTgckAQ4YM2dzDmVk3VO0hx5lT/JhQ3tpt44+IFRXTSxHxr8CXO3m8VyQNAki/vtrGcWdExJiIGNPY2NjJw5mZWUtZmnpGVSz2IvkPIMt/CtXcCkwELki/3tLJeszMrJOyJPDKcfnXk3bDbG8nSdeR3MjdUVITyXj+FwC/knQC8GKWeszMrGtl6dXTqXH5I+LYVlZ9tjP1mZlZ18jS1NMXOJJNx+M/N7+wzMwsL1maem4BVpI8tLW2nW3NzKyby5L4B0dEyydwzcysTmVJ/HMlDY+IxblHY2Y9wua8/Kbavh3Z39qXJfEfCExKn+BdC4jk+asRuUZmZma5yJL4v5h7FGZmVjNZunO+WItAzMysNrIMy2xmZj2IE7+ZWck48ZuZlYwTv5lZyTjxm5mVTGeHV64bftGDmdkH+YrfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxkenw//mo25yUR1r1Ve27DzD7IV/xmZiXjxG9mVjJO/GZmJePEb2ZWMk78ZmYl48RvZlYyTvxmZiXjxG9mVjKlfIDLzNrnBx17Ll/xm5mVjBO/mVnJOPGbmZWME7+ZWckUcnNX0gvAKuA9YH1EjCkiDjOzMiqyV89nIuK1Ao9vZlZKbuoxMyuZohJ/AL+T9KikyQXFYGZWSkU19RwYES9J+m/A3ZKejIj7KzdI/yBMBhgyZEgRMZqZ9UiFXPFHxEvp11eBm4D9qmwzIyLGRMSYxsbGWodoZtZj1TzxS9pKUv/meeAQYEmt4zAzK6simnoGAjdJaj7+tRFxVwFxmJmVUs0Tf0Q8B4ys9XHNzCzh7pxmZiXjxG9mVjJO/GZmJeMXsZj1ACdd+vomZfPenrJJWbUXqVTb13o2X/GbmZWME7+ZWck48ZuZlYwTv5lZyTjxm5mVjBO/mVnJOPGbmZWME7+ZWcn4Aa52bM6DMWZm3ZGv+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZPwAVw9V7cGzmVMG1GT/PI5di4fmWnsT1ea8yaoj521dY+RFEzYpy/p5VfusW9u/nvmK38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZNyPv0Sy9m/OY//NPXa9KvJ7XgatPXtR1LHr5SVNvuI3MysZJ34zs5Jx4jczKxknfjOzknHiNzMrmUISv6RDJT0l6RlJZxURg5lZWdU88UvqDfwM+CKwJ3CspD1rHYeZWVkVccW/H/BMRDwXEe8C1wPjC4jDzKyUFBG1PaB0FHBoRJyYLh8PfDIiTm2x3WRgcrr4MeCpmgbaMTsCrxUdREHKfO5Q7vP3uXd/u0REY8vCbvvkbkTMAGYUHUcWkuZHxJii4yhCmc8dyn3+Pvf6PfcimnpeAnauWB6clpmZWQ0UkfgfAXaXNEzSlsAE4NYC4jAzK6WaN/VExHpJpwK/BXoDV0TE47WOo4vVRZNUTsp87lDu8/e516ma39w1M7Ni+cldM7OSceI3MysZJ/4OaG+oCUmTJC2XtCCdTiwizq4m6QpJr0pa0sp6Sfq39PuySNKoWseYpwznP07SyorP/Ye1jjEvknaWdJ+kJyQ9Lun0Ktv0yM8/47nX52cfEZ4yTCQ3op8FdgW2BBYCe7bYZhLw06JjzeHcDwJGAUtaWf8l4E5AwP7Aw0XHXOPzHwfcXnScOZ37IGBUOt8feLrKz32P/Pwznntdfva+4s+utENNRMT9QFvvuBsP/DISfwS2kzSoNtHlL8P591gRsSwiHkvnVwFLgZ1abNYjP/+M516XnPiz2wn4S8VyE9V/CI5M/939taSdq6zvibJ+b3qyAyQtlHSnpE8UHUweJA0F9gEebrGqx3/+bZw71OFn78TftW4DhkbECOBu4KqC47HaeIxkTJSRwCXAzcWG0/UkbQ3cAJwREW8WHU8ttXPudfnZO/Fn1+5QExGxIiLWpos/B0bXKLailXoYjoh4MyJWp/N3AH0k7VhwWF1GUh+SxDcrIm6sskmP/fzbO/d6/eyd+LNrd6iJFu2ah5O0CZbBrcA30t4d+wMrI2JZ0UHViqT/Lknp/H4kv1crio2qa6TndTmwNCIubmWzHvn5Zzn3ev3su+3onN1NtDLUhKRzgfkRcStwmqTDgfUkNwMnFRZwF5J0HUnvhR0lNQE/AvoARMR04A6Snh3PAG8D/6uYSPOR4fyPAk6WtB54B5gQaZePHmAscDywWNKCtOxsYAj0+M8/y7nX5WfvIRvMzErGTT1mZiXjxG9mVjJO/GZmJePEb2ZWMk78ZmbdTHsDA7bYdhdJ96QjBsyRNLi9fZz4zboZST+XtGc6f3aLdXOLicpq7Erg0IzbXkQyVtII4Fzg/7S3g7tzmnVjklZHxNZFx2G1l44PdHtE7JUu7wb8DGgkeV7ipIh4UtLjwKER8Zf0YbKVEbFNW3X7it+6NUn/pOQdCA9Kuk7S1LR8N0l3SXpU0gOS9kjLr0zHhp8r6TlJR6XlknShpCWSFkv6elo+TtLvJd2Sbn+BpOMkzUu32y3drlHSDZIeSaexVWKdlNYzR9KfJf2oYt130mMvkXRGWraVpN+kA3wtqYhpjqQxki4APqRknPdZ6brVGc5njpJBAp+UNKv5yVKrezOAb0fEaGAqcGlavhD4Wjp/BNBf0g5t1lT0uNCePLU2AfsCC4AGkvHQ/wxMTdfdA+yezn8SuDedvxKYTXJRsyfJUNoAR5IMnNcbGAj8J8l46+OAN9L5viRjzJyT7nM68K/p/LXAgen8EJLH+FvGOwlYBuwAfAhYAowhGbNpMbAVsDXwOMlIj0cCMyv23zb9OgcYk86vbnGM1RnOZyXJeDm9gD80x+2pviZgKOk7INKfm3fS34fmaWm67sPAjcCfgJ+QjI66XVt1e8gG687GArdExBpgjaTbYONoiZ8CZldczPat2O/miNgAPCFpYFp2IHBdRLwHvCLp9yR/WN4EHol0bBlJzwK/S/dZDHwmnf8csGfF8baRtHWkA3RVuDsiVqR13ZgeN4CbIuKtivJPA3cBP5b0LyT/0j/Qge9NW+czLyKa0mMtIEkgD3agbut+egFvRMTeLVdExF9Jr/jT340jI+KNtipz4rd61OovQWptxXyWZo7K7TdULG/g/d+RXsD+6R+htrS8adbqTbSIeFrJawq/BJwv6Z6IODdDvO2pPJ/38O953YuINyU9L+noiJidNt+NiIiFSkYDfT292Pk+cEV79bmN37qzh4DDJDWkVzJfgeSXAHhe0tGwsb17ZDt1PQB8XVJvSY0kr1Oc14FYfgd8u3lB0t6tbPd5SQMkfQj4anoODwBfldRP0lYk7bAPSPow8HZEXANcSPJ6x5bWKRkauKvPx7oxJQMD/gH4mKQmSScAxwEnSFpI0lzY/AbAccBTkp4mafb75/bq95WAdVsR8YikW4FFwCskTS8r09XHAZdJ+keSkTKvJ7nJ1ZqbgAPSbQL4XkS83HxTOIPTgJ9JWkTye3M/8PdVtptHMn77YOCaiJgPyU1n3k/MP4+IP0n6AnChpA3AOuDkKvXNABZJeiwijuvC87FuLCKObWXVJl08I+LXwK87Ur+7c1q31tyOLqkfSbKdHOl7ULsbSZNIbsqeWnQsZm3xFb91dzOUPMzUAFzVXZO+WT3xFb+ZWcn45q6ZWck48ZuZlYwTv5lZyTjxm5mVjBO/mVnJ/BdnyN+oZ54f0QAAAABJRU5ErkJggg==\n",
718
      "text/plain": [
719
       "<Figure size 432x288 with 1 Axes>"
720
      ]
721
     },
722
     "metadata": {
723
      "needs_background": "light"
724
     },
725
     "output_type": "display_data"
726
    },
727
    {
728
     "data": {
729
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAefUlEQVR4nO3de7xVZb3v8c8XRZYXUsEVoYigsXVbinJxW3qUtItZim4vUW43lsY52UVfZju7m7nPsVO7srZlqBUl6s5bqBXJQUmNBNFAVLyhuFsEghgKKgjyO3+MZ+FksS5jXcacczG+79drvOYYz7j95lxj/eYznzHGMxQRmJlZefSpdQBmZlZdTvxmZiXjxG9mVjJO/GZmJePEb2ZWMk78ZmYl48RvZlYyTvzWK0kaJ6mp1nGY9UZO/GadJOmdkv4g6QVJue+AlLS2xfCGpB9VzD9H0tNp3nRJe7ZYf5Ske9L85yWd18o+jpYUki5tUb6vpDskrUlx/9+uvHfbNjjxm3XeBuDXwNmdWSkidmkegLcBrwE3QvYLBvjfwHhgAPAscH3zupL2AKYDPwUGAm8H7qzcvqS+wOXAnBblOwAzgLvSfocA13Ymdtu2OPFbXZD0RUlLU430CUnHSuon6QeS/paGH0jq18b6e0q6WdJKSc9K+lzFvF9U1oBbNhO1tu/2Yo2IJyLiGuDRbrzlU4AVwL1p+sPAjRHxaES8DnwLOErSfmn+BcAfImJqRKyPiDURsajFNj9P9mXweIvys4C/RcT3IuKViFgXEQ93I3br5Zz4reYk7Q98BhgbEf2BDwBLgK8AhwOHACOBw4CvtrJ+H+B2YAGwF3AscL6kD3Rj30WbCPwytuwsS62MvzO9Hg68KGm2pBWSbpc0dPPC0j7AJ4BLWtnX4cASSb9PzTyzJB3Uc2/FehsnfqsHbwD9gAMl9Y2IJRGxGDgDuCQiVkTESuCbwJmtrD8WaIyISyLi9Yh4BrgKmNCNfRcmJemjgSkVxdOB0yUdLGlH4OtAADul+UPIvizOA4bSoikI+CHwtYhY28ouh5B9Fj8E9gR+C0xLTUBWQk78VnMR8TRwPnAxsELSDenE5p7AcxWLPpfKWtoH2FPS6uYB+DIwqBv7LtKZwH0R8WxFHP8P+AZwM9kvjiXAGqC5Seo14NaIeCAi1pF9Cb5b0q6STgD6R8R/tbG/19L+fp+akb5Ldp7gH3v8nVmv4MRvdSEirouII8mSeADfBv6WppsNTWUt/RV4NiJ2qxj6R8Txaf4rvFlzhuwEZ0f7LtK/smVtvzmOKyJiREQMIvsC2B54JM1+OMW2efGK8WOBMZKWS1oOfISsqWtaG+tayTnxW81J2l/SMenE7TqyGuomsqaMr0pqTFe1fJ3Wr0aZC6xJJ2l3lLRduuRybJo/Hzhe0gBJbyOr4Xe07/bilaQGYIc03dDWSedW1n032XmIG1uUN6SYldruJwOXR8Tf0yI/B06WdEi6eudrZLX4l9L4P5CdCzkEuI2sqevjad1rgcMlvVfSdun9vwC0PDlsJeHEb/WgH3AZWTJaDrwV+BJwKTCPrMa6EHgolW0hIt4guyrmELK27xeAq4Fd0yK/Ijvxu4TsqpfKJpG29t2efci+IJqv6nkNeCLXO83a6W+JiDUtyhuA64C1ZF9kfyZL6ABExF1kzVe/Jbsa6O3Ax9K8NRGxvHlI8bwSES+m+U8A/wJcCfyd7JLRE1Ozj5WQ/AQuM7NycY3fzKxknPjNWpGueW/ZxcJaSV9uZ52hbayztvKae7Nac1OPmVnJbF/rAPLYY489YtiwYbUOw8ysV3nwwQdfiIjGluW9IvEPGzaMefPm1ToMM7NeRdJzrZW7jd/MrGSc+M3MSsaJ38ysZHpFG39rNmzYQFNTE+vWrat1KJ3W0NDAkCFD6Nu3b61DMbMS6rWJv6mpif79+zNs2DAkdbxCnYgIVq1aRVNTE8OHD691OGZWQr22qWfdunUMHDiwVyV9AEkMHDiwV/5SMbNtQ69N/ECvS/rNemvcZrZt6NWJ38zMOq/XtvG39Mkfv9ij27vq3AE9uj0zs3qxzSR+M7PeorWKajUrm0783fCtb32La6+9lsbGRvbee29Gjx7NySefzKc//WlWrlzJTjvtxFVXXcUBBxxQ61DNzDZz4u+iBx54gJtvvpkFCxawYcMGRo0axejRo5k0aRJXXnklI0aMYM6cOZx77rncddddtQ7XzOrcyO9O2KpswYU3FLIvJ/4u+tOf/sT48eNpaGigoaGBE044gXXr1jF79mxOO+20zcutX7++hlGamW3Nib8Hbdq0id1224358+fXOhQzszb5cs4uOuKII7j99ttZt24da9eu5Y477mCnnXZi+PDh3HjjjUB2l+6CBQtqHKmZ2Za2mRp/tS+/HDt2LCeeeCIHH3wwgwYN4qCDDmLXXXdl6tSpfOpTn+LSSy9lw4YNTJgwgZEjR1Y1NjOz9mwzib8WLrzwQi6++GJeffVVjjrqKEaPHs3w4cOZPn16rUMzM2uTE383TJo0iccee4x169YxceJERo0aVeuQzMw65MTfDdddd12tQzAz6zSf3DUzKxknfjOzknHiNzMrmcISv6T9Jc2vGF6WdL6kAZJmSHoqve5eVAxmZra1wk7uRsQTwCEAkrYDlgK3AhcBMyPiMkkXpekvdnd/rfVz0R15+sjYZZddWLt2bY/u18ysaNVq6jkWWBwRzwHjgSmpfApwUpViMDMzqpf4JwDXp/FBEbEsjS8HBrW2gqRJkuZJmrdy5cpqxNhls2bN4uijj2b8+PHsu+++XHTRRUydOpXDDjuMgw46iMWLF9c6RDOzzQpP/JJ2AE4Ebmw5LyICiNbWi4jJETEmIsY0NjYWHGX3LViwgCuvvJJFixbxq1/9iieffJK5c+dyzjnn8KMf/ajW4ZmZbVaNGv8HgYci4vk0/bykwQDpdUUVYijc2LFjGTx4MP369WO//fbj/e9/PwAHHXQQS5YsqW1wZmYVqpH4P8qbzTwAtwET0/hEYFoVYihcv379No/36dNn83SfPn3YuHFjrcIyM9tKoYlf0s7A+4BbKoovA94n6SngvWnazMyqpNC+eiLiFWBgi7JVZFf59KiiHlFmZratcSdt3dB8Df+4ceMYN27c5vJZs2ZtHm85z8ys1txlg5lZyTjxm5mVTK9O/NltAL1Pb43bzLYNvTbxNzQ0sGrVql6XRCOCVatW0dDQUOtQzKykeu3J3SFDhtDU1ES9d+fQmoaGBoYMGVLrMMyspHpt4u/bty/Dhw+vdRhmZr1Or23qMTOzrnHiNzMrGSd+M7OSceI3MysZJ34zs5Jx4jczKxknfjOzknHiNzMrGSd+M7OSceI3MysZJ34zs5Ip+pm7u0m6SdLjkhZJepekAZJmSHoqve5eZAxmZralomv8lwPTI+IAYCSwCLgImBkRI4CZadrMzKqksMQvaVfgKOAagIh4PSJWA+OBKWmxKcBJRcVgZmZbK7LGPxxYCfxc0l8kXS1pZ2BQRCxLyywHBrW2sqRJkuZJmtcb+9w3M6tXRSb+7YFRwE8i4lDgFVo060T2+KxWH6EVEZMjYkxEjGlsbCwwTDOzciky8TcBTRExJ03fRPZF8LykwQDpdUWBMZiZWQuFJf6IWA78VdL+qehY4DHgNmBiKpsITCsqBjMz21rRj178LDBV0g7AM8DHyb5sfi3pbOA54PSCYzAzswqFJv6ImA+MaWXWsUXu18zM2uY7d83MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGQ6TPySjpC0cxr/F0nfk7RPno1LWiJpoaT5kualsgGSZkh6Kr3u3r23YGZmnZGnxv8T4FVJI4HPA4uBX3ZiH++JiEMiovnZuxcBMyNiBDAzTZuZWZXkSfwbIyKA8cB/RsQVQP9u7HM8MCWNTwFO6sa2zMysk/Ik/jWSvgScCfxWUh+gb87tB3CnpAclTUplgyJiWRpfDgzqVMRmZtYt2+dY5iPAx4BPRMRySUOB7+Tc/pERsVTSW4EZkh6vnBkRISlaWzF9UUwCGDp0aM7dmZlZRzqs8UfEcuA6YHdJJwCvR0SuNv6IWJpeVwC3AocBz0saDJBeV7Sx7uSIGBMRYxobG3O9GTMz61ieq3rOAeYC/wycCtwv6RM51ttZUv/mceD9wCPAbcDEtNhEYFrXQjczs67I09TzBeDQiFgFIGkgMBv4WQfrDQJuldS8n+siYrqkB4BfSzobeA44vavBm5lZ5+VJ/KuANRXTa1JZuyLiGWBkK+WrgGPzBmhmZj0rT+J/GpgjaRrZVTrjgYclXQAQEd8rMD4zM+theRL/4jQ0a26T7861/GZmViMdJv6I+GY1AjEzs+roMPFL+gfgQmBY5fIRcUxxYZmZWVHyNPXcCFwJXA28UWw4ZmZWtDyJf2NE/KTwSMzMrCry9NVzu6RzJQ1OXSoPkDSg8MjMzKwQeWr8zXfZfqGiLIB9ez4cMzMrWp6reoZXIxAzM6uOPH31nFbR585XJd0i6dDiQzMzsyLkaeP/WkSskXQk8F7gGrKrfMzMrBfKk/ibL+H8EDA5In4L7FBcSGZmVqQ8iX+ppJ+SPZDld5L65VzPzMzqUJ4EfjrwB+ADEbEaGMCWV/iYmVkvkueqnleBWyqmlwHL2l7DzMzqmZtszMxKxonfzKxk2k38kraTdHe1gjEzs+K1m/gj4g1gk6RdqxSPmZkVLE9fPWuBhZJmAK80F0bE5/LsQNJ2wDxgaUR