|
a |
|
b/experiments/simulations/two_dimensional_animation.py |
|
|
1 |
import torch |
|
|
2 |
import numpy as np |
|
|
3 |
import matplotlib.pyplot as plt |
|
|
4 |
|
|
|
5 |
import seaborn as sns |
|
|
6 |
import sys |
|
|
7 |
from gpsa import VariationalGPSA, matern12_kernel, rbf_kernel |
|
|
8 |
from gpsa.plotting import callback_twod |
|
|
9 |
|
|
|
10 |
sys.path.append("../../data") |
|
|
11 |
from simulated.generate_twod_data import generate_twod_data |
|
|
12 |
|
|
|
13 |
import matplotlib.animation as animation |
|
|
14 |
import matplotlib.image as mpimg |
|
|
15 |
import os |
|
|
16 |
from os.path import join as pjoin |
|
|
17 |
import anndata |
|
|
18 |
|
|
|
19 |
import matplotlib |
|
|
20 |
from matplotlib.lines import Line2D |
|
|
21 |
|
|
|
22 |
|
|
|
23 |
font = {"size": 20} |
|
|
24 |
matplotlib.rc("font", **font) |
|
|
25 |
matplotlib.rcParams["text.usetex"] = True |
|
|
26 |
|
|
|
27 |
|
|
|
28 |
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
29 |
|
|
|
30 |
LATEX_FONTSIZE = 35 |
|
|
31 |
|
|
|
32 |
n_spatial_dims = 2 |
|
|
33 |
n_views = 2 |
|
|
34 |
m_G = 50 |
|
|
35 |
m_X_per_view = 50 |
|
|
36 |
|
|
|
37 |
N_EPOCHS = 2000 |
|
|
38 |
PRINT_EVERY = 100 |
|
|
39 |
ONE_SAMPLE_FIXED = True |
|
|
40 |
|
|
|
41 |
|
|
|
42 |
def two_d_gpsa( |
|
|
43 |
n_outputs, |
|
|
44 |
n_epochs, |
|
|
45 |
n_latent_gps, |
|
|
46 |
warp_kernel_variance=0.1, |
|
|
47 |
noise_variance=0.0, |
|
|
48 |
plot_intermediate=True, |
|
|
49 |
fixed_view_idx=None, |
|
|
50 |
): |
|
|
51 |
|
|
|
52 |
X, Y, n_samples_list, view_idx = generate_twod_data( |
|
|
53 |
n_views, |
|
|
54 |
n_outputs, |
|
|
55 |
grid_size=10, |
|
|
56 |
n_latent_gps=n_latent_gps["expression"], |
|
|
57 |
kernel_lengthscale=5.0, |
|
|
58 |
kernel_variance=warp_kernel_variance, |
|
|
59 |
noise_variance=noise_variance, |
|
|
60 |
fixed_view_idx=0 if ONE_SAMPLE_FIXED else None, |
|
|
61 |
) |
|
|
62 |
n_samples_per_view = X.shape[0] // n_views |
|
|
63 |
|
|
|
64 |
plt.figure(figsize=(7, 5)) |
|
|
65 |
markers = ["o", "X"] |
|
|
66 |
for vv in range(n_views): |
|
|
67 |
plt.scatter( |
|
|
68 |
X[view_idx[vv]][:, 0], |
|
|
69 |
X[view_idx[vv]][:, 1], |
|
|
70 |
c=Y[view_idx[vv]][:, 0], |
|
|
71 |
s=400, |
|
|
72 |
marker=markers[vv], |
|
|
73 |
label="View {}".format(vv + 1), |
|
|
74 |
edgecolor="black", |
|
|
75 |
linewidth=2, |
|
|
76 |
) |
|
|
77 |
plt.xlabel("X1") |
|
|
78 |
plt.ylabel("X2") |
|
|
79 |
plt.legend(loc="center left", bbox_to_anchor=(1, 0.5)) |
|
|
80 |
plt.tight_layout() |
|
|
81 |
plt.savefig("./../../examples/synthetic_data_example.png") |
|
|
82 |
plt.close() |
|
|
83 |
|
|
|
