# Configuration file for the data dimensionality sensitivity experiment
# ==============================================================================
# Defaults
defaults:
- _self_
# Simulation settings
- /simulator: t_simulator #ty_simulator
# Model parametrization
- /models@EconML_CausalForestDML: EconML_CausalForestDML
- /models@EconML_DML: EconML_DML
- /models@EconML_DMLOrthoForest: EconML_DMLOrthoForest
- /models@EconML_DRLearner: EconML_DRLearner
- /models@EconML_DROrthoForest: EconML_DROrthoForest
- /models@EconML_ForestDRLearner: EconML_ForestDRLearner
- /models@EconML_LinearDML: EconML_LinearDML
- /models@EconML_LinearDRLearner: EconML_LinearDRLearner
- /models@EconML_SparseLinearDML: EconML_SparseLinearDML
- /models@EconML_SparseLinearDRLearner: EconML_SparseLinearDRLearner #EconML_SparseLinearDRLearner
- /models@EconML_SLearner_Lasso: EconML_SLearner_Lasso
- /models@EconML_TLearner_Lasso: EconML_TLearner_Lasso
- /models@EconML_XLearner_Lasso: EconML_XLearner_Lasso
- /models@Torch_SLearner: Torch_SLearner
- /models@Torch_TLearner: Torch_TLearner
- /models@Torch_XLearner: Torch_XLearner
- /models@Torch_DRLearner: Torch_DRLearner
- /models@Torch_RLearner: Torch_RLearner
- /models@Torch_TARNet: Torch_TARNet
- /models@Torch_DragonNet: Torch_DragonNet
- /models@Torch_DragonNet_2: Torch_DragonNet_2
- /models@Torch_DragonNet_4: Torch_DragonNet_4
- /models@Torch_ULearner: Torch_ULearner
- /models@Torch_RALearner: Torch_RALearner
- /models@Torch_PWLearner: Torch_PWLearner
- /models@Torch_FlexTENet: Torch_FlexTENet
- /models@Torch_CRFNet_0_01: Torch_CRFNet_0_01
- /models@Torch_CRFNet_0_001: Torch_CRFNet_0_001
- /models@Torch_CRFNet_0_0001: Torch_CRFNet_0_0001
- /models@Torch_ActionNet: Torch_ActionNet
- /models@DiffPOLearner: DiffPOLearner
# EXPERIMENT AND DATA
# ==============================================================================
experiment_name: "data_dimensionality_sensitivity"
# ==============================================================================
# EXPERIMENTAL KNOB
# ==============================================================================
# Cohort sizes to be tested
data_dims: [500, 1000, 1500, 2000, 2500, 3000] #[1000, 4000, 7000, 11000, 15000, 18000] #[25,32,40,47,55]
compare_axis: "propensity" # "num_important_features"
sim_propensity_type: "none_pred"
sim_alpha: 1
propensity_scales: [0, 2, 100]
sample_sizes: [0.5, 1] # [0.3,0.6,0.9]
n_samples: null
important_feature_nums: [5, 10] # [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]
# ==============================================================================