[5c09f6]: / experiments / expression / slideseq / slideseq_wallclock_time.py

Download this file

259 lines (193 with data), 7.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import torch
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import sys
from os.path import join as pjoin
import scanpy as sc
import anndata
import time
sys.path.append("../../..")
sys.path.append("../../../data")
from gpsa import VariationalGPSA, matern12_kernel, rbf_kernel
from gpsa.plotting import callback_twod
# from plotting.callbacks import callback_oned, callback_twod, callback_twod_aligned_only
from gpsa.plotting import callback_oned, callback_twod, callback_twod_aligned_only
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import WhiteKernel, RBF
from scipy.sparse import load_npz
## For PASTE
import scanpy as sc
import anndata
import matplotlib.patches as mpatches
sys.path.append("../../../../paste")
from src.paste import PASTE, visualization
from sklearn.neighbors import NearestNeighbors, KNeighborsRegressor
from sklearn.metrics import r2_score
def scale_spatial_coords(X, max_val=10.0):
X = X - X.min(0)
X = X / X.max(0)
return X * max_val
DATA_DIR = "../../../data/slideseq/mouse_hippocampus"
N_GENES = 10
N_SAMPLES = None
n_spatial_dims = 2
n_views = 2
m_G = 200
m_X_per_view = 200
N_LATENT_GPS = {"expression": None}
N_EPOCHS = 5000
PRINT_EVERY = 50
def process_data(adata, n_top_genes=2000):
adata.var_names_make_unique()
adata.var["mt"] = adata.var_names.str.startswith("MT-")
sc.pp.calculate_qc_metrics(adata, qc_vars=["mt"], inplace=True)
sc.pp.filter_cells(adata, min_counts=500) # 1800
# sc.pp.filter_cells(adata, max_counts=35000)
# adata = adata[adata.obs["pct_counts_mt"] < 20]
# sc.pp.filter_genes(adata, min_cells=10)
sc.pp.normalize_total(adata, inplace=True)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(
adata, flavor="seurat", n_top_genes=n_top_genes, subset=True
)
return adata
spatial_locs_slice1 = pd.read_csv(
pjoin(DATA_DIR, "Puck_200115_08_spatial_locs.csv"), index_col=0
)
expression_slice1 = load_npz(pjoin(DATA_DIR, "Puck_200115_08_expression.npz"))
gene_names_slice1 = pd.read_csv(
pjoin(DATA_DIR, "Puck_200115_08_gene_names.csv"), index_col=0
)
barcode_names_slice1 = pd.read_csv(
pjoin(DATA_DIR, "Puck_200115_08_barcode_names.csv"), index_col=0
)
data_slice1 = anndata.AnnData(
X=expression_slice1, obs=barcode_names_slice1, var=gene_names_slice1
)
data_slice1.obsm["spatial"] = spatial_locs_slice1.values
data_slice1 = process_data(data_slice1, n_top_genes=6000)
spatial_locs_slice2 = pd.read_csv(
pjoin(DATA_DIR, "Puck_191204_01_spatial_locs.csv"), index_col=0
)
expression_slice2 = load_npz(pjoin(DATA_DIR, "Puck_191204_01_expression.npz"))
gene_names_slice2 = pd.read_csv(
pjoin(DATA_DIR, "Puck_191204_01_gene_names.csv"), index_col=0
)
barcode_names_slice2 = pd.read_csv(
pjoin(DATA_DIR, "Puck_191204_01_barcode_names.csv"), index_col=0
)
data_slice2 = anndata.AnnData(
X=expression_slice2, obs=barcode_names_slice2, var=gene_names_slice2
)
data_slice2.obsm["spatial"] = spatial_locs_slice2.values
data_slice2 = process_data(data_slice2, n_top_genes=6000)
## Remove outlier points outside of puck
MAX_NEIGHBOR_DIST = 700
knn = NearestNeighbors(n_neighbors=10).fit(data_slice1.obsm["spatial"])
neighbor_dists, _ = knn.kneighbors(data_slice1.obsm["spatial"])
inlier_idx = np.where(neighbor_dists[:, -1] < MAX_NEIGHBOR_DIST)[0]
data_slice1 = data_slice1[inlier_idx]
knn = NearestNeighbors(n_neighbors=10).fit(data_slice2.obsm["spatial"])
neighbor_dists, _ = knn.kneighbors(data_slice2.obsm["spatial"])
inlier_idx = np.where(neighbor_dists[:, -1] < MAX_NEIGHBOR_DIST)[0]
