[54ded2]: / experiments / expression / visium / moransi_post_alignment.py

Download this file

196 lines (155 with data), 6.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import sys
from os.path import join as pjoin
import scanpy as sc
import squidpy as sq
import anndata
from sklearn.metrics import r2_score, mean_squared_error
import matplotlib.patches as patches
sys.path.append("../../..")
sys.path.append("../../../data")
# from plotting.callbacks import callback_oned, callback_twod
from gpsa.plotting import callback_oned, callback_twod
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import WhiteKernel, RBF, Matern
from sklearn.model_selection import KFold
import matplotlib
font = {"size": 30}
matplotlib.rc("font", **font)
matplotlib.rcParams["text.usetex"] = True
matplotlib.rcParams["xtick.labelsize"] = 20
matplotlib.rcParams["ytick.labelsize"] = 20
aligned_coords = pd.read_csv("./out/aligned_coords_visium.csv", index_col=0).values
view_idx = pd.read_csv("./out/view_idx_visium.csv", index_col=0).values
# X = pd.read_csv("./out/X_visium.csv", index_col=0).values
# Y = pd.read_csv("./out/Y_visium.csv", index_col=0).values
# data = sc.read_h5ad("./out/data_visium.h5")
# data_aligned = data.copy()
# data_aligned.obsm["spatial"] = aligned_coords
def scale_spatial_coords(X, max_val=10.0):
X = X - X.min(0)
X = X / X.max(0)
return X * max_val
DATA_DIR = "../../../data/visium/mouse_brain"
n_spatial_dims = 2
n_views = 2
def process_data(adata, n_top_genes=2000):
adata.var_names_make_unique()
adata.var["mt"] = adata.var_names.str.startswith("MT-")
sc.pp.calculate_qc_metrics(adata, qc_vars=["mt"], inplace=True)
sc.pp.filter_cells(adata, min_counts=5000)
sc.pp.filter_cells(adata, max_counts=35000)
# adata = adata[adata.obs["pct_counts_mt"] < 20]
sc.pp.filter_genes(adata, min_cells=10)
sc.pp.normalize_total(adata, inplace=True)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(
adata, flavor="seurat", n_top_genes=n_top_genes, subset=True
)
return adata
if __name__ == "__main__":
data_slice1 = sc.read_visium(pjoin(DATA_DIR, "sample1"))
data_slice1 = process_data(data_slice1, n_top_genes=6000)
data_slice2 = sc.read_visium(pjoin(DATA_DIR, "sample2"))
data_slice2 = process_data(data_slice2, n_top_genes=6000)
data = data_slice1.concatenate(data_slice2)
data_slice1 = data[data.obs.batch == "0"]
data_slice2 = data[data.obs.batch == "1"]
data_aligned = anndata.AnnData(np.array(data.X.todense()).copy())
data_aligned.obsm["spatial"] = aligned_coords
data_aligned.var_names = data.var_names
## Compute Moran's I
sq.gr.spatial_neighbors(data)
sq.gr.spatial_autocorr(
data,
mode="moran",
)
moran_scores_union = data.uns["moranI"]
sq.gr.spatial_neighbors(data_aligned)
sq.gr.spatial_autocorr(
data_aligned,
mode="moran",
)
moran_scores_gpsa = data_aligned.uns["moranI"]
# moran_scores_gpsa = moran_scores_gpsa[moran_scores_gpsa.pval_norm > 0]
# moran_scores_union = moran_scores_union[moran_scores_union.pval_norm > 0]
moran_scores = pd.merge(
moran_scores_union,
moran_scores_gpsa,
left_index=True,
right_index=True,
suffixes=["_union", "_gpsa"],
)
plt.figure(figsize=(10, 7))
# plt.subplot(121)
# plt.scatter(moran_scores.pval_norm_fdr_bh_union, moran_scores.pval_norm_fdr_bh_gpsa)
# plt.scatter(moran_scores.I_union, moran_scores.I_gpsa, c=moran_scores.pval_norm_fdr_bh_gpsa < moran_scores.pval_norm_fdr_bh_union)
# new_and_significant = np.logical_and(
# (moran_scores.pval_norm_fdr_bh_gpsa < 0.01).values,
# (
# moran_scores.pval_norm_fdr_bh_gpsa < moran_scores.pval_norm_fdr_bh_union
# ).values,
# )
new_and_significant = np.logical_and(
(moran_scores.pval_norm_fdr_bh_gpsa < 0.01).values,
(moran_scores.pval_norm_fdr_bh_union > 0.01).values,
)
old_and_significant = np.logical_and(
(moran_scores.pval_norm_fdr_bh_gpsa < 0.01).values,
(moran_scores.pval_norm_fdr_bh_union < 0.01).values,
)
moran_scores["new_and_significant"] = new_and_significant
# new_and_significant_strs = []
# for ii in range(len(moran_scores)):
# if new_and_significant[ii]:
# new_and_significant_strs.append("GPSA hit\n" + r"($p < 0.01$)")
# elif old_and_significant[ii]:
# new_and_significant_strs.append("Pre-alignment hit\n" + r"($p < 0.01$)")
# else:
# new_and_significant_strs.append("")
new_and_significant_strs = np.array(
[
"GPSA-specific hit\n" + r"($p < 0.01$)" if x else ""
for x in new_and_significant
]
)
# new_and_significant_strs[np.where(old_and_significant)[0]] = "Prealignment hit\n" + r"($p < 0.01$)"
moran_scores["new_and_significant_str"] = new_and_significant_strs
# moran_scores[moran_scores["new_and_significant"] == True]["new_and_significant"] = r"GPSA hit ($p < 0.01$)"
# moran_scores[moran_scores["new_and_significant"] == False]["new_and_significant"] = ""
g = sns.scatterplot(
data=moran_scores,
x="I_union",
y="I_gpsa",
hue="new_and_significant_str",
edgecolor=None,
)
plt.legend(loc="center left", bbox_to_anchor=(1, 0.5), fontsize=20)
g.legend_.set_title(None)
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.plot([0, 1], [0, 1], color="gray", linestyle="--")
plt.xlabel(r"Moran's $I$, Union")
plt.ylabel(r"Moran's $I$, GPSA")
# plt.colorbar()
plt.tight_layout()
plt.savefig("./out/moransi_post_alignment.png")
plt.show()
print(
(moran_scores[["pval_norm_fdr_bh_union", "pval_norm_fdr_bh_gpsa"]] < 1e-4).sum(
0
)
)
# import ipdb; ipdb.set_trace()
# plt.subplot(122)
# plt.scatter(-np.log10(moran_scores.pval_norm_fdr_bh_union + 1e-8), -np.log10(moran_scores.pval_norm_fdr_bh_gpsa + 1e-8))
# plt.show()
# plt.scatter(moran_scores.I_union, -np.log10(moran_scores.pval_norm_fdr_bh_union + 1e-8))
# plt.scatter(moran_scores.I_gpsa, -np.log10(moran_scores.pval_norm_fdr_bh_gpsa + 1e-8))
# plt.show()
import ipdb
ipdb.set_trace()