import torch
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import sys
from os.path import join as pjoin
import scanpy as sc
import anndata
import time
sys.path.append("../../..")
sys.path.append("../../../data")
from gpsa import VariationalGPSA, matern12_kernel, rbf_kernel
from gpsa.plotting import callback_twod
# from plotting.callbacks import callback_oned, callback_twod, callback_twod_aligned_only
from gpsa.plotting import callback_oned, callback_twod, callback_twod_aligned_only
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import WhiteKernel, RBF
from scipy.sparse import load_npz
## For PASTE
import scanpy as sc
import anndata
import matplotlib.patches as mpatches
sys.path.append("../../../../paste")
from src.paste import PASTE, visualization
from sklearn.neighbors import NearestNeighbors, KNeighborsRegressor
from sklearn.metrics import r2_score
def scale_spatial_coords(X, max_val=10.0):
X = X - X.min(0)
X = X / X.max(0)
return X * max_val
DATA_DIR = "../../../data/slideseq/mouse_hippocampus"
N_GENES = 10
N_SAMPLES = None
n_spatial_dims = 2
n_views = 2
m_G = 200
m_X_per_view = 200
N_LATENT_GPS = {"expression": None}
N_EPOCHS = 5000
PRINT_EVERY = 50
def process_data(adata, n_top_genes=2000):
adata.var_names_make_unique()
adata.var["mt"] = adata.var_names.str.startswith("MT-")
sc.pp.calculate_qc_metrics(adata, qc_vars=["mt"], inplace=True)
sc.pp.filter_cells(adata, min_counts=500) # 1800
# sc.pp.filter_cells(adata, max_counts=35000)
# adata = adata[adata.obs["pct_counts_mt"] < 20]
# sc.pp.filter_genes(adata, min_cells=10)
sc.pp.normalize_total(adata, inplace=True)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(
adata, flavor="seurat", n_top_genes=n_top_genes, subset=True
)
return adata
spatial_locs_slice1 = pd.read_csv(
pjoin(DATA_DIR, "Puck_200115_08_spatial_locs.csv"), index_col=0
)
expression_slice1 = load_npz(pjoin(DATA_DIR, "Puck_200115_08_expression.npz"))
gene_names_slice1 = pd.read_csv(
pjoin(DATA_DIR, "Puck_200115_08_gene_names.csv"), index_col=0
)
barcode_names_slice1 = pd.read_csv(
pjoin(DATA_DIR, "Puck_200115_08_barcode_names.csv"), index_col=0
)
data_slice1 = anndata.AnnData(
X=expression_slice1, obs=barcode_names_slice1, var=gene_names_slice1
)
data_slice1.obsm["spatial"] = spatial_locs_slice1.values
data_slice1 = process_data(data_slice1, n_top_genes=6000)
spatial_locs_slice2 = pd.read_csv(
pjoin(DATA_DIR, "Puck_191204_01_spatial_locs.csv"), index_col=0
)
expression_slice2 = load_npz(pjoin(DATA_DIR, "Puck_191204_01_expression.npz"))
gene_names_slice2 = pd.read_csv(
pjoin(DATA_DIR, "Puck_191204_01_gene_names.csv"), index_col=0
)
barcode_names_slice2 = pd.read_csv(
pjoin(DATA_DIR, "Puck_191204_01_barcode_names.csv"), index_col=0
)
data_slice2 = anndata.AnnData(
X=expression_slice2, obs=barcode_names_slice2, var=gene_names_slice2
)
data_slice2.obsm["spatial"] = spatial_locs_slice2.values
data_slice2 = process_data(data_slice2, n_top_genes=6000)
## Remove outlier points outside of puck
MAX_NEIGHBOR_DIST = 700
knn = NearestNeighbors(n_neighbors=10).fit(data_slice1.obsm["spatial"])
neighbor_dists, _ = knn.kneighbors(data_slice1.obsm["spatial"])
inlier_idx = np.where(neighbor_dists[:, -1] < MAX_NEIGHBOR_DIST)[0]
data_slice1 = data_slice1[inlier_idx]
knn = NearestNeighbors(n_neighbors=10).fit(data_slice2.obsm["spatial"])
neighbor_dists, _ = knn.kneighbors(data_slice2.obsm["spatial"])
inlier_idx = np.where(neighbor_dists[:, -1] < MAX_NEIGHBOR_DIST)[0]
data_slice2 = data_slice2[inlier_idx]
angle = 1.45
