[6b94fb]: / .Rhistory

Download this file

513 lines (512 with data), 23.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
lmodel = lm(allResults[,i] ~ .^2, data = allPredictors)
sink(paste0(outputLoc,"_int_",method,"txt"))
print(summary(lmodel))
sink() # returns output to the console
}
# go through each method but only look at the 1000 SNP runs
only1000SNPs = which(allPredictors$X.causals =="1000")
for (i in 1:length(modelNames)) {
method = modelNames[i]
# perform regression analyses for each method
lmodel = lm(allResults[only1000SNPs,i] ~ p_current + shared_corr, data = allPredictors[only1000SNPs,])
sink(paste0(outputLoc,"_1000_",method,"txt"))
print(summary(lmodel))
sink() # returns output to the console
}
for (i in 1:length(modelNames)) {
method = modelNames[i]
# perform regression analyses for each method
lmodel = lm(allResults[,i] ~ p_current + shared_corr, data = allPredictors[,])
sink(paste0(outputLoc,"_all_",method,"txt"))
print(summary(lmodel))
sink() # returns output to the console
}
sampleSizeAsN = allPredictors$sample_size
sampleSizeAsN[which(sampleSizeAsN == "_half")] = 8000
sampleSizeAsN[which(sampleSizeAsN == "_full")] = 16000
sampleSizeAsN[which(sampleSizeAsN == "_double")] = 32000
sampleSizeAsN = as.numeric(sampleSizeAsN)
# overall results
median(allResults$meta) # 0.05962532
median(allResults$subpheno) # 0.07367951
median(allResults$shaPRS) # 0.1139283
median(allResults$SMTPred) # 0.07585284
mean(allResults$meta) # 0.07426966
mean(allResults$subpheno) # 0.09124099
mean(allResults$shaPRS) # 0.1189231
mean(allResults$SMTPred) # 0.09280919
# Combined seems a bit low, check when it is better than subpheno
combined_better_than_subpheno_indices = which(allResults$meta > allResults$subpheno)
combined_better_than_subpheno = allResults[combined_better_than_subpheno_indices,]
SMTPred_better_than_shapRS_indices = which(allResults$SMTPred > allResults$shaPRS)
SMTPred_better_than_shapRS = allResults[SMTPred_better_than_shapRS_indices,]
# create heatmaps
i=1
# create rownames
coln = c()
rGs = c()
ps= c()
cors= c()
splits= c()
sample_sizes= c()
for (i in 1:length(allPredictors[,1])) {
print(i)
sample_size = gsub("_", "", allPredictors[i,7]) #remove underscores
rG= padTo_dec( allPredictors[i,2], 4)
p= padTo_dec( round(allPredictors[i,3], 2) ,4)
corre = padTo_dec( round(allPredictors[i,4], 2) ,4)
annotations = paste0("rG:",rG, " p:",p, " cor:",corre, " ",allPredictors[i,5], " split:",allPredictors[i,6], " size:",sample_size)
coln = c(coln,annotations)
splits = c(splits,allPredictors[i,6] )
ps = c(ps,p )
cors = c(cors,corre )
sample_sizes = c(sample_sizes,sample_size )
rGs = c(rGs,paste0(rG," ") ) # add an extra space for padding, otherwise legend will be cut off as pheatmap is shit
}
rownames(allResults) = coln
# want to sort the data rows by rG
orderByRG = order( as.numeric(rGs))
allResults = allResults[orderByRG,]
splits = splits[orderByRG]
rGs = rGs[orderByRG]
ps = ps[orderByRG]
cors = cors[orderByRG]
sample_sizes = sample_sizes[orderByRG]
rGs_DF <- data.frame( rGs,as.numeric(ps),as.numeric(cors),sample_sizes, splits,row.names=rownames(allResults)) # need to match the rownames to the data for the annotation to work
colnames(rGs_DF) <- c("rG", "p", "cor","N", "split") # this is the header for the annotation
