Diff of /conf/config_AY_tcga.yaml [000000] .. [6ac965]

Switch to unified view

a b/conf/config_AY_tcga.yaml
1
# Description: Configuration file for running any of the experiments
2
# All settings can be overwritten by the experiment configuration file, specified for defaults (or on the command line)
3
# ==============================================================================
4
5
# Defaults
6
defaults:
7
  - _self_
8
  - experiment@_here_: propensity_scale_sensitivity 
9
10
# EXPERIMENT SETTINGS 
11
# ==============================================================================
12
seeds: [0,1,2,3,4] 
13
n_splits: 5 # How many splits to perform on data for error bars in results
14
model_names: ["Torch_TARNet", "Torch_DragonNet", "Torch_DragonNet_2","Torch_DragonNet_4","Torch_CFRNet_0.01", "Torch_CFRNet_0.001", "Torch_CFRNet_0.0001", "Torch_TLearner","Torch_SLearner", "Torch_XLearner", "EconML_TLearner_Lasso", "EconML_SLearner_Lasso","Torch_ActionNet"]
15
# ==============================================================================
16
17
# DATA 
18
# ==============================================================================
19
results_dictionary_prefix: "tcga"
20
dataset: "tcga" 
21
repo_path: "PATH_TO_REPO"
22
directory_path: "${repo_path}/data"
23
results_path: "${repo_path}/results"
24
# ==============================================================================
25
26
# Evaluation
27
# ==============================================================================
28
evaluate_inference: false
29
evaluate_explanations: true
30
evaluate_prog_explanations: true
31
evaluate_in_context_variability: false
32
train_baseline_learner: true
33
# ==============================================================================
34
35
# FEATURE ATTRIBUTION 
36
# ==============================================================================
37
explainer_limit: 80 # Number of features to be explained for feature attribution-based scores
38
explainer_econml: "shap" 
39
explainer_torch: "integrated_gradients"
40
# ==============================================================================
41
42
# COMPUTE
43
# ==============================================================================
44
n_jobs: -1 # Number of jobs to run in parallel, -1 means using all processors
45
# ==============================================================================
46
47
# PLOTTING RESULTS
48
# ==============================================================================
49
# Metrics plots
50
plot_results: true
51
metrics_to_plot: ["Policy Precision", "Pred Precision", "GT In-context Var", "GT Total Expertise", "GT Prog Expertise", "GT Tre Expertise", "GT Pred Expertise", "RMSE Y0",  "RMSE Y1", "PEHE", "Upd. GT Prog Expertise", "Upd. GT Tre Expertise", "Upd. GT Pred Expertise", "Factual RMSE Y0", "CF RMSE Y0", "Factual RMSE Y1", "CF RMSE Y1", "Factual RMSE", "CF RMSE", 'Normalized F-RMSE', 'Normalized CF-RMSE', 'Normalized PEHE', 'Swap AUROC@all', 'Swap AUPRC@all', "FC PEHE", "FC CF-RMSE", "FC Swap AUROC", "FC Swap AUPRC", 'Pred: Pred features ACC', 'Pred: Prog features ACC', 'Prog: Prog features ACC', 'Prog: Pred features ACC', "GT Expertise Ratio", "GT-ES Pred Expertise Diff", "GT-ES Prog Expertise Diff", "GT-ES Total Expertise Diff", 'T Distribution: Train', 'T Distribution: Test', 'Training Duration']
52
53
# Dim reduction plots
54
dim_reduction_method: "umap" #"pca"
55
dim_reduction_on_important_features: false
56
top_k_shap_features: 5
57
num_levels: 20
58
# ==============================================================================
59
60
# LOGGING AND W&B
61
# ==============================================================================
62
log_level: "INFO" # INFO, DEBUG, WARNING, ERROR, CRITICAL
63
debug: false
64
verbose: 1
65
# ==============================================================================
66
67
# MODELS
68
# ==============================================================================
69
diffpo_path: "${repo_path}/catenets/models/diffpo"
70
# ==============================================================================
71
72
# MULTIRUN SETTINGS
73
# ==============================================================================
74
hydra:
75
  mode: MULTIRUN
76
  sweeper:
77
    params:
78
      experiment@_global_: propensity_scale_sensitivity 
79
      dataset: str(tcga) 
80
      simulator: ty_simulator 
81
# ==============================================================================