|
a |
|
b/examples/grid_example.py |
|
|
1 |
import torch |
|
|
2 |
import numpy as np |
|
|
3 |
import matplotlib.pyplot as plt |
|
|
4 |
import seaborn as sns |
|
|
5 |
import anndata |
|
|
6 |
|
|
|
7 |
from gpsa import VariationalGPSA |
|
|
8 |
from gpsa import matern12_kernel, rbf_kernel |
|
|
9 |
from gpsa.plotting import callback_twod |
|
|
10 |
|
|
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
12 |
|
|
|
13 |
N_SPATIAL_DIMS = 2 |
|
|
14 |
N_VIEWS = 2 |
|
|
15 |
M_G = 25 |
|
|
16 |
M_X_PER_VIEW = 25 |
|
|
17 |
N_OUTPUTS = 5 |
|
|
18 |
FIXED_VIEW_IDX = 0 |
|
|
19 |
N_LATENT_GPS = {"expression": None} |
|
|
20 |
|
|
|
21 |
N_EPOCHS = 3000 |
|
|
22 |
PRINT_EVERY = 100 |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
data = anndata.read_h5ad("./synthetic_data.h5ad") |
|
|
26 |
X = data.obsm["spatial"] |
|
|
27 |
Y = data.X |
|
|
28 |
view_idx = [np.where(data.obs.batch.values == ii)[0] for ii in range(2)] |
|
|
29 |
n_samples_list = [len(x) for x in view_idx] |
|
|
30 |
|
|
|
31 |
x = torch.from_numpy(X).float().clone().to(device) |
|
|
32 |
y = torch.from_numpy(Y).float().clone().to(device) |
|
|
33 |
|
|
|
34 |
data_dict = { |
|
|
35 |
"expression": { |
|
|
36 |
"spatial_coords": x, |
|
|
37 |
"outputs": y, |
|
|
38 |
"n_samples_list": n_samples_list, |
|
|
39 |
} |
|
|
40 |
} |
|
|
41 |
|
|
|
42 |
model = VariationalGPSA( |
|
|
43 |
data_dict, |
|
|
44 |
n_spatial_dims=N_SPATIAL_DIMS, |
|
|
45 |
m_X_per_view=M_X_PER_VIEW, |
|
|
46 |
m_G=M_G, |
|
|
47 |
data_init=True, |
|
|
48 |
minmax_init=False, |
|
|
49 |
grid_init=False, |
|
|
50 |
n_latent_gps=N_LATENT_GPS, |
|
|
51 |
mean_function="identity_fixed", |
|
|
52 |
kernel_func_warp=rbf_kernel, |
|
|
53 |
kernel_func_data=rbf_kernel, |
|
|
54 |
fixed_view_idx=FIXED_VIEW_IDX, |
|
|
55 |
).to(device) |
|
|
56 |
|
|
|
57 |
view_idx, Ns, _, _ = model.create_view_idx_dict(data_dict) |
|
|
58 |
|
|
|
59 |
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2) |
|
|
60 |
|
|
|
61 |
|
|
|
62 |
def train(model, loss_fn, optimizer): |
|
|
63 |
model.train() |
|
|
64 |
|
|
|
65 |
# Forward pass |
|
|
66 |
G_means, G_samples, F_latent_samples, F_samples = model.forward( |
|
|
67 |
{"expression": x}, view_idx=view_idx, Ns=Ns, S=5 |
|
|
68 |
) |
|
|
69 |
|
|
|
70 |
# Compute loss |
|
|
71 |
loss = loss_fn(data_dict, F_samples) |
|
|
72 |
|
|
|
73 |
# Compute gradients and take optimizer step |
|
|
74 |
optimizer.zero_grad() |
|
|
75 |
loss.backward() |
|
|
76 |
optimizer.step() |
|
|
77 |
|
|
|
78 |
return loss.item() |
|
|
79 |
|
|
|
80 |
|
|
|
81 |
# Set up figure. |
|
|
82 |
fig = plt.figure(figsize=(14, 7), facecolor="white", constrained_layout=True) |
|
|
83 |
data_expression_ax = fig.add_subplot(121, frameon=False) |
|
|
84 |
latent_expression_ax = fig.add_subplot(122, frameon=False) |
|
|
85 |
plt.show(block=False) |
|
|
86 |
|
|
|
87 |
for t in range(N_EPOCHS): |
|
|
88 |
loss = train(model, model.loss_fn, optimizer) |
|
|
89 |
|
|
|
90 |
if t % PRINT_EVERY == 0: |
|
|
91 |
print("Iter: {0:<10} LL {1:1.3e}".format(t, -loss)) |
|
|
92 |
G_means, _, _, _ = model.forward({"expression": x}, view_idx=view_idx, Ns=Ns) |
|
|
93 |
|
|
|
94 |
callback_twod( |
|
|
95 |
model, |
|
|
96 |
X, |
|
|
97 |
Y, |
|
|
98 |
data_expression_ax=data_expression_ax, |
|
|
99 |
latent_expression_ax=latent_expression_ax, |
|
|
100 |
X_aligned=G_means, |
|
|
101 |
s=600, |
|
|
102 |
) |
|
|
103 |
plt.draw() |
|
|
104 |
plt.pause(1 / 60.0) |
|
|
105 |
|
|
|
106 |
print("Done!") |
|
|
107 |
|
|
|
108 |
plt.close() |