# function to separate regular/extra results:
filterOutByTerm_all = function(allResults,splits,ps,cors,filterTerm = "rG:0.50") {
subsetResults = allResults
ps_subset = ps
cors_subset = cors
splits_subset = splits
indices_kept = c()
i=1
for (i in 1:nrow(subsetResults) ) {
rowname = rownames(subsetResults[i,])
# check if rowname includes extra/regular,
if ( grepl( filterTerm, rowname, fixed = TRUE) ) {
# if yes, we replace it with nothing, and keep it
rowname_new = gsub(filterTerm, "",rowname) #remove underscores
rownames(subsetResults)[rownames(subsetResults) == rowname] <- rowname_new
indices_kept = c(indices_kept, i)
} # discard it otherwise
}
subsetResults = subsetResults[indices_kept,]
# function to separate regular/extra results:
filterOutByTerm_all = function(allResults,splits,ps,cors,filterTerm = "rG:0.50") {
subsetResults = allResults
ps_subset = ps
cors_subset = cors
splits_subset = splits
indices_kept = c()
i=1
for (i in 1:nrow(subsetResults) ) {
rowname = rownames(subsetResults[i,])
# check if rowname includes extra/regular,
if ( grepl( filterTerm, rowname, fixed = TRUE) ) {
# if yes, we replace it with nothing, and keep it
rowname_new = gsub(filterTerm, "",rowname) #remove underscores
rownames(subsetResults)[rownames(subsetResults) == rowname] <- rowname_new
indices_kept = c(indices_kept, i)
} # discard it otherwise
}
subsetResults = subsetResults[indices_kept,]
ps_subset = ps_subset[indices_kept]
cors_subset = cors_subset[indices_kept]
splits_subset = splits_subset[indices_kept]
results = NULL
results$subsetResults = subsetResults
results$ps_subset = ps_subset
results$cors_subset = cors_subset
results$splits_subset = splits_subset
return(results)
}
)
# function to separate regular/extra results:
filterOutByTerm_all = function(allResults,splits,ps,cors,filterTerm = "rG:0.50") {
subsetResults = allResults
ps_subset = ps
cors_subset = cors
splits_subset = splits
indices_kept = c()
i=1
for (i in 1:nrow(subsetResults) ) {
rowname = rownames(subsetResults[i,])
# check if rowname includes extra/regular,
if ( grepl( filterTerm, rowname, fixed = TRUE) ) {
# if yes, we replace it with nothing, and keep it
rowname_new = gsub(filterTerm, "",rowname) #remove underscores
rownames(subsetResults)[rownames(subsetResults) == rowname] <- rowname_new
indices_kept = c(indices_kept, i)
} # discard it otherwise
}
subsetResults = subsetResults[indices_kept,]
ps_subset = ps_subset[indices_kept]
cors_subset = cors_subset[indices_kept]
splits_subset = splits_subset[indices_kept]
results = NULL
results$subsetResults = subsetResults
results$ps_subset = ps_subset
results$cors_subset = cors_subset
results$splits_subset = splits_subset
return(results)
}
# Filter to keep the main interesting scenarios, rG 0.5, regular, full
results_RG05 = filterOutByTerm_all(allResults,splits,ps,cors,filterTerm = "rG:0.50")
results_regular = filterOutByTerm_all(results_RG05$subsetResults,results_RG05$splits_subset,results_RG05$ps_subset,results_RG05$cors_subset,filterTerm = "regular")
results_full = filterOutByTerm_all(results_regular$subsetResults,results_regular$splits_subset,results_regular$ps_subset,results_regular$cors_subset,filterTerm = "size:full")
subsetResults = results_full$subsetResults
subset_DF <- data.frame( results_full$ps_subset, results_full$cors_subset,results_full$splits_subset,row.names=rownames(subsetResults)) # ,row.names=rownames(subsetResults) # need to match the rownames to the data for the annotation to work