data_slice2 = data_slice2[inlier_idx]
angle = 1.45
slice1_coords = data_slice1.obsm["spatial"].copy()
slice2_coords = data_slice2.obsm["spatial"].copy()
slice1_coords = scale_spatial_coords(slice1_coords, max_val=10) - 5
slice2_coords = scale_spatial_coords(slice2_coords, max_val=10) - 5
R = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
slice2_coords = slice2_coords @ R
slice2_coords += np.array([1.0, 1.0])
data_slice1.obsm["spatial"] = slice1_coords
data_slice2.obsm["spatial"] = slice2_coords
print(data_slice1.shape, data_slice2.shape)
data = data_slice1.concatenate(data_slice2)
shared_gene_names = data.var.gene_ids.index.values
data_knn = data_slice1[:, shared_gene_names]
X_knn = data_knn.obsm["spatial"]
Y_knn = np.array(data_knn.X.todense())
Y_knn = (Y_knn - Y_knn.mean(0)) / Y_knn.std(0)
# nbrs = NearestNeighbors(n_neighbors=2).fit(X_knn)
# distances, indices = nbrs.kneighbors(X_knn)
knn = KNeighborsRegressor(n_neighbors=10, weights="uniform").fit(X_knn, Y_knn)
preds = knn.predict(X_knn)
# preds = Y_knn[indices[:, 1]]
r2_vals = r2_score(Y_knn, preds, multioutput="raw_values")
gene_idx_to_keep = np.where(r2_vals > 0.3)[0]
N_GENES = min(N_GENES, len(gene_idx_to_keep))
gene_names_to_keep = data_knn.var.gene_ids.index.values[gene_idx_to_keep]
gene_names_to_keep = gene_names_to_keep[np.argsort(-r2_vals[gene_idx_to_keep])]
r2_vals_sorted = -1 * np.sort(-r2_vals[gene_idx_to_keep])
if N_GENES < len(gene_names_to_keep):
gene_names_to_keep = gene_names_to_keep[:N_GENES]
data = data[:, gene_names_to_keep]
n_samples_list = [data[data.obs.batch == str(ii)].shape[0] for ii in range(n_views)]
X1 = np.array(data[data.obs.batch == "0"].obsm["spatial"])
X2 = np.array(data[data.obs.batch == "1"].obsm["spatial"])
Y1 = np.array(data[data.obs.batch == "0"].X.todense())
Y2 = np.array(data[data.obs.batch == "1"].X.todense())
Y1 = (Y1 - Y1.mean(0)) / Y1.std(0)
Y2 = (Y2 - Y2.mean(0)) / Y2.std(0)
X = np.concatenate([X1, X2])
Y = np.concatenate([Y1, Y2])
device = "cuda" if torch.cuda.is_available() else "cpu"
n_outputs = Y.shape[1]
x = torch.from_numpy(X).float().clone()
y = torch.from_numpy(Y).float().clone()
data_dict = {
"expression": {
"spatial_coords": x,
"outputs": y,
"n_samples_list": n_samples_list,
}
}
model = VariationalGPSA(
data_dict,
n_spatial_dims=n_spatial_dims,
m_X_per_view=m_X_per_view,
m_G=m_G,
data_init=True,
minmax_init=False,
grid_init=False,
n_latent_gps=N_LATENT_GPS,
mean_function="identity_fixed",
kernel_func_warp=rbf_kernel,
kernel_func_data=rbf_kernel,
# fixed_warp_kernel_variances=np.ones(n_views) * 1.,
# fixed_warp_kernel_lengthscales=np.ones(n_views) * 10,
fixed_view_idx=0,
).to(device)
view_idx, Ns, _, _ = model.create_view_idx_dict(data_dict)
# import ipdb; ipdb.set_trace()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
def train(model, loss_fn, optimizer):
model.train()
# Forward pass
G_means, G_samples, F_latent_samples, F_samples = model.forward(
X_spatial={"expression": x}, view_idx=view_idx, Ns=Ns, S=5
)
# Compute loss
loss = loss_fn(data_dict, F_samples)
# Compute gradients and take optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.item(), G_means
# Set up figure.
fig = plt.figure(figsize=(10, 5), facecolor="white", constrained_layout=True)
ax1 = fig.add_subplot(121, frameon=False)
ax2 = fig.add_subplot(122, frameon=False)
ax1.invert_yaxis()
ax2.invert_yaxis()
plt.show(block=False)
gene_idx = 0
for t in range(N_EPOCHS):
start = time.time()
loss, G_means = train(model, model.loss_fn, optimizer)
end = time.time()
timespan = end - start
print(timespan)
plt.close()