84 |
## Save as anndata object |
|
|
85 |
data_obj = anndata.AnnData(Y) |
|
|
86 |
data_obj.obsm["spatial"] = X |
|
|
87 |
batch_id = np.concatenate([[xx] * n_samples_list[xx] for xx in range(n_views)]) |
|
|
88 |
data_obj.obs["batch"] = batch_id |
|
|
89 |
data_obj.write("../../examples/synthetic_data.h5ad") |
|
|
90 |
|
|
|
91 |
x = torch.from_numpy(X).float().clone() |
|
|
92 |
y = torch.from_numpy(Y).float().clone() |
|
|
93 |
|
|
|
94 |
data_dict = { |
|
|
95 |
"expression": { |
|
|
96 |
"spatial_coords": x, |
|
|
97 |
"outputs": y, |
|
|
98 |
"n_samples_list": n_samples_list, |
|
|
99 |
} |
|
|
100 |
} |
|
|
101 |
|
|
|
102 |
model = VariationalGPSA( |
|
|
103 |
data_dict, |
|
|
104 |
n_spatial_dims=n_spatial_dims, |
|
|
105 |
m_X_per_view=m_X_per_view, |
|
|
106 |
m_G=m_G, |
|
|
107 |
data_init=True, |
|
|
108 |
minmax_init=False, |
|
|
109 |
grid_init=False, |
|
|
110 |
n_latent_gps=n_latent_gps, |
|
|
111 |
mean_function="identity_fixed", |
|
|
112 |
kernel_func_warp=rbf_kernel, |
|
|
113 |
kernel_func_data=rbf_kernel, |
|
|
114 |
fixed_view_idx=fixed_view_idx, |
|
|
115 |
).to(device) |
|
|
116 |
|
|
|
117 |
view_idx, Ns, _, _ = model.create_view_idx_dict(data_dict) |
|
|
118 |
|
|
|
119 |
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2) |
|
|
120 |
|
|
|
121 |
def train(model, loss_fn, optimizer): |
|
|
122 |
model.train() |
|
|
123 |
|
|
|
124 |
# Forward pass |
|
|
125 |
G_means, G_samples, F_latent_samples, F_samples = model.forward( |
|
|
126 |
{"expression": x}, view_idx=view_idx, Ns=Ns, S=5 |
|
|
127 |
) |
|
|
128 |
|
|
|
129 |
# Compute loss |
|
|
130 |
loss = loss_fn(data_dict, F_samples) |
|
|
131 |
|
|
|
132 |
# Compute gradients and take optimizer step |
|
|
133 |
optimizer.zero_grad() |
|
|
134 |
loss.backward() |
|
|
135 |
optimizer.step() |
|
|
136 |
|
|
|
137 |
return loss.item() |
|
|
138 |
|
|
|
139 |
# Set up figure. |
|
|
140 |
fig = plt.figure(figsize=(12.14, 5), facecolor="white", constrained_layout=True) |
|
|
141 |
data_expression_ax = fig.add_subplot(121, frameon=False) |
|
|
142 |
latent_expression_ax = fig.add_subplot(122, frameon=False) |
|
|
143 |
plt.show(block=False) |
|
|
144 |
|
|
|
145 |
loss_trace = [] |
|
|
146 |
error_trace = [] |
|
|
147 |
n_frames = 0 |
|
|
148 |
for t in range(n_epochs): |
|
|
149 |
loss = train(model, model.loss_fn, optimizer) |
|
|
150 |
loss_trace.append(loss) |
|
|
151 |
|
|
|
152 |
if plot_intermediate and t % PRINT_EVERY == 0: |
|
|
153 |
print("Iter: {0:<10} LL {1:1.3e}".format(t, -loss)) |
|
|
154 |
G_means, G_samples, F_latent_samples, F_samples = model.forward( |
|
|
155 |