colnames(subset_DF) <- c("p","cor","split") # this is the header for the annotation
#plotName = "shaPRS - rG:0.5, n:full, no extra" # no plotname for final publication
plotName =""
pheatmap(subsetResults, main = plotName , filename=paste(outputLoc,"_subset.png", sep="" ),annotation_row=subset_DF, show_rownames = F, height=5, width=5 , cex=1 ,cluster_rows=F, cluster_cols=F)
# Filter to keep the main interesting scenarios, rG 0.5, regular, full
results_RG05 = filterOutByTerm_all(allResults,splits,ps,cors,filterTerm = "rG:0.50")
results_regular = filterOutByTerm_all(results_RG05$subsetResults,results_RG05$splits_subset,results_RG05$ps_subset,results_RG05$cors_subset,filterTerm = "regular")
results_full = filterOutByTerm_all(results_regular$subsetResults,results_regular$splits_subset,results_regular$ps_subset,results_regular$cors_subset,filterTerm = "size:full")
subsetResults = results_full$subsetResults
subset_DF <- data.frame( results_full$ps_subset, results_full$cors_subset,results_full$splits_subset,row.names=rownames(subsetResults)) # ,row.names=rownames(subsetResults) # need to match the rownames to the data for the annotation to work
colnames(subset_DF) <- c("p","cor","split") # this is the header for the annotation
plotName =""
###
# Filter to keep the main interesting scenarios, rG 0.5, extra, full
results_RG05 = filterOutByTerm_all(allResults,splits,ps,cors,filterTerm = "rG:0.50")
results_regular = filterOutByTerm_all(results_RG05$subsetResults,results_RG05$splits_subset,results_RG05$ps_subset,results_RG05$cors_subset,filterTerm = "extra")
results_full = filterOutByTerm_all(results_regular$subsetResults,results_regular$splits_subset,results_regular$ps_subset,results_regular$cors_subset,filterTerm = "size:full")
subsetResults_extra = results_full$subsetResults
subset_DF_extra <- data.frame( results_full$ps_subset, results_full$cors_subset,results_full$splits_subset,row.names=rownames(subsetResults_extra)) # ,row.names=rownames(subsetResults_extra) # need to match the rownames to the data for the annotation to work
colnames(subset_DF_extra) <- c("p","cor","split") # this is the header for the annotation
#plotName = "shaPRS - rG:0.5, n:full, no extra" # no plotname for final publication
# make pheatmap on the same colour scale:
Breaks <- seq(min(c(subsetResults, subsetResults_extra)), max(c(subsetResults, subsetResults_extra)), length = 100)
# make pheatmap on the same colour scale:
Breaks <- seq(min(subsetResults, subsetResults_extra), max(subsetResults, subsetResults_extra), length = 100)
Breaks
paste(outputLoc,"_subset.png", sep="" )
pheatmap(subsetResults, breaks = Breaks, main = plotName , filename=paste(outputLoc,"_subset.png", sep="" ),annotation_row=subset_DF, show_rownames = F, height=5, width=5 , cex=1 ,cluster_rows=F, cluster_cols=F)
pheatmap(subsetResults_extra, breaks = Breaks, main = plotName , filename=paste(outputLoc,"_subset_extra.png", sep="" ),annotation_row=subset_DF_extra, show_rownames = F, height=5, width=5 , cex=1 ,cluster_rows=F, cluster_cols=F)
args=vector()
args =c(args,"#causals_1000_rG_0.1_A50_B50_size_half")
args = c(args,"0.1")
args = c(args,"C:/softwares/Cluster/0shaPRS/debug/#causals_1000_rG_0.1_A50_B50_size_half")
