import torch
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import sys
from os.path import join as pjoin
import scanpy as sc
import anndata
# sys.path.append("../../..")
# sys.path.append("../../../data")
# from warps import apply_gp_warp
# from util import (
# compute_size_factors,
# poisson_deviance,
# deviance_feature_selection,
# deviance_residuals,
# pearson_residuals,
# )
# from models.gpsa_vi_lmc import VariationalWarpGP
# from plotting.callbacks import callback_oned, callback_twod, callback_twod_aligned_only
from gpsa import VariationalGPSA, matern12_kernel, rbf_kernel
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import WhiteKernel, RBF
## For PASTE
import scanpy as sc
import anndata
import matplotlib.patches as mpatches
sys.path.append("../../../../paste")
from src.paste import PASTE, visualization
from sklearn.neighbors import NearestNeighbors, KNeighborsRegressor
def scale_spatial_coords(X, max_val=10.0):
X = X - X.min(0)
X = X / X.max(0)
return X * max_val
DATA_DIR = "../../../data/visium/mouse_brain"
N_GENES = 1000
N_SAMPLES = None
n_spatial_dims = 2
n_views = 2
m_G = 40
m_X_per_view = 40
N_LATENT_GPS = {"expression": 5}
N_EPOCHS = 5000
PRINT_EVERY = 20
def process_data(adata, n_top_genes=2000):
adata.var_names_make_unique()
adata.var["mt"] = adata.var_names.str.startswith("MT-")
sc.pp.calculate_qc_metrics(adata, qc_vars=["mt"], inplace=True)
sc.pp.filter_cells(adata, min_counts=15000)
# sc.pp.filter_cells(adata, max_counts=35000)
adata = adata[adata.obs["pct_counts_mt"] < 20]
sc.pp.filter_genes(adata, min_cells=10)
sc.pp.normalize_total(adata, inplace=True)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(
adata, flavor="seurat", n_top_genes=n_top_genes, subset=True
)
return adata
data_slice1 = sc.read_visium(pjoin(DATA_DIR, "sample1"))
data_slice1 = process_data(data_slice1)
data_slice2 = sc.read_visium(pjoin(DATA_DIR, "sample2"))
data_slice2 = process_data(data_slice2)
# import ipdb; ipdb.set_trace()
data = data_slice1.concatenate(data_slice2)
errors_union, errors_separate, errors_gpsa = [], [], []
# for repeat_idx in range(N_REPEATS):
if N_SAMPLES is not None:
rand_idx = np.random.choice(
np.arange(data_slice1.shape[0]), size=N_SAMPLES, replace=False
)
data_slice1 = data_slice1[rand_idx]
rand_idx = np.random.choice(
np.arange(data_slice2.shape[0]), size=N_SAMPLES, replace=False
)
data_slice2 = data_slice2[rand_idx]
# all_slices = anndata.concat([data_slice1, data_slice2])
n_samples_list = [data_slice1.shape[0], data_slice2.shape[0]]
view_idx = [
np.arange(data_slice1.shape[0]),
np.arange(data_slice1.shape[0], data_slice1.shape[0] + data_slice2.shape[0]),
]
# deviances, gene_names = deviance_feature_selection(all_slices.to_df().transpose())
# sorted_idx = np.argsort(-deviances)
# highly_variable_genes = gene_names[sorted_idx][:N_GENES]
# all_slices = all_slices[:, highly_variable_genes]
# import ipdb; ipdb.set_trace()
X1 = data[data.obs.batch == "0"].obsm["spatial"]
X2 = data[data.obs.batch == "1"].obsm["spatial"]
Y1 = np.array(data[data.obs.batch == "0"].X.todense())
Y2 = np.array(data[data.obs.batch == "1"].X.todense())
X1 = scale_spatial_coords(X1)
X2 = scale_spatial_coords(X2)
# import ipdb; ipdb.set_trace()
# Y1 = pearson_residuals(np.array(Y1_unnormalized), theta=100.0)
# Y2 = pearson_residuals(np.array(Y2_unnormalized), theta=100.0)
Y1 = (Y1 - Y1.mean(0)) / Y1.std(0)
Y2 = (Y2 - Y2.mean(0)) / Y2.std(0)
X = np.concatenate([X1, X2])
Y = np.concatenate([Y1, Y2])
# Y_unnormalized = np.concatenate([Y1_unnormalized, Y2_unnormalized])
# Y_unnormalized_sums = Y_unnormalized.sum(1)
device = "cuda" if torch.cuda.is_available() else "cpu"
n_outputs = Y.shape[1]
## Drop part of the second view (this is the part we'll try to predict)
x = torch.from_numpy(X).float().clone()
y = torch.from_numpy(Y).float().clone()
# import ipdb; ipdb.set_trace()
data_dict = {
"expression": {
"spatial_coords": x,
"outputs": y,
"n_samples_list": n_samples_list,
}
}
model = VariationalGPSA(
data_dict,
n_spatial_dims=n_spatial_dims,
m_X_per_view=m_X_per_view,
m_G=m_G,
data_init=True,
minmax_init=False,
grid_init=False,
n_latent_gps=N_LATENT_GPS,
mean_function="identity_fixed",
fixed_warp_kernel_variances=np.ones(n_views) * 1.0,
fixed_warp_kernel_lengthscales=np.ones(n_views) * 10,
# mean_function="identity_initialized",
# fixed_view_idx=0,
).to(device)
view_idx, Ns, _, _ = model.create_view_idx_dict(data_dict)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
def train(model, loss_fn, optimizer):
model.train()
# Forward pass
G_means, G_samples, F_latent_samples, F_samples = model.forward(
X_spatial={"expression": x}, view_idx=view_idx, Ns=Ns, S=5
)
# Compute loss
loss = loss_fn(data_dict, F_samples)