8WNJw4AZgIPAgcGZEvN7pyM3MrEvytPHfAnwNuIcsUTcPeZ0HLKqY/jbw/Yh4O/B34OxObMvMzLopz+WcUyTtCAyNiCc6s3FJQ8ju+P134AJJAo4BPpYWmQJcDLi/fzOzKsnTSdsJwHxgepo+RNJtObf/A+DfgE1peiCwOiI2pukmYK829jtJ0jxJ81auXJlzd2Zm1pE8TT0XA4cBqwEiYj45+uKX9GFgRUR0pllos4iYHBFjImJMY2NjVzZhZmatyHNyd0NEvJS10my2qa2FKxwBnCjpeKABeAtwObCbpO1TrX8IsLSTMZuZWTfkqfE/KuljwHaSRkj6ETC7o5Ui4ksRMSQihgETgLsi4gzgbuDUtNhEYFrXQjczs67Ik/g/C7wDWA9cD7wMnN+NfX6R7ETv02Rt/td0Y1tmZtZJeTtp+4qkb2eTsaazO4mIWcCsNP4M2TkDMzOrgTxX9YyVtBB4mOxGrgWSRhcfmpmZFSHPyd1rgHMj4l6A9AjGnwMHFxmYmZkVI9ejF5uTPkBE3AdsbGd5MzOrY23W+CWNSqN/TI9evB4Iskcwzio+NDMzK0J7TT3/0WL6GxXjUUAsZmZWBW0m/oh4TzUDMTOz6ujw5K6k3YB/BYZVLp+3W2YzM6svea7q+R1wP7CQfF01mJlZHcuT+Bsi4oLCIzEzs6rIcznnryR9UtJgSQOah8IjMzOzQuSp8b8OfAf4Cm9ezRPk6JrZzMzqT57E/3ng7RHxQtHBmJlZ8fI09TwNvFp0IGZmVh15avyvAPMl3U3WNTPgyznNzHqrPIn/N2kwM7NtQJ7++KdUIxAzM6uOPHfuPksrffNEhK/qMTPrhfI09YypGG8ATgN8Hb+ZWS/V4VU9EbGqYlgaET8APtTRepIaJM1NT+x6VNI3U/lwSXMkPS3pvyTt0P23YWZmeeVp6hlVMdmH7BdAnl8K64FjImKtpL7AfZJ+D1wAfD8ibpB0JXA28JPOh25mZl2RJ4FX9su/EVgCnN7RShERwNo02TcNARwDfCyVTwEuxonfzKxq8lzV0+V++SVtBzwIvB24AlgMrI6I5kc3NgF7tbHuJGASwNChQ7sagpmZtZCnqacfcApb98d/SUfrRsQbwCGpT/9bgQPyBhYRk4HJAGPGjPETv8zMekiepp5pwEtkNff1HSzbqohYne78fRewm6TtU61/CLC0K9s0M7OuyZP4h0TEcZ3dsKRGYENK+jsC7wO+DdwNnArcAEwk+2IxM7MqydNJ22xJB3Vh24OBuyU9DDwAzIiIO4AvAhdIehoYCFzThW2bmVkX5anxHwmcle7gXQ+I7KKdg9tbKSIeBg5tpfwZ4LAuxGpmZj0gT+L/YOFRmJlZ1eS5nPO5agRiZmbVkaeN38zMtiFO/GZmJePEb2ZWMk78ZmYl48RvZlYyTvxmZiXjxG9mVjJO/GZmJePEb2ZWMk78ZmYl48RvZlYyTvxmZiXjxG9mVjJO/GZmJePEb2ZWMk78ZmYlU1jil7S3pLslPSbpUUnnpfIBkmZIeiq97l5UDGZmtrUia/wbgc9HxIHA4cCnJR0IXATMjIgRwMw0bWZmVVJY4o+IZRHxUBpfAywC9gLGA1PSYlOAk4qKwczMtlaVNn5Jw4BDgTnAoIhYlmYtBwa1sc4kSfMkzVu5cmU1wjQzK4XCE7+kXYCbgfMj4uXKeRERQLS2XkRMjogxETGmsbGx6DDNzEqj0MQvqS9Z0p8aEbek4uclDU7zBwMriozBzMy2VORVPQKuARZFxPcqZt0GTEzjE4FpRcVgZmZb277AbR8BnAkslDQ/lX0ZuAz4taSzgeeA0wuMwczMWigs8UfEfYDamH1sUfs1M7P2+c5dM7OSceI3MyuZItv4zcxKZeR3J2xVtuDCG2oQSftc4zczKxknfjOzknHiNzMrGSd+M7OSceI3MysZJ34zs5Jx4jczKxknfjOzkvENXGZmXfDJH79Y6xC6zDV+M7OSceI3MysZJ34zs5Jx4jczKxknfjOzknHiNzMrmSIftv4zSSskPVJRNkDSDElPpdfdi9q/mZm1rsga/y+A41qUXQTMjIgRwMw0bWZmVVRY4o+Ie4CWdziMB6ak8SnASUXt38zMWlftNv5BEbEsjS8HBlV5/2ZmpVezk7sREUC0NV/SJEnzJM1buXJlFSMzM9u2VTvxPy9pMEB6XdHWghExOSLGRMSYxsbGqgVoZratq3bivw2YmMYnAtOqvH8zs9Ir8nLO64E/A/tLapJ0NnAZ8D5JTwHvTdNmZlZFhXXLHBEfbWPWsUXt08zMOuY7d83MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzErGid/MrGSc+M3MSsaJ38ysZArrltnMeodP/vjFrcrmvnpuq8suuPCGosOxKnCN38ysZFzjL1BrNamrzh1Qg0isq0Z+d0Kr5a75Wm/mGr+ZWck48ZuZlUxNmnokHQdcDmwHXB0RhT10Pe+JK/90rw+t/b2gOn+ztvZtxenuiWU3p3ZN1Wv8krYDrgA+CBwIfFTSgdWOw8ysrGrR1HMY8HREPBMRrwM3AONrEIeZWSkpIqq7Q+lU4LiIOCdNnwn8U0R8psVyk4BJaXJ/4ImqBtq+PYAXah1EG+o1NsfVefUam+PqvFrFtk9ENLYsrNvLOSNiMjC51nG0RtK8iBhT6zhaU6+xOa7Oq9fYHFfn1VtstWjqWQrsXTE9JJWZmVkV1CLxPwCMkDRc0g7ABOC2GsRhZlZKVW/qiYiNkj4D/IHscs6fRcSj1Y6jm+qyCSqp19gcV+fVa2yOq/PqKraqn9w1M7Pa8p27ZmYl48RvZlYyTvwtSDpO0hOSnpZ0USvzz5K0UtL8NJxTMW+ipKfSMLHKcX2/IqYnJa2umPdGxbwePZEu6WeSVkh6pI35kvTDFPfDkkZVzCvy8+oorjNSPAslzZY0smLeklQ+X9K8nowrZ2zjJL1U8Tf7esW8do+DguP6QkVMj6TjakCaV9hnJmlvSXdLekzSo5LOa2WZqh9nOeOq2XHWrojwkAayk82LgX2BHYAFwIEtljkL+M9W1h0APJNed0/ju1crrhbLf5bspHnz9NoCP7OjgFHAI23MPx74PSDgcGBO0Z9Xzrje3bw/su5D5lTMWwLsUcPPbBxwR3ePg56Oq8WyJwB3VeMzAwYDo9J4f+DJVv4vq36c5YyrZsdZe4Nr/FvqTncSHwBmRMSLEfF3YAZwXI3i+ihwfQ/tu10RcQ/QXu9m44FfRuZ+YDdJgyn28+owroiYnfYLcD/Z/SRVkeMza0uh3Z10Mq5qHmPLIuKhNL4GWATs1WKxqh9neeKq5XHWHif+Le0F/LViuomtDzCAU9LPt5skNd+MlnfdIuNC0j7AcOCuiuIGSfMk3S/ppB6KKa+2Yi/y8+qss8lqi80CuFPSg8q6DqmFd0laIOn3kt6RyuriM5O0E1nyvLmiuCqfmaRhwKHAnBazanqctRNXpbo5zuq2y4Y6djtwfUSsl/Q/gSnAMTWOqdIE4KaIeKOibJ+IWCppX+AuSQsjYnGN4qsrkt5D9g95ZEXxkenzeiswQ9LjqTZcLQ+R/c3WSjoe+A0woor778gJwJ8iovLXQeGfmaRdyL5szo+Il3ty292RJ656O85c499Sh91JRMSqiFifJq8GRuddt8i4KkygxU/wiFiaXp8BZpHVTKqlrdhr3nWHpIPJ/objI2JVc3nF57UCuJWsiaVqIuLliFibxn8H9JW0B3XwmSXtHWOFfGaS+pIl16kRcUsri9TkOMsRV30eZ7U4sVCvA9kvoGfImkqaT569o8UygyvGTwbujzdPIj1LdgJp9zQ+oFpxpeUOIDthpIqy3YF+aXwP4Cl68IRg2u4w2j5R+SG2POk2t+jPK2dcQ4GngXe3KN8Z6F8xPpusN9mePtbai+1tzX9DsmTw3+nzy3UcFBVXmr8r2XmAnav1maX3/kvgB+0sU/XjLGdcNT3O2hrc1FMh2uhOQtIlwLyIuA34nKQTgY1k/wBnpXVflPQtsr6IAC6JLX8KFx0XZDWxGyIdTck/Aj+VtInsF95lEfFYT8QFIOl6sqtQ9pDUBHwD6JvivhL4HdkVF08DrwIfT/MK+7xyxvV1YCDwY0kAGyPrPXEQcGsq2x64LiKm91RcOWM7FfiUpI3Aa8CE9DcttLuTHHFBVtm5MyJeqVi16M/sCOBMYKGk+ansy2RJtZbHWZ64anactcddNpiZlYzb+M3MSsaJ38ysZJz4zcxKxonfzKxknPjNzOpMRx3mtVh2H0kzU28CsyR12C2EE79ZnZF0taQD0/iXW8ybXZuorMp+Qf4+hb5L1k/RwcAlwP/paAVfzmlWxyStjYhdah2HVV/q/+eOiHhnmt4PuAJoJLtX4ZMR8bikR8lu/vqrshsDXoqIt7S3bdf4ra5J+pqy/ufvk3S9pAtT+X6SpqcOru6VdEAq/0Xql322pGcknZrKJek7yvqRXyjpI6l8nKQ/SpqWlr8s9aE+Ny23X1quUdLNkh5IwxGtxHpW2s4sZX2/f6Ni3gVp349IOj+V7Szpt6kztkcqYpolaYyky4AdlfXXPjXNW5vj/cxS1oHg45KmpmRgvd9k4LMRMRq4EPhxKl8A/HMaPxnoL2lgu1uq1i3CHjx0dgDGAvOBBrL+zp8CLkzzZgIj0vg/kfqGJ/uJfCNZpeZAsm6MAU4h65J3O7K7Jv+brD/1ccDqNN6PrB+Xb6Z1ziPdjg9cR9apFmR3Zi5qJd6zgGVkd2ruCDwCjCHrz2kh2a35uwCPkvWXdApwVcX6u6bXWcCYNL62xT7W5ng/L5H1SdMH+HNz3B5610BF9xnpuHkt/T80D4vSvD2BW4C/AJeT9UC6W3vbdpcNVs+OAKZFxDpgnaTbYXNviO8GbqyozParWO83EbEJeEzSoFR2JFmvqm8Az0v6I9kXy8vAAxGxLG17MXBnWmch8J40/l7gwIr9vUXSLpE6U6swI1JHXJJuSfsN4NZI3Ryk8v8BTAf+Q9K3yX7S39uJz6a99zM3IprSvuaTJZD7OrFtqz99gNURcUjLGRHxN1KNP/1vnBIRq9vbmBO/9UZt/hMk6yvG8zRzVC6/qWJ6E2/+j/QBDk9fQu1pedKszZNoEfGkskcEHg9cKmlmRFySI96OVL6fN/D/ea8XES9LelbSaRFxY2q+OzgiFijrufXFVNn5EvCzjrbnNn6rZ38CTpDUkGoyH4bsnwB4VtJpsLm9e2Q72wG4F/iIpO0kNZI9ZnBuJ2K5k+yRlqR9HtLGcu+TNEDSjsBJ6T3cC5wkaSdJO5O1w94raU/g1Yi4FvgO2WMPW9qgrOvfnn4/VseUdZj3Z2B/SU2SzgbOAM6WtICsubD56WvjgCckPUnW7PfvHW3fNQGrWxHxgLKHwz8MPE/W9PJSmn0G8BNJXyXrQfIGspNcbbkVeFdaJoB/i4jlzSeFc/gccIWkh8n+b+4B/lcry80l6599CHBtRMyD7KQzbybmqyPiL5I+AHxHWc+pG4BPtbK9ycDDkh6KiDN68P1YHYuIj7Yxa6tLPCPiJuCmzmzfl3NaXWtuR1f2uL97gEmRnnNabySdRXZS9jO1jsWsPa7xW72brOxmpgZgSr0mfbPexDV+M7OS8cldM7OSceI3MysZJ34zs5Jx4jczKxknfjOzkvn/RuGGbTDY5bQAAAAASUVORK5CYII=\n",
730
      "text/plain": [
731
       "<Figure size 432x288 with 1 Axes>"