args = c(args,"C:/softwares/Cluster/0shaPRS/debug/1000/10/0.1_1.0/A50_B50/size_half/")
args = c(args,"0.1")
args = c(args,"1.0")
args = c(args,"C:/softwares/Cluster/0shaPRS/debug/1000/10/0.55_0.1818182/A50_B50/size_half/")
args = c(args,"0.55")
args = c(args,"0.1818182")
args = c(args, "C:/softwares/Cluster/0shaPRS/debug/1000/10/1.0_0.1/A50_B50/size_half/")
args = c(args,"1.0")
args = c(args,"0.1")
limitsEnabled = F
# load input files for each method
combined= NULL
subpheno= NULL
shaPRS= NULL
SMTPred= NULL
xlabels=vector()
for(i in seq(from=4, to=length(args), by=4)){ # 4 as we also add the 'regular'
baseLoc=args[i]
print(paste0("baseLoc is: ", baseLoc))
current_combined = read.table(paste0(baseLoc,"combined") ,header=F)
current_subpheno = read.table(paste0(baseLoc,"subpheno") ,header=F)
current_shaPRS = read.table(paste0(baseLoc,"shaPRS_meta") ,header=F)
current_SMTPred = read.table(paste0(baseLoc,"SMTPred") ,header=F)
# replace NAs with col mean
current_combined[is.na(current_combined[,1]), 1] <- mean(current_combined[,1], na.rm = TRUE)
current_subpheno[is.na(current_subpheno[,1]), 1] <- mean(current_subpheno[,1], na.rm = TRUE)
current_shaPRS[is.na(current_shaPRS[,1]), 1] <- mean(current_shaPRS[,1], na.rm = TRUE)
current_SMTPred[is.na(current_SMTPred[,1]), 1] <- mean(current_SMTPred[,1], na.rm = TRUE)
if (is.null(combined)) {
combined= current_combined
subpheno= current_subpheno
shaPRS= current_shaPRS
SMTPred= current_SMTPred
} else {
combined= cbind( combined,current_combined )
subpheno= cbind( subpheno, current_subpheno)
shaPRS= cbind(shaPRS, current_shaPRS)
SMTPred= cbind( SMTPred, current_SMTPred)
}
p_current = round(as.numeric(args[(i+1)]),2)
shared_corr = round(as.numeric(args[(i+2)]),2)
print(paste0("p_current: ",p_current, " / shared_corr: ", shared_corr, " | baseLoc: ", baseLoc))
xlabels = c(xlabels, paste0("p:",p_current,"/r:",shared_corr) )
}
?plot
library(qvalue)
?qvalue_truncp
?qvalue::qvalue_truncp
?qvalue
inputDataLoc="C:/0Datasets/shaPRS/DEL/EUR_JAP_T2D_SE_meta"
blendFactorsLoc="C:/0Datasets/shaPRS/DEL/EUR_JAP_T2D_lFDR_meta_SNP_lFDR"
outputLoc="C:/0Datasets/shaPRS/DEL/QvalManhattan"
B12Loc = "C:/0Datasets/shaPRS/DEL/EUR_JAP_T2D_sumstats_meta"
plotTitle="Uga"
# 1. load data
inputData= read.table(inputDataLoc, header = T)
blendFactors= read.table(blendFactorsLoc, header = T)
B12= read.table(B12Loc, header = T)
inputData_blendFactors = merge(inputData,blendFactors, by ="SNP") # merge to make sure they are aligned
B12_blendFactors = merge(B12,blendFactors, by ="SNP") # merge to make sure they are aligned
# MANHATTAN PLOT
inputData_blendFactors$P=inputData_blendFactors$Qval # add the adjusted Q vals as 'P', as that is col I would be plotting next
lfdr_2_blending = 1-inputData_blendFactors$lFDR
base_colour1 = 0.20
base_colour2 = 0.20
manhattanBaseColours = c(rgb(0,base_colour2,0,1),rgb(0,0,base_colour1,1) )
allIndices = inputData_blendFactors$BP
# need to offset the SNP BP indices, by the previous number of indices in all previous chromosomes
inputData_blendFactors$Offsets = 0
for (i in 1:21) { # we always set the next offset, so we dont loop til last Chrom
message(i)
CHR_SNPs = inputData_blendFactors[inputData_blendFactors$CHR == i,]
maxBPCurrentChrom = max(CHR_SNPs$BP)
currentOffset = CHR_SNPs$Offsets[1]
