[54ded2]: / experiments / expression / visium / visium_prediction.py

Download this file

365 lines (279 with data), 11.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import torch
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import sys
from os.path import join as pjoin
import scanpy as sc
import squidpy as sq
import anndata
from sklearn.metrics import r2_score, mean_squared_error
from gpsa import VariationalGPSA, rbf_kernel
from gpsa.plotting import callback_twod
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import WhiteKernel, RBF, Matern
## For PASTE
import scanpy as sc
import anndata
import matplotlib.patches as mpatches
from sklearn.neighbors import NearestNeighbors, KNeighborsRegressor
from sklearn.metrics import r2_score
device = "cuda" if torch.cuda.is_available() else "cpu"
def scale_spatial_coords(X, max_val=10.0):
X = X - X.min(0)
X = X / X.max(0)
return X * max_val
DATA_DIR = "../../../data/visium/mouse_brain"
N_GENES = 10
N_SAMPLES = 1_000
n_spatial_dims = 2
n_views = 2
m_G = 100 # 200
m_X_per_view = 100 # 200
N_LATENT_GPS = {"expression": None}
N_EPOCHS = 2_000
PRINT_EVERY = 100
FRAC_TEST = 0.25
N_REPEATS = 10
def process_data(adata, n_top_genes=2000):
adata.var_names_make_unique()
adata.var["mt"] = adata.var_names.str.startswith("MT-")
sc.pp.calculate_qc_metrics(adata, qc_vars=["mt"], inplace=True)
sc.pp.filter_cells(adata, min_counts=5000)
sc.pp.filter_cells(adata, max_counts=35000)
# adata = adata[adata.obs["pct_counts_mt"] < 20]
sc.pp.filter_genes(adata, min_cells=10)
sc.pp.normalize_total(adata, inplace=True)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(
adata, flavor="seurat", n_top_genes=n_top_genes, subset=True
)
return adata
data_slice1 = sc.read_visium(pjoin(DATA_DIR, "sample1"))
data_slice1 = process_data(data_slice1, n_top_genes=6000)
data_slice2 = sc.read_visium(pjoin(DATA_DIR, "sample2"))
data_slice2 = process_data(data_slice2, n_top_genes=6000)
data = data_slice1.concatenate(data_slice2)
# shared_gene_names = data.var.gene_ids.index.values
# data_knn = data_slice1[:, shared_gene_names]
# X_knn = data_knn.obsm["spatial"]
# Y_knn = np.array(data_knn.X.todense()) # [:, :1000]
# nbrs = NearestNeighbors(n_neighbors=2).fit(X_knn)
# distances, indices = nbrs.kneighbors(X_knn)
# preds = Y_knn[indices[:, 1]]
# r2_vals = r2_score(Y_knn, preds, multioutput="raw_values")
sq.gr.spatial_neighbors(data_slice1)
sq.gr.spatial_autocorr(
data_slice1,
mode="moran",
)
moran_scores = data_slice1.uns["moranI"]
genes_to_keep = moran_scores.index.values[np.where(moran_scores.I.values > 0.7)[0]]
genes_to_keep = np.intersect1d(genes_to_keep, data.var.index.values)
N_GENES = len(genes_to_keep)
data = data[:, genes_to_keep]
data = data[np.random.choice(np.arange(data.shape[0]), size=N_SAMPLES, replace=False)]
# all_slices = anndata.concat([data_slice1, data_slice2])
data_slice1 = data[data.obs.batch == "0"]
data_slice2 = data[data.obs.batch == "1"]
n_samples_list = [data_slice1.shape[0], data_slice2.shape[0]]
view_idx = [
np.arange(data_slice1.shape[0]),
np.arange(data_slice1.shape[0], data_slice1.shape[0] + data_slice2.shape[0]),
]
X1 = data[data.obs.batch == "0"].obsm["spatial"]
X2 = data[data.obs.batch == "1"].obsm["spatial"]
Y1 = np.array(data[data.obs.batch == "0"].X.todense())
Y2 = np.array(data[data.obs.batch == "1"].X.todense())
X1 = scale_spatial_coords(X1)
X2 = scale_spatial_coords(X2)
Y1 = (Y1 - Y1.mean(0)) / Y1.std(0)
Y2 = (Y2 - Y2.mean(0)) / Y2.std(0)
X = np.concatenate([X1, X2])
Y = np.concatenate([Y1, Y2])
errors_union, errors_separate, errors_gpsa = [], [], []
for repeat_idx in range(N_REPEATS):
