[54ded2]: / experiments / simulations / two_dimensional_time_complexity.py

Download this file

215 lines (167 with data), 6.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import sys
import time
sys.path.append("../..")
# from models.gpsa_vi_lmc import VariationalWarpGP
# from util import matern12_kernel, rbf_kernel
from gpsa import VariationalGPSA, matern12_kernel, rbf_kernel, LossNotDecreasingChecker
from gpsa.plotting import callback_twod
sys.path.append("../../data")
from simulated.generate_twod_data import generate_twod_data
## For PASTE
import scanpy as sc
import anndata
import matplotlib.patches as mpatches
sys.path.append("../../../paste")
from src.paste import PASTE, visualization
device = "cuda" if torch.cuda.is_available() else "cpu"
LATEX_FONTSIZE = 35
n_spatial_dims = 2
n_views = 2
m_G = 50
m_X_per_view = 50
N_EPOCHS = 2000
PRINT_EVERY = 100
def two_d_gpsa(
n_outputs,
n_samples,
n_epochs,
n_latent_gps,
warp_kernel_variance=0.1,
noise_variance=0.0,
plot_intermediate=True,
fixed_view_idx=None,
):
X, Y, n_samples_list, view_idx = generate_twod_data(
n_views,
n_outputs,
grid_size=np.sqrt(n_samples).astype(int),
n_latent_gps=n_latent_gps["expression"],
kernel_lengthscale=5.0,
kernel_variance=warp_kernel_variance,
noise_variance=noise_variance,
)
n_samples_per_view = X.shape[0] // n_views
## PASTE
slice1 = anndata.AnnData(np.exp(Y[view_idx[0]]))
slice2 = anndata.AnnData(np.exp(Y[view_idx[1]]))
slice1.obsm["spatial"] = X[view_idx[0]]
slice2.obsm["spatial"] = X[view_idx[1]]
start = time.time()
pi12 = PASTE.pairwise_align(slice1, slice2, alpha=0.1)
slices = [slice1, slice2]
pis = [pi12]
new_slices = visualization.stack_slices_pairwise(slices, pis)
end = time.time()
time_paste = end - start
x = torch.from_numpy(X).float().clone()
y = torch.from_numpy(Y).float().clone()
data_dict = {
"expression": {
"spatial_coords": x,
"outputs": y,
"n_samples_list": n_samples_list,
}
}
start = time.time()
model = VariationalGPSA(
data_dict,
n_spatial_dims=n_spatial_dims,
m_X_per_view=m_X_per_view,
m_G=m_G,
data_init=True,
minmax_init=False,
grid_init=False,
n_latent_gps=n_latent_gps,
# n_latent_gps=None,
mean_function="identity_fixed",
kernel_func_warp=rbf_kernel,
kernel_func_data=rbf_kernel,
# fixed_warp_kernel_variances=np.ones(n_views) * 1.0,
# fixed_warp_kernel_lengthscales=np.ones(n_views) * 10,
fixed_view_idx=fixed_view_idx,
).to(device)
view_idx, Ns, _, _ = model.create_view_idx_dict(data_dict)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-1)
def train(model, loss_fn, optimizer):
model.train()
# Forward pass
G_means, G_samples, F_latent_samples, F_samples = model.forward(
{"expression": x}, view_idx=view_idx, Ns=Ns, S=5
)
# Compute loss
loss = loss_fn(data_dict, F_samples)
# Compute gradients and take optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.item()
# Set up figure.
fig = plt.figure(figsize=(14, 7), facecolor="white", constrained_layout=True)
data_expression_ax = fig.add_subplot(122, frameon=False)
latent_expression_ax = fig.add_subplot(121, frameon=False)
plt.show(block=False)
window_size = 10
threshold = 1e-2
loss_trace = []
error_trace = []
# convergence_checker = LossNotDecreasingChecker(max_epochs=n_epochs, atol=1e-4)
for t in range(n_epochs):
loss = train(model, model.loss_fn, optimizer)
loss_trace.append(loss)
# has_converged = convergence_checker.check_loss(t, loss_trace)
# if has_converged:
# print("Convergence criterion met.")
# break
if plot_intermediate and t % PRINT_EVERY == 0:
print("Iter: {0:<10} LL {1:1.3e}".format(t, -loss))
G_means, G_samples, F_latent_samples, F_samples = model.forward(
{"expression": x}, view_idx=view_idx, Ns=Ns
)
G_means, G_samples, F_latent_samples, F_samples = model.forward(
{"expression": x}, view_idx=view_idx, Ns=Ns
)
end = time.time()
time_gpsa = end - start
print("Done!")
plt.close()
return time_paste, time_gpsa
if __name__ == "__main__":
n_repeats = 3
n_outputs = 30
n_samples_list = [64, 500, 1000]
times_paste_array = np.zeros((n_repeats, len(n_samples_list)))
times_gpsa_array = np.zeros((n_repeats, len(n_samples_list)))
for ii in range(n_repeats):
for jj, n_samples in enumerate(n_samples_list):
time_paste, time_gpsa = two_d_gpsa(
n_epochs=N_EPOCHS,
n_samples=n_samples,
n_outputs=n_outputs,
warp_kernel_variance=0.5,
noise_variance=0.001,
n_latent_gps={"expression": None},
fixed_view_idx=None,
)
times_paste_array[ii, jj] = time_paste
times_gpsa_array[ii, jj] = time_gpsa
times_paste_df = pd.melt(
pd.DataFrame(times_paste_array, columns=n_samples_list)
)
times_paste_df["method"] = "PASTE"
times_gpsa_df = pd.melt(pd.DataFrame(times_gpsa_array, columns=n_samples_list))
times_gpsa_df["method"] = "GPSA"
times_df = pd.concat([times_paste_df, times_gpsa_df], axis=0)
times_df.to_csv("./out/time_experiment_results.csv", index=False)
import matplotlib
font = {"size": LATEX_FONTSIZE}
matplotlib.rc("font", **font)
matplotlib.rcParams["text.usetex"] = True
sns.lineplot(data=times_df, x="variable", y="value", hue="method")
plt.show()
import ipdb
ipdb.set_trace()