nextOffset = currentOffset + maxBPCurrentChrom
inputData_blendFactors[inputData_blendFactors$CHR == (i+1),9] = nextOffset
}
hist(B12_blendFactors$lFDR, probability = T, col ="red", xlab = "lFDR", main ="")
plot(B12_blendFactors$lFDR, B12_blendFactors$b, col ="red", xlab = "lFDR", ylab = "SNP coef", main ="")
# get distribution
library(scales)
plot(B12_blendFactors$lFDR[1:5000], B12_blendFactors$b[1:5000], col =alpha("red", 0.4), xlab = "lFDR", ylab = "SNP coef", main ="")
plot(B12_blendFactors$lFDR[1:5000], B12_blendFactors$b[1:5000], col =alpha("red", 0.3), xlab = "lFDR", ylab = "SNP coef", main ="")
baseLoc="C:/0Datasets/ukbb/fis/"
phenoLoc=paste0(baseLoc, "pheno")
covarsLoc=paste0(baseLoc, "covariates")
pheno=read.table(phenoLoc ,header=F)
View(pheno)
covars=read.table(covarsLoc ,header=T)
View(covars)
men_index = which(covars$SEX =="M")
female_pheno = pheno[female_index]
female_index = which(covars$SEX =="F")
male_pheno = pheno[men_index]
men_index = which(covars$SEX =="M")
female_index = which(covars$SEX =="F")
female_pheno = pheno[female_index]
male_pheno = pheno[men_index]
men_index
female_pheno = pheno$V1[female_index]
male_pheno = pheno$V1[men_index]
mean(female_pheno)
mean(male_pheno) # 5.788613
t.test(male_pheno,female_pheno)
var(female_pheno)
var(male_pheno) #
percDifference = function (data1, data2) {
mean1 = mean(data1)
mean2 = mean(data2)
percDiff = round( (mean1 - mean2) / ( (mean1 + mean2)/2 ) * 100)
return(percDiff)
}
percDifference = function (data1, data2) {
percDiff = round( (data1 - data2) / ( (data1 + data2)/2 ) * 100)
return(percDiff)
}
percDifference( mean(male_pheno), mean(male_pheno) )
percDifference( mean(male_pheno), mean(female_pheno) )
female_townsend = covars$TOWNSEND[female_index]
male_townsend = covars$TOWNSEND[men_index]
mean(female_townsend)
mean(male_townsend) # -1.655731
var(female_townsend)
var(male_townsend)
t.test(male_townsend, female_townsend)
percDifference( var(male_pheno), var(female_pheno) ) # FIS: 4
baseLoc="C:/0Datasets/ukbb/height/"
phenoLoc=paste0(baseLoc, "pheno")
covarsLoc=paste0(baseLoc, "covariates")
pheno=read.table(phenoLoc ,header=F)
covars=read.table(covarsLoc ,header=T)
men_index = which(covars$SEX =="M")
female_index = which(covars$SEX =="F")
female_pheno = pheno$V1[female_index]
male_pheno = pheno$V1[men_index]
mean(female_pheno) # FIS: 5.788613
mean(male_pheno) # FIS: 5.995717
percDifference( mean(male_pheno), mean(female_pheno) ) # FIS: 4
t.test(male_pheno,female_pheno) # t = 22.523, df = 184654, p-value < 2.2e-16
var(female_pheno) # FIS: 3.778955
var(male_pheno) # FIS: 4.301227
percDifference( var(male_pheno), var(female_pheno) ) # FIS: 13
baseLoc="C:/0Datasets/ukbb/bmi/"
phenoLoc=paste0(baseLoc, "pheno")
covarsLoc=paste0(baseLoc, "covariates")
pheno=read.table(phenoLoc ,header=F)
covars=read.table(covarsLoc ,header=T)
men_index = which(covars$SEX =="M")
female_index = which(covars$SEX =="F")
female_pheno = pheno$V1[female_index]
male_pheno = pheno$V1[men_index]
mean(female_pheno) # FIS: 5.788613 # 162.6658
mean(male_pheno) # FIS: 5.995717 # 175.9021
percDifference( mean(male_pheno), mean(female_pheno) ) # FIS: 4, Height: 8
t.test(male_pheno,female_pheno) # FIS/Height: p-value < 2.2e-16
var(female_pheno) # FIS: 3.778955, Height: 38.63668
var(male_pheno) # FIS: 4.301227, 45.66119