732
      ]
733
     },
734
     "metadata": {
735
      "needs_background": "light"
736
     },
737
     "output_type": "display_data"
738
    }
739
   ],
740
   "source": [
741
    "import numpy as np\n",
742
    "import matplotlib.pyplot as plt\n",
743
    "\n",
744
    "# Display the distribution of the most probable SNP-s per genome location\n",
745
    "diff_phenos = pd.DataFrame(columns=('pheno', 'diff'))\n",
746
    "\n",
747
    "chrs_lengths = [247249719.00,242951149.00,199501827.00,191273063.00,180857866.00,170899992.00,158821424.00,146274826.00,140273252.00,\n",
748
    "                135374737.00,134452384.00,132349534.00,114142980.00,106368585.00,100338915.00,88827254.00,78774742.00,76117153.00,63811651.00]\n",
749
    "abs_pos = [0] + [sum(chrs_lengths[0:i]) for i in range(1,20)]\n",
750
    "\n",
751
    "for i,p in enumerate(phenotypes):\n",
752
    "    ge_snps = pd.read_csv(f\"out/ge_{p}.csv\", nrows=nb_snsps)\n",
753
    "    lm_snps = pd.read_csv(f\"out/lm_{p}.csv\", nrows=nb_snsps)\n",
754
    "    \n",
755
    "    # We adjust positions to be absolute\n",
756
    "    lm_snps_abs = lm_snps.apply(lambda row: row['pos'] + abs_pos[row['chr']], axis=1)\n",
757
    "    ge_snps_abs = ge_snps.apply(lambda row: row['pos'] + abs_pos[row['chr']], axis=1)\n",
758
    "\n",
759
    "    fig, ax = plt.subplots()\n",
760
    "\n",
761
    "    a_heights, a_bins = np.histogram(lm_snps_abs, bins=20)\n",
762
    "    b_heights, b_bins = np.histogram(ge_snps_abs, bins=a_bins)\n",
763
    "\n",
764
    "    width = (a_bins[1] - a_bins[0])/3\n",
765
    "\n",
766
    "    ax.bar(a_bins[:-1], a_heights, width=width, facecolor='cornflowerblue',label='ge')\n",
767
    "    ax.bar(b_bins[:-1]+width, b_heights, width=width, facecolor='seagreen',label='lm')\n",
768
    "    ax.legend()\n",
769
    "    ax.set_xlabel('genome position')\n",
770
    "    ax.set_ylabel('number snps')\n",
771
    "    plt.title(p)"
772
   ]
773
  },
774
  {
775
   "cell_type": "code",
776
   "execution_count": 216,
777
   "id": "difficult-passion",
778
   "metadata": {},
779
   "outputs": [
780
    {
781
     "data": {
782
      "text/html": [
783
       "<div>\n",
784
       "<style scoped>\n",
785
       "    .dataframe tbody tr th:only-of-type {\n",
786
       "        vertical-align: middle;\n",
787
       "    }\n",
788
       "\n",
789
       "    .dataframe tbody tr th {\n",
790
       "        vertical-align: top;\n",
791
       "    }\n",
792
       "\n",
793
       "    .dataframe thead th {\n",
794
       "        text-align: right;\n",
795
       "    }\n",
796
       "</style>\n",
797
       "<table border=\"1\" class=\"dataframe\">\n",
798
       "  <thead>\n",
799
       "    <tr style=\"text-align: right;\">\n",
800
       "      <th></th>\n",
801
       "      <th>Unnamed: 0</th>\n",
802
       "      <th>chr</th>\n",
803
       "      <th>pos</th>\n",
