import torch
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sys
from gpsa import VariationalGPSA, matern12_kernel, rbf_kernel, LossNotDecreasingChecker
from gpsa.plotting import callback_twod
sys.path.append("../../data")
from simulated.generate_twod_data import generate_twod_data
import matplotlib.animation as animation
import matplotlib.image as mpimg
import os
from os.path import join as pjoin
import anndata
import matplotlib
font = {"size": 25}
matplotlib.rc("font", **font)
matplotlib.rcParams["text.usetex"] = True
device = "cuda" if torch.cuda.is_available() else "cpu"
LATEX_FONTSIZE = 35
n_spatial_dims = 2
n_views = 2
m_G = 50
m_X_per_view = 50
N_EPOCHS = 3000
PRINT_EVERY = 100
def two_d_gpsa(
n_outputs,
n_epochs,
n_latent_gps,
warp_kernel_variance=0.1,
noise_variance=0.0,
plot_intermediate=True,
fixed_view_data=None,
fixed_view_idx=None,
):
x = torch.from_numpy(X).float().clone()
y = torch.from_numpy(Y).float().clone()
data_dict = {
"expression": {
"spatial_coords": x,
"outputs": y,
"n_samples_list": n_samples_list,
}
}
model = VariationalGPSA(
data_dict,
n_spatial_dims=n_spatial_dims,
m_X_per_view=m_X_per_view,
m_G=m_G,
data_init=True,
minmax_init=False,
grid_init=False,
n_latent_gps=n_latent_gps,
mean_function="identity_fixed",
kernel_func_warp=rbf_kernel,
kernel_func_data=rbf_kernel,
fixed_view_idx=fixed_view_idx,
).to(device)
view_idx, Ns, _, _ = model.create_view_idx_dict(data_dict)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
def train(model, loss_fn, optimizer):
model.train()
# Forward pass
G_means, G_samples, F_latent_samples, F_samples = model.forward(
{"expression": x}, view_idx=view_idx, Ns=Ns, S=5
)
# Compute loss
loss = loss_fn(data_dict, F_samples)
# Compute gradients and take optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.item()
loss_trace = []
error_trace = []
convergence_checker = LossNotDecreasingChecker(max_epochs=n_epochs, atol=1e-4)
for t in range(n_epochs):
loss = train(model, model.loss_fn, optimizer)
loss_trace.append(loss)
# has_converged = convergence_checker.check_loss(t, loss_trace)
# if has_converged:
# print("Convergence criterion met.")
# break
if t % PRINT_EVERY == 0:
print("Iter: {0:<10} LL {1:1.3e}".format(t, -loss))
G_means, G_samples, F_latent_samples, F_samples = model.forward(
{"expression": x}, view_idx=view_idx, Ns=Ns
)
print("Done!")
return G_means["expression"].detach().numpy()
if __name__ == "__main__":
## Generate data
n_outputs = 30
n_latent_gps = {"expression": 5}
warp_kernel_variance = 0.5
noise_variance = 0.001
fixed_view_data = 0
X, Y, n_samples_list, view_idx = generate_twod_data(
n_views,
n_outputs,
grid_size=10,
n_latent_gps=n_latent_gps["expression"],
kernel_lengthscale=5.0,
kernel_variance=warp_kernel_variance,
noise_variance=noise_variance,
fixed_view_idx=fixed_view_data,
)
n_samples_per_view = X.shape[0] // n_views
## Set up figure
plt.figure(figsize=(18, 5))
## Plot data
markers = ["o", "X"]
plt.subplot(131)
for vv in range(n_views):
plt.scatter(
X[view_idx[vv], 0],
X[view_idx[vv], 1],
c=Y[view_idx[vv], 0],
marker=markers[vv],
s=300,
linewidth=1.8,
edgecolor="black",
)
plt.title("Data")
plt.xlabel("Spatial 1")
plt.ylabel("Spatial 2")
## De novo
aligned_coords_denovo = two_d_gpsa(
n_epochs=N_EPOCHS,
n_outputs=n_outputs,
warp_kernel_variance=warp_kernel_variance,
noise_variance=noise_variance,
n_latent_gps=n_latent_gps,
fixed_view_idx=None,
)
plt.subplot(132)
for vv in range(n_views):
plt.scatter(
aligned_coords_denovo[view_idx[vv], 0],
aligned_coords_denovo[view_idx[vv], 1],
c=Y[view_idx[vv], 0],
marker=markers[vv],
s=300,
linewidth=1.8,
edgecolor="black",
)
plt.title(r"$\emph{De novo}$ alignment")
plt.xlabel("Spatial 1")
plt.ylabel("Spatial 2")
## Template-based
aligned_coords_template = two_d_gpsa(
n_epochs=N_EPOCHS,
n_outputs=n_outputs,
warp_kernel_variance=warp_kernel_variance,
noise_variance=noise_variance,
n_latent_gps=n_latent_gps,
fixed_view_idx=0,
)
plt.subplot(133)
for vv in range(n_views):
plt.scatter(
aligned_coords_template[view_idx[vv], 0],
aligned_coords_template[view_idx[vv], 1],
c=Y[view_idx[vv], 0],
marker=markers[vv],
s=300,
linewidth=1.8,
edgecolor="black",
label="Slice {}".format(vv + 1),
)
plt.title(r"$\emph{Template-based}$ alignment")
plt.xlabel("Spatial 1")
plt.ylabel("Spatial 2")
plt.legend(loc="center left", bbox_to_anchor=(1, 0.5))
plt.tight_layout()
plt.savefig("./out/two_d_denovo_vs_templatebased.png")
plt.show()
denovo_error = np.mean(
np.sum(
(aligned_coords_denovo[view_idx[0]] - aligned_coords_denovo[view_idx[1]])
** 2,
axis=1,
)
)
templatebased_error = np.mean(
np.sum(
(
aligned_coords_template[view_idx[0]]
- aligned_coords_template[view_idx[1]]
)
** 2,
axis=1,
)
)
original_error = np.mean(np.sum((X[view_idx[0]] - X[view_idx[1]]) ** 2, axis=1))
# De novo error: 0.000536963
# Template error: 0.007253051
# Observed data error: 0.7329880727046506
import ipdb
ipdb.set_trace()