import torch
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import sys
from os.path import join as pjoin
import scanpy as sc
import squidpy as sq
import anndata
from sklearn.metrics import r2_score, mean_squared_error
from scipy.stats import pearsonr
from gpsa import VariationalGPSA, rbf_kernel
from gpsa.plotting import callback_twod
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import WhiteKernel, RBF, Matern
from scipy.sparse import load_npz
## For PASTE
import scanpy as sc
import anndata
import matplotlib.patches as mpatches
from sklearn.neighbors import NearestNeighbors, KNeighborsRegressor
from sklearn.metrics import r2_score
device = "cuda" if torch.cuda.is_available() else "cpu"
def scale_spatial_coords(X, max_val=10.0):
X = X - X.min(0)
X = X / X.max(0)
return X * max_val
DATA_DIR = "../../../data/slideseq/mouse_hippocampus"
N_SAMPLES = 2000 # 2000
n_spatial_dims = 2
n_views = 2
m_G = 50 # 200
m_X_per_view = 50 # 200
N_LATENT_GPS = {"expression": None}
N_EPOCHS = 2_000
PRINT_EVERY = 100
FRAC_TEST = 0.25
N_REPEATS = 1 # 10
def process_data(adata, n_top_genes=2000):
adata.var_names_make_unique()
adata.var["mt"] = adata.var_names.str.startswith("MT-")
sc.pp.calculate_qc_metrics(adata, qc_vars=["mt"], inplace=True)
sc.pp.filter_cells(adata, min_counts=500) # 1800
# sc.pp.filter_cells(adata, max_counts=35000)
# adata = adata[adata.obs["pct_counts_mt"] < 20]
sc.pp.filter_genes(adata, min_cells=10)
sc.pp.normalize_total(adata, inplace=True)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(
adata, flavor="seurat", n_top_genes=n_top_genes, subset=True
)
return adata
spatial_locs_slice1 = pd.read_csv(
pjoin(DATA_DIR, "Puck_200115_08_spatial_locs.csv"), index_col=0
)
expression_slice1 = load_npz(pjoin(DATA_DIR, "Puck_200115_08_expression.npz"))
gene_names_slice1 = pd.read_csv(
pjoin(DATA_DIR, "Puck_200115_08_gene_names.csv"), index_col=0
)
barcode_names_slice1 = pd.read_csv(
pjoin(DATA_DIR, "Puck_200115_08_barcode_names.csv"), index_col=0
)
data_slice1 = anndata.AnnData(
X=expression_slice1, obs=barcode_names_slice1, var=gene_names_slice1
)
data_slice1.obsm["spatial"] = spatial_locs_slice1.values
data_slice1 = process_data(data_slice1, n_top_genes=3000)
spatial_locs_slice2 = pd.read_csv(
pjoin(DATA_DIR, "Puck_191204_01_spatial_locs.csv"), index_col=0
)
expression_slice2 = load_npz(pjoin(DATA_DIR, "Puck_191204_01_expression.npz"))
gene_names_slice2 = pd.read_csv(
pjoin(DATA_DIR, "Puck_191204_01_gene_names.csv"), index_col=0
)
barcode_names_slice2 = pd.read_csv(
pjoin(DATA_DIR, "Puck_191204_01_barcode_names.csv"), index_col=0
)
data_slice2 = anndata.AnnData(
X=expression_slice2, obs=barcode_names_slice2, var=gene_names_slice2
)
data_slice2.obsm["spatial"] = spatial_locs_slice2.values
data_slice2 = process_data(data_slice2, n_top_genes=3000)
## Remove outlier points outside of puck
MAX_NEIGHBOR_DIST = 700
knn = NearestNeighbors(n_neighbors=10).fit(data_slice1.obsm["spatial"])
neighbor_dists, _ = knn.kneighbors(data_slice1.obsm["spatial"])
inlier_idx = np.where(neighbor_dists[:, -1] < MAX_NEIGHBOR_DIST)[0]
data_slice1 = data_slice1[inlier_idx]
knn = NearestNeighbors(n_neighbors=10).fit(data_slice2.obsm["spatial"])
neighbor_dists, _ = knn.kneighbors(data_slice2.obsm["spatial"])