804
       "      <th>log10p</th>\n",
805
       "      <th>snp</th>\n",
806
       "      <th>p</th>\n",
807
       "    </tr>\n",
808
       "  </thead>\n",
809
       "  <tbody>\n",
810
       "    <tr>\n",
811
       "      <th>0</th>\n",
812
       "      <td>1</td>\n",
813
       "      <td>13</td>\n",
814
       "      <td>113859598</td>\n",
815
       "      <td>7.078715</td>\n",
816
       "      <td>rs30535702</td>\n",
817
       "      <td>8.342285e-08</td>\n",
818
       "    </tr>\n",
819
       "    <tr>\n",
820
       "      <th>1</th>\n",
821
       "      <td>2</td>\n",
822
       "      <td>13</td>\n",
823
       "      <td>114170966</td>\n",
824
       "      <td>6.792659</td>\n",
825
       "      <td>rs222759307</td>\n",
826
       "      <td>1.611912e-07</td>\n",
827
       "    </tr>\n",
828
       "    <tr>\n",
829
       "      <th>2</th>\n",
830
       "      <td>3</td>\n",
831
       "      <td>5</td>\n",
832
       "      <td>67675886</td>\n",
833
       "      <td>6.740378</td>\n",
834
       "      <td>cfw-5-67675886</td>\n",
835
       "      <td>1.818116e-07</td>\n",
836
       "    </tr>\n",
837
       "    <tr>\n",
838
       "      <th>3</th>\n",
839
       "      <td>4</td>\n",
840
       "      <td>13</td>\n",
841
       "      <td>112989997</td>\n",
842
       "      <td>6.534915</td>\n",
843
       "      <td>rs108106346</td>\n",
844
       "      <td>2.918000e-07</td>\n",
845
       "    </tr>\n",
846
       "    <tr>\n",
847
       "      <th>4</th>\n",
848
       "      <td>5</td>\n",
849
       "      <td>13</td>\n",
850
       "      <td>113611365</td>\n",
851
       "      <td>6.274347</td>\n",
852
       "      <td>rs47870536</td>\n",
853
       "      <td>5.316831e-07</td>\n",
854
       "    </tr>\n",
855
       "    <tr>\n",
856
       "      <th>...</th>\n",
857
       "      <td>...</td>\n",
858
       "      <td>...</td>\n",
859
       "      <td>...</td>\n",
860
       "      <td>...</td>\n",
861
       "      <td>...</td>\n",
862
       "      <td>...</td>\n",
863
       "    </tr>\n",
864
       "    <tr>\n",
865
       "      <th>95</th>\n",
866
       "      <td>96</td>\n",
867
       "      <td>13</td>\n",
868
       "      <td>9689084</td>\n",
869
       "      <td>4.389747</td>\n",
870
       "      <td>rs45880155</td>\n",
871
       "      <td>4.076175e-05</td>\n",
872
       "    </tr>\n",
873
       "    <tr>\n",
874
       "      <th>96</th>\n",
875
       "      <td>97</td>\n",
876
       "      <td>13</td>\n",
877
       "      <td>9271219</td>\n",
878
       "      <td>4.388370</td>\n",
879
       "      <td>rs46668932</td>\n",
880
       "      <td>4.089124e-05</td>\n",
881
       "    </tr>\n",
882
       "    <tr>\n",
883
       "      <th>97</th>\n",
884
       "      <td>98</td>\n",
885
       "      <td>13</td>\n",
886
       "      <td>9266074</td>\n",
887
