[54ded2]: / experiments / simulations / simulation_large_numspots.py

Download this file

218 lines (168 with data), 6.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import anndata
import pandas as pd
from gpsa import VariationalGPSA
from gpsa import matern12_kernel, rbf_kernel
from gpsa.plotting import callback_twod
import sys
sys.path.append("../../data")
from simulated.generate_twod_data import generate_twod_data
## For PASTE
import scanpy as sc
import anndata
import matplotlib.patches as mpatches
sys.path.append("../../../paste")
from src.paste import PASTE, visualization
import matplotlib
font = {"size": 30}
matplotlib.rc("font", **font)
matplotlib.rcParams["text.usetex"] = True
device = "cuda" if torch.cuda.is_available() else "cpu"
N_SPATIAL_DIMS = 2
N_VIEWS = 2
M_G = 40
M_X_PER_VIEW = 40
N_OUTPUTS = 3
FIXED_VIEW_IDX = 0
N_LATENT_GPS = {"expression": None}
N_EPOCHS = 2_000
PRINT_EVERY = 100
n_latent_gps = {"expression": None}
true_warp_lengthscale = 5.0
true_warp_spatial_variance = 0.1
true_noise_variance = 0.0
n_repeats = 5
# grid_size_list = [10, 20, 50]
grid_size_list = [50]
gpsa_errors = np.zeros((n_repeats, len(grid_size_list)))
paste_errors = np.zeros((n_repeats, len(grid_size_list)))
for ii in range(n_repeats):
for jj, grid_size in enumerate(grid_size_list):
X, Y, n_samples_list, view_idx = generate_twod_data(
N_VIEWS,
N_OUTPUTS,
grid_size=grid_size,
n_latent_gps=n_latent_gps["expression"],
kernel_lengthscale=true_warp_lengthscale,
kernel_variance=true_warp_spatial_variance,
noise_variance=true_noise_variance,
)
n_samples_per_view = X.shape[0] // N_VIEWS
## PASTE
slice1 = anndata.AnnData(np.exp(Y[view_idx[0]]))
slice2 = anndata.AnnData(np.exp(Y[view_idx[1]]))
slice1.obsm["spatial"] = X[view_idx[0]]
slice2.obsm["spatial"] = X[view_idx[1]]
pi12 = PASTE.pairwise_align(slice1, slice2, alpha=0.1)
slices = [slice1, slice2]
pis = [pi12]
new_slices = visualization.stack_slices_pairwise(slices, pis)
err_paste = np.mean(
np.sum(
(new_slices[0].obsm["spatial"] - new_slices[1].obsm["spatial"]) ** 2,
axis=1,
)
)
paste_errors[ii, jj] = err_paste
print("PASTE error: ", err_paste, flush=True)
## GPSA
x = torch.from_numpy(X).float().clone()
y = torch.from_numpy(Y).float().clone()
data_dict = {
"expression": {
"spatial_coords": x,
"outputs": y,
"n_samples_list": n_samples_list,
}
}
model = VariationalGPSA(
data_dict,
n_spatial_dims=N_SPATIAL_DIMS,
m_X_per_view=M_X_PER_VIEW,
m_G=M_G,
data_init=True,
minmax_init=False,
grid_init=False,
n_latent_gps=N_LATENT_GPS,
mean_function="identity_fixed",
kernel_func_warp=rbf_kernel,
kernel_func_data=rbf_kernel,
fixed_view_idx=FIXED_VIEW_IDX,
# fixed_warp_kernel_variances=[
# fixed_warp_spatial_variance,
# fixed_warp_spatial_variance,
# ],
# fixed_warp_kernel_lengthscales=[true_warp_lengthscale, true_warp_lengthscale],
).to(device)
view_idx, Ns, _, _ = model.create_view_idx_dict(data_dict)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
def train(model, loss_fn, optimizer):
model.train()
# Forward pass
G_means, G_samples, F_latent_samples, F_samples = model.forward(
{"expression": x}, view_idx=view_idx, Ns=Ns, S=5
)
# Compute loss
loss = loss_fn(data_dict, F_samples)
# Compute gradients and take optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.item()
# Set up figure.
# fig = plt.figure(figsize=(14, 7), facecolor="white", constrained_layout=True)
# data_expression_ax = fig.add_subplot(121, frameon=False)
# latent_expression_ax = fig.add_subplot(122, frameon=False)
# plt.show(block=False)
for t in range(N_EPOCHS):
loss = train(model, model.loss_fn, optimizer)
if t % PRINT_EVERY == 0:
print("Iter: {0:<10} LL {1:1.3e}".format(t, -loss), flush=True)
G_means, _, _, _ = model.forward(
{"expression": x}, view_idx=view_idx, Ns=Ns
)
# callback_twod(
# model,
# X,
# Y,
# data_expression_ax=data_expression_ax,
# latent_expression_ax=latent_expression_ax,
# X_aligned=G_means,
# s=600,
# )
# plt.draw()
# plt.pause(1 / 60.0)
aligned_coords = G_means["expression"].detach().numpy().squeeze()
n_samples_per_view = n_samples_per_view = X.shape[0] // N_VIEWS
view1_aligned_coords = aligned_coords[:n_samples_per_view]
view2_aligned_coords = aligned_coords[n_samples_per_view:]
err = np.mean(
np.sum((view1_aligned_coords - view2_aligned_coords) ** 2, axis=1)
)
gpsa_errors[ii, jj] = err
plt.close()
print(err, flush=True)
# results_df = pd.melt(pd.DataFrame({"PASTE": paste_errors, "GPSA": gpsa_errors}))
results_df_gpsa = pd.melt(pd.DataFrame(gpsa_errors, columns=grid_size_list))
results_df_gpsa["method"] = "GPSA"
results_df_paste = pd.melt(pd.DataFrame(paste_errors, columns=grid_size_list))
results_df_paste["method"] = "PASTE"
results_df = pd.concat([results_df_gpsa, results_df_paste], axis=0)
results_df.to_csv("./out/error_experiment_large_numspots.csv")
plt.figure(figsize=(7, 7))
# sns.lineplot(data=results_df, x="variable", y="value", hue="method")
# plt.xlabel("Number of spots")
# plt.ylabel("Error")
# plt.xscale("log")
sns.boxplot(data=results_df, x="method", y="value")
plt.xlabel("")
plt.ylabel("Error")
plt.tight_layout()
plt.savefig("./out/error_experiment_large_numspots.png")
plt.show()
plt.close()
import ipdb
ipdb.set_trace()