# Compute gradients and take optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.item(), G_means, F_latent_samples
# Set up figure.
fig = plt.figure(figsize=(15, 6), facecolor="white", constrained_layout=True)
# ax_dict = fig.subplot_mosaic(
# [
# ["data", "latent"],
# ],
# )
ax1 = fig.add_subplot(251, frameon=False)
ax2 = fig.add_subplot(252, frameon=False)
ax3 = fig.add_subplot(253, frameon=False)
ax4 = fig.add_subplot(254, frameon=False)
ax5 = fig.add_subplot(255, frameon=False)
ax6 = fig.add_subplot(256, frameon=False)
ax7 = fig.add_subplot(257, frameon=False)
ax8 = fig.add_subplot(258, frameon=False)
ax9 = fig.add_subplot(259, frameon=False)
ax10 = fig.add_subplot(2, 5, 10, frameon=False)
plt.show(block=False)
for t in range(N_EPOCHS):
loss, G_means, F_latent_samples = train(model, model.loss_fn, optimizer)
if t % PRINT_EVERY == 0:
print("Iter: {0:<10} LL {1:1.3e}".format(t, -loss))
ax1.cla()
ax2.cla()
ax3.cla()
ax4.cla()
ax5.cla()
ax6.cla()
ax7.cla()
ax8.cla()
ax9.cla()
ax10.cla()
ax1.scatter(
X[view_idx["expression"][0], 0],
X[view_idx["expression"][0], 1],
c=F_latent_samples["expression"]
.mean(0)[view_idx["expression"][0], 0]
.detach()
.numpy(),
marker="H",
s=10,
)
ax2.set_title("Component 1")
ax2.scatter(
X[view_idx["expression"][0], 0],
X[view_idx["expression"][0], 1],
c=F_latent_samples["expression"]
.mean(0)[view_idx["expression"][0], 1]
.detach()
.numpy(),
marker="H",
s=10,
)
ax3.set_title("Component 2")
ax3.scatter(
X[view_idx["expression"][0], 0],
X[view_idx["expression"][0], 1],
c=F_latent_samples["expression"]
.mean(0)[view_idx["expression"][0], 2]
.detach()
.numpy(),
marker="H",
s=10,
)
ax4.set_title("Component 3")
ax4.scatter(
X[view_idx["expression"][0], 0],
X[view_idx["expression"][0], 1],
c=F_latent_samples["expression"]
.mean(0)[view_idx["expression"][0], 3]
.detach()
.numpy(),
marker="H",
s=10,
)
ax5.set_title("Component 4")
ax5.scatter(
X[view_idx["expression"][0], 0],
X[view_idx["expression"][0], 1],
c=F_latent_samples["expression"]
.mean(0)[view_idx["expression"][0], 4]
.detach()
.numpy(),
marker="H",
s=10,
)
ax1.set_title("Component 5")
## Bottom row
ax6.scatter(
X[view_idx["expression"][1], 0],
X[view_idx["expression"][1], 1],
c=F_latent_samples["expression"]
.mean(0)[view_idx["expression"][1], 0]
.detach()
.numpy(),
marker="H",
s=10,
)
ax7.scatter(
X[view_idx["expression"][1], 0],
X[view_idx["expression"][1], 1],
c=F_latent_samples["expression"]
.mean(0)[view_idx["expression"][1], 1]
.detach()
.numpy(),
marker="H",
s=10,
)
ax8.scatter(
X[view_idx["expression"][1], 0],
X[view_idx["expression"][1], 1],
c=F_latent_samples["expression"]
.mean(0)[view_idx["expression"][1], 2]
.detach()
.numpy(),
marker="H",
s=10,
)
ax9.scatter(
X[view_idx["expression"][1], 0],
X[view_idx["expression"][1], 1],
c=F_latent_samples["expression"]
.mean(0)[view_idx["expression"][1], 3]
.detach()
.numpy(),
marker="H",
s=10,
)
ax10.scatter(
X[view_idx["expression"][1], 0],
X[view_idx["expression"][1], 1],
c=F_latent_samples["expression"]
.mean(0)[view_idx["expression"][1], 4]
.detach()
.numpy(),
marker="H",
s=10,
)
plt.axis("off")
plt.draw()
plt.savefig("./out/visium_lowd_components.png")
plt.pause(1 / 60.0)
plt.close()
import matplotlib
font = {"size": 30}
matplotlib.rc("font", **font)
matplotlib.rcParams["text.usetex"] = True
fig = plt.figure(figsize=(14, 7))
data_expression_ax = fig.add_subplot(121, frameon=False)
latent_expression_ax = fig.add_subplot(122, frameon=False)
callback_twod(
model,
X,
Y,
data_expression_ax=data_expression_ax,
latent_expression_ax=latent_expression_ax,
X_aligned=G_means,
)
latent_expression_ax.set_title("Aligned data, GPSA")
latent_expression_ax.set_axis_off()
data_expression_ax.set_axis_off()
# plt.axis("off")
plt.tight_layout()
plt.savefig("./out/visium_alignment.png")
# plt.show()
plt.close()