       "      <td>4.381706</td>\n",
888
       "      <td>rs234246831</td>\n",
889
       "      <td>4.152346e-05</td>\n",
890
       "    </tr>\n",
891
       "    <tr>\n",
892
       "      <th>98</th>\n",
893
       "      <td>99</td>\n",
894
       "      <td>13</td>\n",
895
       "      <td>114350559</td>\n",
896
       "      <td>4.372380</td>\n",
897
       "      <td>rs48974653</td>\n",
898
       "      <td>4.242482e-05</td>\n",
899
       "    </tr>\n",
900
       "    <tr>\n",
901
       "      <th>99</th>\n",
902
       "      <td>100</td>\n",
903
       "      <td>13</td>\n",
904
       "      <td>9266275</td>\n",
905
       "      <td>4.335957</td>\n",
906
       "      <td>rs232497156</td>\n",
907
       "      <td>4.613629e-05</td>\n",
908
       "    </tr>\n",
909
       "  </tbody>\n",
910
       "</table>\n",
911
       "<p>100 rows × 6 columns</p>\n",
912
       "</div>"
913
      ],
914
      "text/plain": [
915
       "    Unnamed: 0  chr        pos    log10p             snp             p\n",
916
       "0            1   13  113859598  7.078715      rs30535702  8.342285e-08\n",
917
       "1            2   13  114170966  6.792659     rs222759307  1.611912e-07\n",
918
       "2            3    5   67675886  6.740378  cfw-5-67675886  1.818116e-07\n",
919
       "3            4   13  112989997  6.534915     rs108106346  2.918000e-07\n",
920
       "4            5   13  113611365  6.274347      rs47870536  5.316831e-07\n",
921
       "..         ...  ...        ...       ...             ...           ...\n",
922
       "95          96   13    9689084  4.389747      rs45880155  4.076175e-05\n",
923
       "96          97   13    9271219  4.388370      rs46668932  4.089124e-05\n",
924
       "97          98   13    9266074  4.381706     rs234246831  4.152346e-05\n",
925
       "98          99   13  114350559  4.372380      rs48974653  4.242482e-05\n",
926
       "99         100   13    9266275  4.335957     rs232497156  4.613629e-05\n",
927
       "\n",
928
       "[100 rows x 6 columns]"
929
      ]
930
     },
931
     "metadata": {},
932
     "output_type": "display_data"
933
    }
934
   ],
935
   "source": [
936
    "display(ge_snps)"
937
   ]
938
  },
939
  {
940
   "cell_type": "code",
941
   "execution_count": null,
942
   "id": "mexican-appliance",
943
   "metadata": {},
944
   "outputs": [],
945
   "source": []
946
  }
947
 ],
948
 "metadata": {
949
  "kernelspec": {
950
   "display_name": "Python 3",
951
   "language": "python",
952
   "name": "python3"
953
  },
954
  "language_info": {
955
   "codemirror_mode": {
956
    "name": "ipython",
957
    "version": 3
958
   },
959
   "file_extension": ".py",
960
   "mimetype": "text/x-python",
961
   "name": "python",
962
   "nbconvert_exporter": "python",
963
   "pygments_lexer": "ipython3",
964
   "version": "3.8.5"
965
  }
966
 },
967
 "nbformat": 4,
968
 "nbformat_minor": 5
969
}