import torch
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import sys
from os.path import join as pjoin
import scanpy as sc
import anndata
import time
sys.path.append("../../..")
sys.path.append("../../../data")
from warps import apply_gp_warp
# from util import (
# compute_size_factors,
# poisson_deviance,
# deviance_feature_selection,
# deviance_residuals,
# pearson_residuals,
# matern12_kernel,
# rbf_kernel,
# )
# from models.gpsa_vi_lmc import VariationalWarpGP
# from plotting.callbacks import callback_oned, callback_twod, callback_twod_aligned_only
from gpsa import VariationalGPSA, matern12_kernel, rbf_kernel
from gpsa.plotting import callback_twod
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import WhiteKernel, RBF
## For PASTE
import scanpy as sc
import anndata
import matplotlib.patches as mpatches
sys.path.append("../../../../paste")
from src.paste import PASTE, visualization
from sklearn.neighbors import NearestNeighbors, KNeighborsRegressor
from sklearn.metrics import r2_score
def scale_spatial_coords(X, max_val=10.0):
X = X - X.min(0)
X = X / X.max(0)
return X * max_val
DATA_DIR = "../../../data/visium/mouse_brain"
N_GENES = 10
N_SAMPLES = None
n_spatial_dims = 2
n_views = 2
m_G = 200
m_X_per_view = 200
N_LATENT_GPS = {"expression": None}
N_EPOCHS = 5000
PRINT_EVERY = 50
def process_data(adata, n_top_genes=2000):
adata.var_names_make_unique()
adata.var["mt"] = adata.var_names.str.startswith("MT-")
sc.pp.calculate_qc_metrics(adata, qc_vars=["mt"], inplace=True)
sc.pp.filter_cells(adata, min_counts=5000)
sc.pp.filter_cells(adata, max_counts=35000)
# adata = adata[adata.obs["pct_counts_mt"] < 20]
sc.pp.filter_genes(adata, min_cells=10)
sc.pp.normalize_total(adata, inplace=True)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(
adata, flavor="seurat", n_top_genes=n_top_genes, subset=True
)
return adata
data_slice1 = sc.read_visium(pjoin(DATA_DIR, "sample1"))
data_slice1 = process_data(data_slice1, n_top_genes=6000)
# plt.figure(figsize=(10, 5))
# plt.subplot(121)
# sc.pl.spatial(
# data_slice1, color=["mt-Co1"], spot_size=150, img_key=None, ax=plt.gca(), show=False
# )
# plt.subplot(122)
# sc.pl.spatial(
# data_slice1, color=["Camk2a"], spot_size=150, img_key=None, ax=plt.gca(), show=False
# )
# plt.savefig("./out/visium_dophin_genes.png")
# plt.show()
# import ipdb
# ipdb.set_trace()
data_slice2 = sc.read_visium(pjoin(DATA_DIR, "sample2"))
data_slice2 = process_data(data_slice2, n_top_genes=6000)
data = data_slice1.concatenate(data_slice2)
shared_gene_names = data.var.gene_ids.index.values
data_knn = data_slice1[:, shared_gene_names]
X_knn = data_knn.obsm["spatial"]
Y_knn = np.array(data_knn.X.todense()) # [:, :1000]
nbrs = NearestNeighbors(n_neighbors=2).fit(X_knn)
distances, indices = nbrs.kneighbors(X_knn)
preds = Y_knn[indices[:, 1]]
r2_vals = r2_score(Y_knn, preds, multioutput="raw_values")
# gene_idx_to_keep = np.argsort(-r2_vals)[:N_GENES]
# r2_vals_to_keep =
gene_idx_to_keep = np.where(r2_vals > 0.1)[0]