inlier_idx = np.where(neighbor_dists[:, -1] < MAX_NEIGHBOR_DIST)[0]
data_slice2 = data_slice2[inlier_idx]
## Perform initial coarse adjustment
angle = 1.45
slice1_coords = data_slice1.obsm["spatial"].copy()
slice2_coords = data_slice2.obsm["spatial"].copy()
slice1_coords = scale_spatial_coords(slice1_coords, max_val=10) - 5
slice2_coords = scale_spatial_coords(slice2_coords, max_val=10) - 5
R = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]])
slice2_coords = slice2_coords @ R
slice2_coords += np.array([1.0, 1.0])
data_slice1.obsm["spatial"] = slice1_coords
data_slice2.obsm["spatial"] = slice2_coords
print(data_slice1.shape, data_slice2.shape)
data_slice1 = data_slice1[
np.random.choice(np.arange(data_slice1.shape[0]), size=N_SAMPLES, replace=False)
]
data_slice2 = data_slice2[
np.random.choice(np.arange(data_slice2.shape[0]), size=N_SAMPLES, replace=False)
]
sq.gr.spatial_neighbors(data_slice1)
sq.gr.spatial_autocorr(
data_slice1,
mode="moran",
)
moran_scores = data_slice1.uns["moranI"]
genes_to_keep = moran_scores.index.values[np.where(moran_scores.I.values > 0.2)[0]]
genes_to_keep = np.intersect1d(genes_to_keep, data_slice2.var.index.values)
N_GENES = len(genes_to_keep)
data_slice1 = data_slice1[:, genes_to_keep]
data_slice2 = data_slice2[:, genes_to_keep]
## Remove genes with low variance
nonzerovar_idx = np.intersect1d(
np.where(np.array(data_slice1.X.todense()).var(0) > 0.1)[0],
np.where(np.array(data_slice2.X.todense()).var(0) > 0.1)[0],
)
# data = data[:, nonzerovar_idx]
data_slice1 = data_slice1[:, nonzerovar_idx]
data_slice2 = data_slice2[:, nonzerovar_idx]
assert np.array_equal(data_slice1.var.gene_ids.values, data_slice2.var.gene_ids.values)
all_slices = anndata.concat([data_slice1, data_slice2])
data = data_slice1.concatenate(data_slice2)
# import ipdb; ipdb.set_trace()
n_samples_list = [data[data.obs.batch == str(ii)].shape[0] for ii in range(n_views)]
X1 = np.array(data[data.obs.batch == "0"].obsm["spatial"])
X2 = np.array(data[data.obs.batch == "1"].obsm["spatial"])
Y1 = np.array(data[data.obs.batch == "0"].X.todense())
Y2 = np.array(data[data.obs.batch == "1"].X.todense())
# X1 = np.array(data_slice1.obsm["spatial"])
# X2 = np.array(data_slice2.obsm["spatial"])
# Y1 = np.array(data_slice1.X.todense())
# Y2 = np.array(data_slice2.X.todense())
Y1 = (Y1 - Y1.mean(0)) / Y1.std(0)
Y2 = (Y2 - Y2.mean(0)) / Y2.std(0)
X = np.concatenate([X1, X2])
Y = np.concatenate([Y1, Y2])
view_idx = [
np.arange(X1.shape[0]),
np.arange(X1.shape[0], X1.shape[0] + X2.shape[0]),
]
errors_union, errors_separate, errors_gpsa = [], [], []
pd.DataFrame(data.var.gene_ids).to_csv("./out/slideseq_pred_gene_names.csv")
# import ipdb; ipdb.set_trace()
for repeat_idx in range(N_REPEATS):
## Drop part of the second view (this is the part we'll try to predict)
second_view_idx = view_idx[1]
n_drop = int(1.0 * n_samples_list[1] * FRAC_TEST)
test_idx = np.random.choice(second_view_idx, size=n_drop, replace=False)
n_drop = test_idx.shape[0]
keep_idx = np.setdiff1d(second_view_idx, test_idx)
train_idx = np.concatenate([np.arange(n_samples_list[0]), keep_idx])
X_train = X[train_idx]
Y_train = Y[train_idx]
n_samples_list_train = n_samples_list.copy()