percDifference( var(male_pheno), var(female_pheno) ) # FIS: 13, Height: 17
var(female_townsend) # 7.647166
var(male_townsend) # 7.98267 # variance is greater for men
mean(female_townsend) # -1.655731
# Compare male female townsends
female_townsend = covars$TOWNSEND[female_index]
male_townsend = covars$TOWNSEND[men_index]
mean(female_townsend) # -1.655731
mean(male_townsend) # -1.658059
t.test(male_townsend, female_townsend) # p-value = 0.8553
var(female_townsend) # 7.647166
var(male_townsend) # 7.98267 # variance is greater for men
hist(male_pheno)
hist(female_pheno)
hist(male_pheno)
hist(female_pheno)
writeLines('PATH="${RTOOLS40_HOME}\\usr\\bin;${PATH}"', con = "~/.Renviron")
Sys.which("make")
library("devtools")
library(roxygen2)
# 1) set working Dir
#setwd("C:/Users/mk23/GoogleDrive_phd/PHD/!Publications/shaPRS/R_package_303021/shaPRS")
setwd("C:/Users/mk23/GoogleDrive_Cam/0Publications/shaPRS/R_package/shaPRS")
#install_github("jdstorey/qvalue")
#install_github("mkelcb/shaprs")
usethis::use_package("qvalue")
usethis::use_package("Matrix")
usethis::use_package("compiler")
document()
check(cran=TRUE)
document()
check(cran=TRUE)
document()
check(cran=TRUE)
document()
check(cran=TRUE)
# 1. load phenos
subphenoLoc='inst/extdata/phenoA_sumstats'
CombinedPhenoLoc='inst/extdata/Combined_sumstats'
blendFactorLoc='inst/extdata/myOutput_SNP_lFDR'
subpheno= read.table(subphenoLoc, header = T)
CombinedPheno= read.table(CombinedPhenoLoc, header = T)
blendingFactors= read.table(blendFactorLoc, header = F)
# 1. load phenos
subphenoLoc='inst/extdata/phenoA_sumstats'
subpheno_otherLoc='inst/extdata/phenoB_sumstats'
blendFactorLoc='inst/extdata/myOutput_SNP_lFDR'
subpheno= read.table(subphenoLoc, header = T)
subpheno_other= read.table(subpheno_otherLoc, header = T)
blendingFactors= read.table(blendFactorLoc, header = F)
View(subpheno)
View(subpheno_other)
View(subpheno)
View(blendingFactors)
blendingFactors= read.table(blendFactorLoc, header = T)
View(blendingFactors)
# 1. Merge first the 3 tables together by RSid, so they are always aligned, x = subpheno and y = CombinedPheno ( ensure that when we check allele alignment we are comparing the same SNPs
subpheno_otherPheno = merge(subpheno,subpheno_other,by.x = "SNP",by.y = "SNP")
subpheno_otherPheno_blending = merge(subpheno_otherPheno,blendingFactors, by.x = "SNP", by.y = "SNP")
document()
check(cran=TRUE)
# Build package
build()
# Test install
install()
#install_github("jdstorey/qvalue")
install_github("mkelcb/shaprs")
library("devtools")
# Test install
install()
library("shaPRS")
# II) tests
?shaPRS_adjust
inputDataLoc <- system.file("extdata", "shapersToydata.txt", package = "shaPRS")
inputData= read.table(inputDataLoc, header = T)
results = shaPRS_adjust(inputData, thresholds=c(0.5,0.99))
# Test LD ref blend
?LDRefBlend
sumstatsData = readRDS(file = system.file("extdata", "sumstatsData_toy.rds", package = "shaPRS") )
# read SNP map files ( same toy data for the example)
pop1_map_rds = readRDS(file = system.file("extdata", "my_data.rds", package = "shaPRS") )
pop2_map_rds = readRDS(file = system.file("extdata", "my_data2.rds", package = "shaPRS") )
# use chrom 21 as an example
chromNum=21
# load the two chromosomes from each population ( same toy data for the example)
pop1LDmatrix = readRDS(file = system.file("extdata", "LDref.rds", package = "shaPRS") )