{"expression": x}, view_idx=view_idx, Ns=Ns |
|
|
156 |
) |
|
|
157 |
|
|
|
158 |
callback_twod( |
|
|
159 |
model, |
|
|
160 |
X, |
|
|
161 |
Y, |
|
|
162 |
data_expression_ax=data_expression_ax, |
|
|
163 |
latent_expression_ax=latent_expression_ax, |
|
|
164 |
X_aligned=G_means, |
|
|
165 |
s=600, |
|
|
166 |
) |
|
|
167 |
legend_elements = [ |
|
|
168 |
Line2D( |
|
|
169 |
[0], |
|
|
170 |
[0], |
|
|
171 |
marker="o", |
|
|
172 |
color="w", |
|
|
173 |
label="Slice 1", |
|
|
174 |
markerfacecolor="black", |
|
|
175 |
markersize=20, |
|
|
176 |
), |
|
|
177 |
Line2D( |
|
|
178 |
[0], |
|
|
179 |
[0], |
|
|
180 |
marker="X", |
|
|
181 |
color="w", |
|
|
182 |
label="Slice 2", |
|
|
183 |
markerfacecolor="black", |
|
|
184 |
markersize=20, |
|
|
185 |
), |
|
|
186 |
] |
|
|
187 |
|
|
|
188 |
# Create the figure |
|
|
189 |
plt.legend( |
|
|
190 |
handles=legend_elements, loc="center left", bbox_to_anchor=(1, 0.5) |
|
|
191 |
) |
|
|
192 |
plt.tight_layout() |
|
|
193 |
# plt.draw() |
|
|
194 |
plt.savefig("./tmp/tmp{}".format(n_frames)) |
|
|
195 |
n_frames += 1 |
|
|
196 |
# plt.pause(1 / 60.0) |
|
|
197 |
|
|
|
198 |
G_means, G_samples, F_latent_samples, F_samples = model.forward( |
|
|
199 |
{"expression": x}, view_idx=view_idx, Ns=Ns |
|
|
200 |
) |
|
|
201 |
|
|
|
202 |
print("Done!") |
|
|
203 |
|
|
|
204 |
plt.close() |
|
|
205 |
|
|
|
206 |
fig = plt.figure() |
|
|
207 |
ims = [] |
|
|
208 |
for ii in range(n_frames): |
|
|
209 |
fname = "./tmp/tmp{}.png".format(ii) |
|
|
210 |
img = mpimg.imread(fname) |
|
|
211 |
im = plt.imshow(img) |
|
|
212 |
ax = plt.gca() |
|
|
213 |
ax.set_yticks([]) |
|
|
214 |
ax.set_xticks([]) |
|
|
215 |
ims.append([im]) |
|
|
216 |
os.remove(fname) |
|
|
217 |
|
|
|
218 |
writervideo = animation.FFMpegWriter(fps=5) |
|
|
219 |
ani = animation.ArtistAnimation(fig, ims, interval=50, blit=True, repeat_delay=500) |
|
|
220 |
|
|
|
221 |
if ONE_SAMPLE_FIXED: |
|
|
222 |
save_name = "alignment_animation_template.gif" |
|
|
223 |
else: |
|
|
224 |
save_name = "alignment_animation.gif" |
|
|
225 |
ani.save( |
|
|
226 |
pjoin("out", save_name), |
|
|
227 |
writer=writervideo, |
|
|
228 |
dpi=1000, |
|
|
229 |
) |
|
|
230 |
plt.close() |
|
|
231 |
|
|
|
232 |
|
|
|
233 |
if __name__ == "__main__": |
|
|
234 |
|
|
|
235 |
n_outputs = 30 |
|
|
236 |
two_d_gpsa( |
|
|
237 |
n_epochs=N_EPOCHS, |
|
|
238 |
n_outputs=n_outputs, |
|
|
239 |
warp_kernel_variance=0.5, |
|
|
240 |
noise_variance=0.001, |
|
|
241 |
n_latent_gps={"expression": 5}, |
|
|
242 |
fixed_view_idx=0, |
|
|
243 |
) |
|
|
244 |
|
|
|
245 |
import ipdb |
|
|
246 |
|
|
|
247 |
ipdb.set_trace() |