import torch
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sys
# sys.path.append("../..")
# from models.gpsa_vi_lmc import VariationalWarpGP
# from util import matern12_kernel, rbf_kernel
from gpsa import VariationalGPSA, matern12_kernel, rbf_kernel
from gpsa.plotting import callback_twod
sys.path.append("../../data")
from simulated.generate_twod_data import generate_twod_data
from plotting.callbacks import callback_twod
from util import ConvergenceChecker
## For PASTE
import scanpy as sc
import anndata
import matplotlib.patches as mpatches
sys.path.append("../../../paste")
from src.paste import PASTE, visualization
device = "cuda" if torch.cuda.is_available() else "cpu"
LATEX_FONTSIZE = 35
n_spatial_dims = 2
n_views = 2
# n_outputs = 10
m_G = 50
m_X_per_view = 50
N_EPOCHS = 10000
PRINT_EVERY = 100
# N_LATENT_GPS = 1
def two_d_gpsa(
n_outputs,
n_epochs,
n_latent_gps,
warp_kernel_variance=0.1,
noise_variance=0.0,
plot_intermediate=True,
fixed_view_idx=None,
):
X, Y, n_samples_list, view_idx = generate_twod_data(
n_views,
n_outputs,
grid_size=10,
n_latent_gps=n_latent_gps["expression"],
kernel_lengthscale=5.0,
kernel_variance=warp_kernel_variance,
noise_variance=noise_variance,
)
n_samples_per_view = X.shape[0] // n_views
## PASTE
slice1 = anndata.AnnData(np.exp(Y[view_idx[0]]))
slice2 = anndata.AnnData(np.exp(Y[view_idx[1]]))
slice1.obsm["spatial"] = X[view_idx[0]]
slice2.obsm["spatial"] = X[view_idx[1]]
pi12 = PASTE.pairwise_align(slice1, slice2, alpha=0.1)
slices = [slice1, slice2]
pis = [pi12]
new_slices = visualization.stack_slices_pairwise(slices, pis)
err_paste = np.mean(
np.sum(
(new_slices[0].obsm["spatial"] - new_slices[1].obsm["spatial"]) ** 2, axis=1
)
)
## Fit GP on one view to get initial estimates of data kernel parameters
from sklearn.gaussian_process.kernels import RBF, WhiteKernel
from sklearn.gaussian_process import GaussianProcessRegressor
kernel = RBF(length_scale=1.0) + WhiteKernel()
gpr = GaussianProcessRegressor(kernel=kernel)
gpr.fit(X[view_idx[0]], Y[view_idx[0]])
data_lengthscales_est = gpr.kernel_.k1.theta[0]
# import ipdb; ipdb.set_trace()
x = torch.from_numpy(X).float().clone()
y = torch.from_numpy(Y).float().clone()
data_dict = {
"expression": {
"spatial_coords": x,
"outputs": y,
"n_samples_list": n_samples_list,
}
}
model = VariationalGPSA(
data_dict,
n_spatial_dims=n_spatial_dims,
m_X_per_view=m_X_per_view,
m_G=m_G,
data_init=True,
minmax_init=False,
grid_init=False,
n_latent_gps=n_latent_gps,
# n_latent_gps=None,
mean_function="identity_fixed",
kernel_func_warp=rbf_kernel,
kernel_func_data=rbf_kernel,
fixed_warp_kernel_variances=np.ones(n_views) * 1.0,
# fixed_warp_kernel_lengthscales=np.ones(n_views) * 10,
fixed_view_idx=fixed_view_idx,
).to(device)
view_idx, Ns, _, _ = model.create_view_idx_dict(data_dict)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-1)
def train(model, loss_fn, optimizer):
model.train()
# Forward pass
G_means, G_samples, F_latent_samples, F_samples = model.forward(
{"expression": x}, view_idx=view_idx, Ns=Ns, S=5
)
# Compute loss
loss = loss_fn(data_dict, F_samples)
# Compute gradients and take optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.item()
# Set up figure.
fig = plt.figure(figsize=(14, 7), facecolor="white", constrained_layout=True)
data_expression_ax = fig.add_subplot(122, frameon=False)
latent_expression_ax = fig.add_subplot(121, frameon=False)
plt.show(block=False)
loss_trace = []
error_trace = []
for t in range(n_epochs):
loss = train(model, model.loss_fn, optimizer)
loss_trace.append(loss)
if plot_intermediate and t % PRINT_EVERY == 0:
print("Iter: {0:<10} LL {1:1.3e}".format(t, -loss))
G_means, G_samples, F_latent_samples, F_samples = model.forward(
{"expression": x}, view_idx=view_idx, Ns=Ns
)
callback_twod(
model,
X,
Y,
data_expression_ax=data_expression_ax,
latent_expression_ax=latent_expression_ax,
X_aligned=G_means,
s=600,
)
plt.draw()
plt.pause(1 / 60.0)
G_means, G_samples, F_latent_samples, F_samples = model.forward(
{"expression": x}, view_idx=view_idx, Ns=Ns
)
print("Done!")
plt.close()
return X, Y, G_means, model, err_paste
if __name__ == "__main__":
n_outputs = 30
X, Y, G_means, model, err_paste = two_d_gpsa(
n_epochs=N_EPOCHS,
n_outputs=n_outputs,
warp_kernel_variance=0.5,
noise_variance=0.001,
n_latent_gps={"expression": 5},
fixed_view_idx=0,
)
import matplotlib
font = {"size": LATEX_FONTSIZE}
matplotlib.rc("font", **font)
matplotlib.rcParams["text.usetex"] = True
fig = plt.figure(figsize=(14, 7))
data_expression_ax = fig.add_subplot(121, frameon=False)
latent_expression_ax = fig.add_subplot(122, frameon=False)
callback_twod(
model,
X,
Y,
data_expression_ax=data_expression_ax,
latent_expression_ax=latent_expression_ax,
X_aligned=G_means,
s=600,
)
data_expression_ax.set_xlabel("Spatial 1")
data_expression_ax.set_ylabel("Spatial 2")
latent_expression_ax.set_xlabel("Spatial 1")
latent_expression_ax.set_ylabel("Spatial 2")
data_expression_ax.set_xticks([0, 5, 10])
data_expression_ax.tick_params(axis="both", labelsize=LATEX_FONTSIZE // 2)
latent_expression_ax.set_xticks([0, 5, 10])
latent_expression_ax.tick_params(axis="both", labelsize=LATEX_FONTSIZE // 2)
plt.tight_layout()
plt.savefig("../../plots/two_d_simulation.png")
plt.show()
import ipdb
ipdb.set_trace()