pop2LDmatrix = readRDS(file = system.file("extdata", "LDref2.rds", package = "shaPRS") )
# 2. grab the RSids from the map for the SNPS on this chrom,
# each LD mat has a potentiall different subset of SNPs
# this is guaranteed to be the same order as the pop1LDmatrix
pop1_chrom_SNPs = pop1_map_rds[ which(pop1_map_rds$chr == chromNum),]
# this is guaranteed to be the same order as the pop2LDmatrix
pop2_chrom_SNPs = pop2_map_rds[ which(pop2_map_rds$chr == chromNum),]
pop1_chrom_SNPs$pop1_id = 1:nrow(pop1_chrom_SNPs)
pop2_chrom_SNPs$pop2_id = 1:nrow(pop2_chrom_SNPs)
# intersect the 2 SNP lists so that we only use the ones common to both LD matrices by merging them
chrom_SNPs_df <- merge(pop1_chrom_SNPs,pop2_chrom_SNPs, by = "rsid")
# align the two LD matrices
chrom_SNPs_df = alignStrands(chrom_SNPs_df, A1.x ="a1.x", A2.x ="a0.x", A1.y ="a1.y", A2.y ="a0.y")
# align the summary for phe A and B
sumstatsData = alignStrands(sumstatsData)
# subset sumstats data to the same chrom
sumstatsData = sumstatsData[which(sumstatsData$CHR == chromNum ),]
# merge sumstats with common LD map data
sumstatsData <- merge(chrom_SNPs_df,sumstatsData, by.x="rsid", by.y = "SNP")
# remove duplicates
sumstatsData = sumstatsData[ !duplicated(sumstatsData$rsid) ,]
# use the effect alleles for the sumstats data with the effect allele of the LD mat
# as we are aligning the LD mats against each other, not against the summary stats
# we only use the lFDR /SE from the sumstats,
# which are directionless, so those dont need to be aligned
sumstatsData$A1.x =sumstatsData$a1.x
sumstatsData$A1.y =sumstatsData$a1.y
# make sure the sumstats is ordered the same way as the LD matrix:
sumstatsData = sumstatsData[order(sumstatsData$pop1_id), ]
# subset the LD matrices to the SNPs we actualy have
pop1LDmatrix = pop1LDmatrix[sumstatsData$pop1_id,sumstatsData$pop1_id]
pop2LDmatrix = pop2LDmatrix[sumstatsData$pop2_id,sumstatsData$pop2_id]
# generate the blended LD matrix
cormat = LDRefBlend(pop1LDmatrix,pop2LDmatrix, sumstatsData)
View(cormat)
uninstall()
# II) tests
?shaPRS_adjust
results$lFDRTable
# Test installing from remote
install_github("mkelcb/shaprs")
library("shaPRS")
# Test blend
?shaPRS_blend_overlap
# Test blend
?shaPRS_blend_overlap
# Test blend
?shaPRS_blend_overlap
subphenoLoc <- system.file("extdata", "phenoA_sumstats", package = "shaPRS")
subpheno_otherLoc <- system.file("extdata", "phenoB_sumstats", package = "shaPRS")
blendFactorLoc <- system.file("extdata", "myOutput_SNP_lFDR", package = "shaPRS")
subpheno= read.table(subphenoLoc, header = TRUE)
subpheno_other= read.table(subpheno_otherLoc, header = TRUE)
blendingFactors= read.table(blendFactorLoc, header = TRUE)
blendedSumstats = shaPRS_blend_overlap(subpheno, subpheno_other, blendingFactors)
View(blendedSumstats)
typeof(cormat)
map_rds_new = pop1_map_rds[which(pop1_map_rds$chr == chromNum),]
map_rds_new2 = map_rds_new[which(map_rds_new$rsid %in% sumstatsData$rsid),] # match the first to the second
View(map_rds_new2)
document()
check(cran=TRUE)
# Build package
build()
# Test installing from remote
install_github("mkelcb/shaprs")
uninstall()
# Test installing from remote
install_github("mkelcb/shaprs")
library("shaPRS")
# Test LD ref blend
?LDRefBlend
LDRefBlend
# Test LD ref blend
?LDRefBlend
uninstall()