n_samples_list_train[1] -= n_drop
n_samples_list_test = [[0], [n_drop]]
X_test = X[test_idx]
Y_test = Y[test_idx]
x_train = torch.from_numpy(X_train).float().clone()
y_train = torch.from_numpy(Y_train).float().clone()
x_test = torch.from_numpy(X_test).float().clone()
y_test = torch.from_numpy(Y_test).float().clone()
data_dict_train = {
"expression": {
"spatial_coords": x_train,
"outputs": y_train,
"n_samples_list": n_samples_list_train,
}
}
data_dict_test = {
"expression": {
"spatial_coords": x_test,
"outputs": y_test,
"n_samples_list": n_samples_list_test,
}
}
model = VariationalGPSA(
data_dict_train,
n_spatial_dims=n_spatial_dims,
m_X_per_view=m_X_per_view,
m_G=m_G,
data_init=True,
minmax_init=False,
grid_init=False,
n_latent_gps=N_LATENT_GPS,
mean_function="identity_fixed",
kernel_func_warp=rbf_kernel,
kernel_func_data=rbf_kernel,
# fixed_warp_kernel_variances=np.ones(n_views) * 1.,
# fixed_warp_kernel_lengthscales=np.ones(n_views) * 10,
fixed_view_idx=0,
).to(device)
view_idx_train, Ns_train, _, _ = model.create_view_idx_dict(data_dict_train)
view_idx_test, Ns_test, _, _ = model.create_view_idx_dict(data_dict_test)
## Make predictions for naive alignment
# gpr_union = GaussianProcessRegressor(kernel=RBF() + WhiteKernel())
# gpr_union.fit(X=X_train, y=Y_train)
# preds = gpr_union.predict(X_test)
knn = KNeighborsRegressor(n_neighbors=10, weights="distance")
knn.fit(X=X_train, y=Y_train)
preds = knn.predict(X_test)
# error_union = np.mean(np.sum((preds - Y_test) ** 2, axis=1))
error_union = np.array(
[pearsonr(Y_test[:, jj], preds[:, jj])[0] for jj in range(preds.shape[1])]
)
# print(len(preds))
errors_union.append(error_union)
print("MSE, union: {}".format(round(np.mean(error_union), 5)), flush=True)
#
# print("R2, union: {}".format(round(r2_union, 5)))
## Make predictons for each view separately
preds, truth = [], []
for vv in range(n_views):
curr_trainX = X_train[view_idx_train["expression"][vv]]
curr_trainY = Y_train[view_idx_train["expression"][vv]]
curr_testX = X_test[view_idx_test["expression"][vv]]
curr_testY = Y_test[view_idx_test["expression"][vv]]
if len(curr_testX) == 0:
continue
# gpr_separate = GaussianProcessRegressor(kernel=RBF() + WhiteKernel())
# gpr_separate.fit(X=curr_trainX, y=curr_trainY)
# curr_preds = gpr_separate.predict(curr_testX)
knn = KNeighborsRegressor(n_neighbors=10, weights="distance")
knn.fit(X=curr_trainX, y=curr_trainY)
curr_preds = knn.predict(curr_testX)
preds.append(curr_preds)
truth.append(curr_testY)
preds = np.concatenate(preds, axis=0)
truth = np.concatenate(truth, axis=0)
# error_separate = np.mean(np.sum((preds - truth) ** 2, axis=1))
error_separate = np.array(
[pearsonr(truth[:, jj], preds[:, jj])[0] for jj in range(preds.shape[1])]
)
print("MSE, separate: {}".format(round(np.mean(error_separate), 5)), flush=True)
# print("R2, sep: {}".format(round(r2_sep, 5)))
errors_separate.append(error_separate)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2)
def train(model, loss_fn, optimizer):
model.train()
# Forward pass
G_means, G_samples, F_latent_samples, F_samples = model.forward(
X_spatial={"expression": x_train}, view_idx=view_idx_train, Ns=Ns_train, S=3
)
# Compute loss
loss = loss_fn(data_dict_train, F_samples)