## Drop part of the second view (this is the part we'll try to predict)
second_view_idx = view_idx[1]
n_drop = int(1.0 * n_samples_list[1] * FRAC_TEST)
test_idx = np.random.choice(second_view_idx, size=n_drop, replace=False)
n_drop = test_idx.shape[0]
keep_idx = np.setdiff1d(second_view_idx, test_idx)
train_idx = np.concatenate([np.arange(n_samples_list[0]), keep_idx])
X_train = X[train_idx]
Y_train = Y[train_idx]
n_samples_list_train = n_samples_list.copy()
n_samples_list_train[1] -= n_drop
n_samples_list_test = [[0], [n_drop]]
X_test = X[test_idx]
Y_test = Y[test_idx]
x_train = torch.from_numpy(X_train).float().clone()
y_train = torch.from_numpy(Y_train).float().clone()
x_test = torch.from_numpy(X_test).float().clone()
y_test = torch.from_numpy(Y_test).float().clone()
data_dict_train = {
"expression": {
"spatial_coords": x_train,
"outputs": y_train,
"n_samples_list": n_samples_list_train,
}
}
data_dict_test = {
"expression": {
"spatial_coords": x_test,
"outputs": y_test,
"n_samples_list": n_samples_list_test,
}
}
model = VariationalGPSA(
data_dict_train,
n_spatial_dims=n_spatial_dims,
m_X_per_view=m_X_per_view,
m_G=m_G,
data_init=True,
minmax_init=False,
grid_init=False,
n_latent_gps=N_LATENT_GPS,
mean_function="identity_fixed",
kernel_func_warp=rbf_kernel,
kernel_func_data=rbf_kernel,
# fixed_warp_kernel_variances=np.ones(n_views) * 1.,
# fixed_warp_kernel_lengthscales=np.ones(n_views) * 10,
fixed_view_idx=0,
).to(device)
view_idx_train, Ns_train, _, _ = model.create_view_idx_dict(data_dict_train)
view_idx_test, Ns_test, _, _ = model.create_view_idx_dict(data_dict_test)
## Make predictions for naive alignment
# gpr_union = GaussianProcessRegressor(kernel=RBF() + WhiteKernel())
# gpr_union.fit(X=X_train, y=Y_train)
# preds = gpr_union.predict(X_test)
knn = KNeighborsRegressor(n_neighbors=10, weights="distance")
knn.fit(X=X_train, y=Y_train)
preds = knn.predict(X_test)
error_union = np.mean(np.sum((preds - Y_test) ** 2, axis=1))
error_union = r2_score(Y_test, preds, multioutput="raw_values")
errors_union.append(error_union)
# print("MSE, union: {}".format(round(error_union, 5)), flush=True)
print("MSE, union: {}".format(round(np.mean(error_union), 5)), flush=True)
## Make predictons for each view separately
preds, truth = [], []
for vv in range(n_views):
curr_trainX = X_train[view_idx_train["expression"][vv]]
curr_trainY = Y_train[view_idx_train["expression"][vv]]
curr_testX = X_test[view_idx_test["expression"][vv]]
curr_testY = Y_test[view_idx_test["expression"][vv]]
if len(curr_testX) == 0:
continue
# gpr_separate = GaussianProcessRegressor(kernel=RBF() + WhiteKernel())
# gpr_separate.fit(X=curr_trainX, y=curr_trainY)
# curr_preds = gpr_separate.predict(curr_testX)
knn = KNeighborsRegressor(n_neighbors=10, weights="distance")
knn.fit(X=curr_trainX, y=curr_trainY)
curr_preds = knn.predict(curr_testX)
preds.append(curr_preds)
truth.append(curr_testY)
preds = np.concatenate(preds, axis=0)
truth = np.concatenate(truth, axis=0)
# error_separate = np.mean(np.sum((preds - truth) ** 2, axis=1))
error_separate = r2_score(truth, preds, multioutput="raw_values")
print("MSE, separate: {}".format(round(np.mean(error_separate), 5)), flush=True)
# print("R2, sep: {}".format(round(r2_sep, 5)))
errors_separate.append(error_separate)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
def train(model, loss_fn, optimizer):
model.train()
# Forward pass
G_means, G_samples, F_latent_samples, F_samples = model.forward(
X_spatial={"expression": x_train}, view_idx=view_idx_train, Ns=Ns_train, S=3
)
# Compute loss
loss = loss_fn(data_dict_train, F_samples)