slice1_coords = data_slice1.obsm["spatial"].copy()
slice2_coords = data_slice2.obsm["spatial"].copy()
slice1_coords = scale_spatial_coords(slice1_coords, max_val=10) - 5
slice2_coords = scale_spatial_coords(slice2_coords, max_val=10) - 5
R = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
slice2_coords = slice2_coords @ R
slice2_coords += np.array([1.0, 1.0])
data_slice1.obsm["spatial"] = slice1_coords
data_slice2.obsm["spatial"] = slice2_coords
print(data_slice1.shape, data_slice2.shape)
data = data_slice1.concatenate(data_slice2)
shared_gene_names = data.var.gene_ids.index.values
data_knn = data_slice1[:, shared_gene_names]
X_knn = data_knn.obsm["spatial"]
Y_knn = np.array(data_knn.X.todense())
Y_knn = (Y_knn - Y_knn.mean(0)) / Y_knn.std(0)
# nbrs = NearestNeighbors(n_neighbors=2).fit(X_knn)
# distances, indices = nbrs.kneighbors(X_knn)
knn = KNeighborsRegressor(n_neighbors=10, weights="uniform").fit(X_knn, Y_knn)
preds = knn.predict(X_knn)
# preds = Y_knn[indices[:, 1]]
r2_vals = r2_score(Y_knn, preds, multioutput="raw_values")
gene_idx_to_keep = np.where(r2_vals > 0.3)[0]
N_GENES = min(N_GENES, len(gene_idx_to_keep))
gene_names_to_keep = data_knn.var.gene_ids.index.values[gene_idx_to_keep]
gene_names_to_keep = gene_names_to_keep[np.argsort(-r2_vals[gene_idx_to_keep])]
r2_vals_sorted = -1 * np.sort(-r2_vals[gene_idx_to_keep])
if N_GENES < len(gene_names_to_keep):
gene_names_to_keep = gene_names_to_keep[:N_GENES]
data = data[:, gene_names_to_keep]
n_samples_list = [data[data.obs.batch == str(ii)].shape[0] for ii in range(n_views)]
X1 = np.array(data[data.obs.batch == "0"].obsm["spatial"])
X2 = np.array(data[data.obs.batch == "1"].obsm["spatial"])
Y1 = np.array(data[data.obs.batch == "0"].X.todense())
Y2 = np.array(data[data.obs.batch == "1"].X.todense())
Y1 = (Y1 - Y1.mean(0)) / Y1.std(0)
Y2 = (Y2 - Y2.mean(0)) / Y2.std(0)
X = np.concatenate([X1, X2])
Y = np.concatenate([Y1, Y2])
device = "cuda" if torch.cuda.is_available() else "cpu"
n_outputs = Y.shape[1]
x = torch.from_numpy(X).float().clone()
y = torch.from_numpy(Y).float().clone()
data_dict = {
"expression": {
"spatial_coords": x,
"outputs": y,
"n_samples_list": n_samples_list,
}
}
model = VariationalGPSA(
data_dict,
n_spatial_dims=n_spatial_dims,
m_X_per_view=m_X_per_view,
m_G=m_G,
data_init=True,
minmax_init=False,
grid_init=False,
n_latent_gps=N_LATENT_GPS,
mean_function="identity_fixed",
kernel_func_warp=rbf_kernel,
kernel_func_data=rbf_kernel,
# fixed_warp_kernel_variances=np.ones(n_views) * 1.,
# fixed_warp_kernel_lengthscales=np.ones(n_views) * 10,
fixed_view_idx=0,
).to(device)
view_idx, Ns, _, _ = model.create_view_idx_dict(data_dict)
# import ipdb; ipdb.set_trace()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
def train(model, loss_fn, optimizer):
model.train()
# Forward pass
G_means, G_samples, F_latent_samples, F_samples = model.forward(
X_spatial={"expression": x}, view_idx=view_idx, Ns=Ns, S=5
)
# Compute loss
loss = loss_fn(data_dict, F_samples)
# Compute gradients and take optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.item(), G_means
# Set up figure.
fig = plt.figure(figsize=(10, 5), facecolor="white", constrained_layout=True)
ax1 = fig.add_subplot(121, frameon=False)
ax2 = fig.add_subplot(122, frameon=False)
ax1.invert_yaxis()
ax2.invert_yaxis()
plt.show(block=False)
gene_idx = 0
for t in range(N_EPOCHS):
start = time.time()
loss, G_means = train(model, model.loss_fn, optimizer)
end = time.time()
timespan = end - start
print(timespan)
plt.close()