# Compute gradients and take optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss.item(), G_means
# Set up figure.
fig = plt.figure(figsize=(18, 7), facecolor="white", constrained_layout=True)
data_expression_ax = fig.add_subplot(131, frameon=False)
latent_expression_ax = fig.add_subplot(132, frameon=False)
prediction_ax = fig.add_subplot(133, frameon=False)
plt.show(block=False)
for t in range(N_EPOCHS):
loss, G_means = train(model, model.loss_fn, optimizer)
if t % PRINT_EVERY == 0 or t == N_EPOCHS - 1:
print("Iter: {0:<10} LL {1:1.3e}".format(t, -loss))
G_means_test, _, _, F_samples_test, = model.forward(
X_spatial={"expression": x_test},
view_idx=view_idx_test,
Ns=Ns_test,
prediction_mode=True,
S=10,
)
curr_preds = torch.mean(F_samples_test["expression"], dim=0)
callback_twod(
model,
X_train,
Y_train,
data_expression_ax=data_expression_ax,
latent_expression_ax=latent_expression_ax,
# prediction_ax=ax_dict["preds"],
X_aligned=G_means,
# X_test=X_test,
# Y_test_true=Y_test,
# Y_pred=curr_preds,
# X_test_aligned=G_means_test,
)
plt.draw()
plt.pause(1 / 60.0)
error_gpsa = np.mean(
np.sum((Y_test - curr_preds.detach().numpy()) ** 2, axis=1)
)
# print("MSE, GPSA: {}".format(round(error_gpsa, 5)), flush=True)
# r2_gpsa = r2_score(Y_test, curr_preds.detach().numpy())
# print("R2, GPSA: {}".format(round(r2_gpsa, 5)))
curr_aligned_coords = G_means["expression"].detach().numpy()
curr_aligned_coords_test = G_means_test["expression"].detach().numpy()
try:
# gpr_gpsa = GaussianProcessRegressor(kernel=RBF() + WhiteKernel())
# gpr_gpsa.fit(X=curr_aligned_coords, y=Y_train)
# preds = gpr_gpsa.predict(curr_aligned_coords_test)
knn = KNeighborsRegressor(n_neighbors=10, weights="distance")
knn.fit(X=curr_aligned_coords, y=Y_train)
preds = knn.predict(curr_aligned_coords_test)
# error_gpsa = np.mean(np.sum((preds - Y_test) ** 2, axis=1))
error_gpsa = np.array(
[
pearsonr(Y_test[:, jj], preds[:, jj])[0]
for jj in range(preds.shape[1])
]
)
print(
"MSE, GPSA GPR: {}".format(round(np.mean(error_gpsa), 5)),
flush=True,
)
# plt.close()
# for jj in range(Y_test.shape[1]):
# plt.scatter(Y_test[:, jj], preds[:, jj])
# plt.show()
except:
continue
errors_gpsa.append(error_gpsa)
plt.close()
pd.DataFrame(preds).to_csv("./out/slideseq_preds_gpsa.csv")
pd.DataFrame(Y_test).to_csv("./out/slideseq_truth_gpsa.csv")
# import ipdb; ipdb.set_trace()