N_GENES = min(N_GENES, len(gene_idx_to_keep))
gene_names_to_keep = data_knn.var.gene_ids.index.values[gene_idx_to_keep]
gene_names_to_keep = gene_names_to_keep[np.argsort(-r2_vals[gene_idx_to_keep])]
if N_GENES < len(gene_names_to_keep):
gene_names_to_keep = gene_names_to_keep[:N_GENES]
data = data[:, gene_names_to_keep]
# for idx in gene_idx_to_keep:
# print(r2_vals[idx], flush=True)
# sc.pl.spatial(data_knn, img_key=None, color=[data_knn.var.gene_ids.index.values[idx]], spot_size=150)
# fig = plt.figure(figsize=(7, 7), facecolor="white", constrained_layout=True)
# ax1 = fig.add_subplot(111, frameon=False)
# sc.pl.spatial(
# adata=data[data.obs["batch"] == "0"],
# img_key=None,
# color="total_counts",
# spot_size=150,
# ax=ax1,
# show=False,
# alpha=0.3,
# )
# sc.pl.spatial(
# adata=data[data.obs["batch"] == "1"],
# img_key=None,
# color="total_counts",
# spot_size=150,
# ax=ax1,
# show=False,
# alpha=0.3,
# )
# plt.show()
# import ipdb; ipdb.set_trace()
if N_SAMPLES is not None:
rand_idx = np.random.choice(
np.arange(data_slice1.shape[0]), size=N_SAMPLES, replace=False
)
data_slice1 = data_slice1[rand_idx]
rand_idx = np.random.choice(
np.arange(data_slice2.shape[0]), size=N_SAMPLES, replace=False
)
data_slice2 = data_slice2[rand_idx]
# all_slices = anndata.concat([data_slice1, data_slice2])
n_samples_list = [data_slice1.shape[0], data_slice2.shape[0]]
view_idx = [
np.arange(data_slice1.shape[0]),
np.arange(data_slice1.shape[0], data_slice1.shape[0] + data_slice2.shape[0]),
]
X1 = data[data.obs.batch == "0"].obsm["spatial"]
X2 = data[data.obs.batch == "1"].obsm["spatial"]
Y1 = np.array(data[data.obs.batch == "0"].X.todense())
Y2 = np.array(data[data.obs.batch == "1"].X.todense())
X1 = scale_spatial_coords(X1)
X2 = scale_spatial_coords(X2)
Y1 = (Y1 - Y1.mean(0)) / Y1.std(0)
Y2 = (Y2 - Y2.mean(0)) / Y2.std(0)
X = np.concatenate([X1, X2])
Y = np.concatenate([Y1, Y2])
device = "cuda" if torch.cuda.is_available() else "cpu"
n_outputs = Y.shape[1]
x = torch.from_numpy(X).float().clone()
y = torch.from_numpy(Y).float().clone()
data_dict = {
"expression": {
"spatial_coords": x,
"outputs": y,
"n_samples_list": n_samples_list,
}
}
model = VariationalGPSA(
data_dict,
n_spatial_dims=n_spatial_dims,
m_X_per_view=m_X_per_view,
m_G=m_G,
data_init=True,
minmax_init=False,
grid_init=False,
n_latent_gps=N_LATENT_GPS,
mean_function="identity_fixed",
kernel_func_warp=rbf_kernel,
kernel_func_data=rbf_kernel,
# fixed_warp_kernel_variances=np.ones(n_views) * 1.,
# fixed_warp_kernel_lengthscales=np.ones(n_views) * 10,
fixed_view_idx=0,
).to(device)
view_idx, Ns, _, _ = model.create_view_idx_dict(data_dict)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
def train(model, loss_fn, optimizer):
model.train()
# Forward pass
G_means, G_samples, F_latent_samples, F_samples = model.forward(
X_spatial={"expression": x}, view_idx=view_idx, Ns=Ns, S=5
)
# Compute loss
loss = loss_fn(data_dict, F_samples)