# Compute gradients and take optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.item(), G_means
# Set up figure.
fig = plt.figure(figsize=(18, 7), facecolor="white", constrained_layout=True)
data_expression_ax = fig.add_subplot(131, frameon=False)
latent_expression_ax = fig.add_subplot(132, frameon=False)
prediction_ax = fig.add_subplot(133, frameon=False)
plt.show(block=False)
for t in range(N_EPOCHS):
loss, G_means = train(model, model.loss_fn, optimizer)
if t % PRINT_EVERY == 0 or t == N_EPOCHS - 1:
print("Iter: {0:<10} LL {1:1.3e}".format(t, -loss))
G_means_test, _, _, F_samples_test, = model.forward(
X_spatial={"expression": x_test},
view_idx=view_idx_test,
Ns=Ns_test,
prediction_mode=True,
S=10,
)
curr_preds = torch.mean(F_samples_test["expression"], dim=0)
callback_twod(
model,
X_train,
Y_train,
data_expression_ax=data_expression_ax,
latent_expression_ax=latent_expression_ax,
# prediction_ax=ax_dict["preds"],
X_aligned=G_means,
# X_test=X_test,
# Y_test_true=Y_test,
# Y_pred=curr_preds,
# X_test_aligned=G_means_test,
)
plt.draw()
plt.pause(1 / 60.0)
error_gpsa = np.mean(
np.sum((Y_test - curr_preds.detach().numpy()) ** 2, axis=1)
)
# print("MSE, GPSA: {}".format(round(error_gpsa, 5)), flush=True)
# r2_gpsa = r2_score(Y_test, curr_preds.detach().numpy())
# print("R2, GPSA: {}".format(round(r2_gpsa, 5)))
curr_aligned_coords = G_means["expression"].detach().numpy()
curr_aligned_coords_test = G_means_test["expression"].detach().numpy()
try:
# gpr_gpsa = GaussianProcessRegressor(kernel=RBF() + WhiteKernel())
# gpr_gpsa.fit(X=curr_aligned_coords, y=Y_train)
# preds = gpr_gpsa.predict(curr_aligned_coords_test)
knn = KNeighborsRegressor(n_neighbors=10, weights="distance")
knn.fit(X=curr_aligned_coords, y=Y_train)
preds = knn.predict(curr_aligned_coords_test)
# error_gpsa = np.mean(np.sum((preds - Y_test) ** 2, axis=1))
error_gpsa = r2_score(Y_test, preds, multioutput="raw_values")
print(
"MSE, GPSA GPR: {}".format(round(np.mean(error_gpsa), 5)),
flush=True,
)
except:
continue
# import ipdb; ipdb.set_trace()
errors_gpsa.append(error_gpsa)
plt.close()
errors_union_arr = np.array(errors_union)
errors_separate_arr = np.array(errors_separate)
errors_gpsa_arr = np.array(errors_gpsa)
pd.DataFrame(errors_union_arr).to_csv("./out/prediction_errors_union.csv")
pd.DataFrame(errors_separate_arr).to_csv("./out/prediction_errors_separate.csv")
pd.DataFrame(errors_gpsa_arr).to_csv("./out/prediction_errors_gpsa.csv")
results_df = pd.DataFrame(
{
"Union": np.mean(errors_union_arr, axis=1),
"Separate": np.mean(errors_separate_arr, axis=1),
"GPSA": np.mean(errors_gpsa_arr, axis=1),
}
)
results_df_melted = pd.melt(results_df)
# results_df_melted.to_csv("./out/twod_prediction_visium.csv")
plt.figure(figsize=(7, 5))
sns.boxplot(data=results_df_melted, x="variable", y="value", color="gray")
plt.xlabel("")
plt.ylabel("MSE")
plt.tight_layout()
plt.savefig("./out/two_d_prediction_visium.png")
# plt.show()
plt.close()
# import ipdb; ipdb.set_trace()