[54ded2]: / experiments / expression / visium / visium_morans_i.py

Download this file

150 lines (110 with data), 3.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import sys
from os.path import join as pjoin
import scanpy as sc
import squidpy as sq
import anndata
sys.path.append("../../..")
sys.path.append("../../../data")
from scipy.sparse import load_npz
## For PASTE
import scanpy as sc
import anndata
from st.load_st_data import load_st_data
import matplotlib
font = {"size": 30}
matplotlib.rc("font", **font)
matplotlib.rcParams["text.usetex"] = True
sys.path.append("../../../../paste")
from src.paste import PASTE, visualization
def scale_spatial_coords(X, max_val=10.0):
X = X - X.min(0)
X = X / X.max(0)
return X * max_val
DATA_DIR = "../../../data/visium/mouse_brain"
def process_data(adata, n_top_genes=2000):
adata.var_names_make_unique()
adata.var["mt"] = adata.var_names.str.startswith("MT-")
sc.pp.calculate_qc_metrics(adata, qc_vars=["mt"], inplace=True)
sc.pp.filter_cells(adata, min_counts=500)
# sc.pp.filter_cells(adata, max_counts=35000)
# adata = adata[adata.obs["pct_counts_mt"] < 20]
sc.pp.filter_genes(adata, min_cells=10)
sc.pp.normalize_total(adata, inplace=True)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(
adata, flavor="seurat", n_top_genes=n_top_genes, subset=True
)
return adata
data_slice1 = sc.read_visium(pjoin(DATA_DIR, "sample1"))
data_slice1 = process_data(data_slice1, n_top_genes=6000)
data_slice2 = sc.read_visium(pjoin(DATA_DIR, "sample2"))
data_slice2 = process_data(data_slice2, n_top_genes=6000)
data = data_slice1.concatenate(data_slice2)
sq.gr.spatial_neighbors(data_slice1)
sq.gr.spatial_autocorr(
data_slice1,
mode="moran",
)
moran_scores = data_slice1.uns["moranI"]
plt.figure(figsize=(21, 7))
plt.subplot(131)
plt.hist(moran_scores.I.values, 30)
plt.xlim([-0.1, 1])
plt.xlabel(r"$I$")
plt.ylabel("Count")
plt.title("Visium")
DATA_DIR = "../../../data/slideseq/mouse_hippocampus"
spatial_locs_slice1 = pd.read_csv(
pjoin(DATA_DIR, "Puck_200115_08_spatial_locs.csv"), index_col=0
)
expression_slice1 = load_npz(pjoin(DATA_DIR, "Puck_200115_08_expression.npz"))
gene_names_slice1 = pd.read_csv(
pjoin(DATA_DIR, "Puck_200115_08_gene_names.csv"), index_col=0
)
barcode_names_slice1 = pd.read_csv(
pjoin(DATA_DIR, "Puck_200115_08_barcode_names.csv"), index_col=0
)
data_slice1 = anndata.AnnData(
X=expression_slice1, obs=barcode_names_slice1, var=gene_names_slice1
)
data_slice1.obsm["spatial"] = spatial_locs_slice1.values
data_slice1 = process_data(data_slice1, n_top_genes=6000)
sq.gr.spatial_neighbors(data_slice1)
sq.gr.spatial_autocorr(
data_slice1,
mode="moran",
)
moran_scores = data_slice1.uns["moranI"]
plt.subplot(132)
plt.hist(moran_scores.I.values, 30)
plt.xlim([-0.1, 1])
plt.xlabel(r"$I$")
plt.title("Slide-seqV2")
DATA_DIR = "../../../data/st/"
N_LAYERS = 4
data_slice1, data_slice2, data_slice3, data_slice4 = load_st_data(
layers=np.arange(N_LAYERS) + 1
)
process_data(data_slice1, n_top_genes=3000)
sq.gr.spatial_neighbors(data_slice1)
sq.gr.spatial_autocorr(
data_slice1,
mode="moran",
)
moran_scores = data_slice1.uns["moranI"]
plt.subplot(133)
plt.hist(moran_scores.I.values, 30)
plt.xlim([-0.1, 1])
plt.xlabel(r"$I$")
plt.title("ST")
plt.tight_layout()
plt.savefig("./out/morans_i_histograms.png")
plt.show()
plt.close()
import ipdb
ipdb.set_trace()