# Compute gradients and take optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.item(), G_means
# Set up figure.
fig = plt.figure(figsize=(15, 5), facecolor="white", constrained_layout=True)
data_expression_ax = fig.add_subplot(131, frameon=False)
latent_expression_ax = fig.add_subplot(132, frameon=False)
diff_expression_ax = fig.add_subplot(133, frameon=False)
plt.show(block=False)
# gene_idx = np.where(data.var.gene_ids.index.values == "Ptgds")[0]
gene_idx = 0
# pd.DataFrame(view_idx["expression"]).to_csv("./out/view_idx_visium.csv")
# pd.DataFrame(X).to_csv("./out/X_visium.csv")
# pd.DataFrame(Y).to_csv("./out/Y_visium.csv")
# data.write("./out/data_visium.h5")
for t in range(N_EPOCHS):
start = time.time()
loss, G_means = train(model, model.loss_fn, optimizer)
end = time.time()
timespan = end - start
print(timespan, flush=True)
# print(model.warp_kernel_lengthscales)
# print(model.warp_kernel_variances)
# print("\n")
# if t % PRINT_EVERY == 0:
# print("Iter: {0:<10} LL {1:1.3e}".format(t, -loss), flush=True)
# diff_expression_ax.cla()
# callback_twod_aligned_only(
# model,
# X,
# Y,
# latent_expression_ax1=data_expression_ax,
# latent_expression_ax2=latent_expression_ax,
# X_aligned=G_means,
# gene_idx=gene_idx,
# )
# curr_aligned_coords = G_means["expression"].detach().numpy()
# # nearestneighbors = KNeighborsRegressor(n_neighbors=5) # weights="distance")
# # nearestneighbors.fit(
# # curr_aligned_coords[view_idx["expression"][0]], Y[view_idx["expression"][0]]
# # )
# # Y2_smoothed = nearestneighbors.predict(
# # curr_aligned_coords[view_idx["expression"][1]]
# # )
# X_knn = curr_aligned_coords[view_idx["expression"][0]]
# Y_knn = Y[view_idx["expression"][0]]
# nbrs = NearestNeighbors(n_neighbors=2).fit(X_knn)
# distances, indices = nbrs.kneighbors(
# curr_aligned_coords[view_idx["expression"][1]]
# )
# Y2_smoothed = Y_knn[indices[:, 1]]
# # import ipdb; ipdb.set_trace()
# r2_val = r2_score(Y[view_idx["expression"][1]], Y2_smoothed)
# print(r2_val, flush=True)
# Y_diffs = Y[view_idx["expression"][1]] - Y2_smoothed
# # print(np.nanmean(Y_diffs ** 2), flush=True)
# diff_expression_ax.scatter(
# curr_aligned_coords[view_idx["expression"][1]][:, 0],
# curr_aligned_coords[view_idx["expression"][1]][:, 1],
# c=Y_diffs[:, gene_idx].ravel(),
# cmap="bwr",
# s=24,
# marker="H",
# )
# plt.draw()
# # plt.savefig("./out/visium_aligned_difference_one_gene.png")
# # plt.pause(1 / 60.0)
# # pd.DataFrame(curr_aligned_coords).to_csv("./out/aligned_coords_visium.csv")
# # import ipdb; ipdb.set_trace()
plt.close()
# import matplotlib
# font = {"size": 30}
# matplotlib.rc("font", **font)
# matplotlib.rcParams["text.usetex"] = True
# fig = plt.figure(figsize=(14, 7))
# data_expression_ax = fig.add_subplot(121, frameon=False)
# latent_expression_ax = fig.add_subplot(122, frameon=False)
# callback_twod(
# model,
# X,
# Y,
# data_expression_ax=data_expression_ax,
# latent_expression_ax=latent_expression_ax,
# X_aligned=G_means,
# )
# latent_expression_ax.set_title("Aligned data, GPSA")
# latent_expression_ax.set_axis_off()
# data_expression_ax.set_axis_off()
# # plt.axis("off")
# plt.tight_layout()
# plt.savefig("./out/visium_alignment.png")
# # plt.show()
# plt.close()