[6ac965]: / catenets / models / diffpo / src / main_model_table.py

Download this file

354 lines (279 with data), 15.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import numpy as np
import torch
import torch.nn as nn
from .diff_models_table import diff_CSDI
import yaml
class CSDI_base(nn.Module):
def __init__(self, target_dim, config, device):
# keep the __init__ the same
super().__init__()
self.device = device
# self.target_dim = target_dim #1
self.target_dim = config["train"]["batch_size"] #8
self.emb_time_dim = config["model"]["timeemb"] # 32
self.emb_feature_dim = config["model"]["featureemb"] #32 # 16
self.is_unconditional = config["model"]["is_unconditional"] #0
self.target_strategy = config["model"]["target_strategy"] #'random'
self.emb_total_dim = self.emb_time_dim + self.emb_feature_dim
# self.emb_total_dim = self.emb_feature_dim
self.cond_dim = config["diffusion"]["cond_dim"] #178
self.mapping_noise = nn.Linear(2, self.cond_dim)
if self.is_unconditional == False:
self.emb_total_dim += 1 # for conditional mask
# self.embed_layer = nn.Embedding(
# num_embeddings=self.target_dim, embedding_dim=self.emb_feature_dim
# )
self.embed_layer = nn.Embedding(
num_embeddings=self.target_dim, embedding_dim=self.emb_feature_dim
)
config_diff = config["diffusion"]
config_diff["side_dim"] = self.emb_total_dim
input_dim = 1 if self.is_unconditional == True else 2
self.diffmodel = diff_CSDI(config_diff, input_dim)
# parameters for diffusion models
self.num_steps = config_diff["num_steps"]
if config_diff["schedule"] == "quad":
self.beta = (
np.linspace(
config_diff["beta_start"] ** 0.5,
config_diff["beta_end"] ** 0.5,
self.num_steps,
)
** 2
)
elif config_diff["schedule"] == "linear":
self.beta = np.linspace(
config_diff["beta_start"], config_diff["beta_end"], self.num_steps
)
self.alpha_hat = 1 - self.beta
self.alpha = np.cumprod(self.alpha_hat)
self.alpha_torch = (
torch.tensor(self.alpha).float().to(self.device).unsqueeze(1).unsqueeze(1)
)
def time_embedding(self, pos, d_model=128):
pe = torch.zeros(pos.shape[0], pos.shape[1], d_model).to(self.device)
position = pos.unsqueeze(2)
div_term = 1 / torch.pow(
10000.0, torch.arange(0, d_model, 2).to(self.device) / d_model
)
pe[:, :, 0::2] = torch.sin(position * div_term)
pe[:, :, 1::2] = torch.cos(position * div_term)
return pe
def get_randmask(self, observed_mask):
rand_for_mask = torch.rand_like(observed_mask) * observed_mask # observed_mask.shape (8,1,30)
rand_for_mask = rand_for_mask.reshape(len(rand_for_mask), -1) # rand_for_mask.shape (8, 30)
for i in range(len(observed_mask)): # len(observed_mask):8, for each batch / each row.
sample_ratio = 0.5 # np.random.rand() # missing ratio # original 0.8
num_observed = observed_mask[i].sum().item() # 30
num_masked = round(num_observed * sample_ratio) # 24
rand_for_mask[i][rand_for_mask[i].topk(num_masked).indices] = -1
cond_mask = (rand_for_mask > 0).reshape(observed_mask.shape).float()
return cond_mask
def get_side_info(self, observed_tp, cond_mask):
B, K, L = cond_mask.shape
side_info = cond_mask
return side_info
def calc_loss_valid(
self, observed_data, cond_mask, observed_mask, side_info, is_train
):
loss_sum = 0
# In validation, perform T steps forward and backward.
for t in range(self.num_steps):
loss = self.calc_loss(
observed_data, cond_mask, observed_mask, side_info, is_train, set_t=t
)
loss_sum += loss.detach()
return loss_sum / self.num_steps
# def calc_loss(
# self, observed_data, cond_mask, observed_mask, side_info, is_train, set_t=-1
# ): # original transfer observed_mask, change to gt_mask
def calc_loss(
self, observed_data, cond_mask, gt_mask, side_info, is_train, set_t=-1, propnet=None
):
B, K, L = observed_data.shape
if is_train != 1: # for validation
t = (torch.ones(B) * set_t).long().to(self.device)
else: # for training
t = torch.randint(0, self.num_steps, [B]).to(self.device)
current_alpha = self.alpha_torch[t] # (B,1,1)
## # print('observed_data.shape', observed_data.shape) #observed_data.shape torch.Size([8, 1, 182])
noise = torch.randn_like(observed_data[:, :, 1:3]) # only want column 1,2
## # print('check noise.shape', noise.shape) #noise.shape torch.Size([8, 1, 2])
noisy_data = (current_alpha**0.5) * observed_data[:, :, 1:3] + (
1.0 - current_alpha
) ** 0.5 * noise
## # print('noisy_data.shape', noisy_data.shape) #([8, 1, 2])
total_input = self.set_input_to_diffmodel(noisy_data, observed_data, cond_mask)
# # print('forward diffmodel')
# predicted = self.diffmodel(total_input, side_info, t) # (B,K,L)
# %%%%%%%%%%%%% change side info into cond_obs %%%%%%%%%%%%%%%%%%
a = observed_data[:,:,0].unsqueeze(2)
## print('a.shape', a.shape) # t.shape torch.Size([8, 1, 1])
x = observed_data[:,:,5:]
## print('x.shape', x.shape) # x.shape torch.Size([8, 1, 177])
cond_obs = torch.cat([a,x], dim=2)
## print('cond_obs.shape', cond_obs.shape) # cond_obs.shape torch.Size([8, 1, 178])
noisy_target = self.mapping_noise(noisy_data)
diff_input = cond_obs + noisy_target
# predicted = self.diffmodel(diff_input, side_info, t).to(self.device)
predicted = self.diffmodel(diff_input, cond_obs, t).to(self.device)
# %%%%%%%%%%%%% change side info into cond_obs %%%%%%%%%%%%%%%%%%
# # print('predicted.shape', predicted.shape) # predicted.shape torch.Size([8, 2])
target_mask = gt_mask - cond_mask # compute loss only on factual y.
target_mask = target_mask.squeeze(1)[:,1:3]
# # print('target_mask.shape', target_mask.shape)
# # print('noise.shape', noise.shape) # noise.shape torch.Size([8, 1, 2])
noise = noise.squeeze(1)
residual = (noise - predicted) * target_mask
# # print('residual.shape', residual.shape)
# residual = (noise - predicted) * gt_mask
# # # print('residual.shape', residual.shape) # residual.shape torch.Size([8, 1, 182])
num_eval = target_mask.sum()
# num_eval = gt_mask.sum()
#====================== Modify the loss ===============================
# Compute the weights
## # print('observed_data.shape', observed_data.shape) # observed_data.shape torch.Size([8, 1, 182])
x_batch = observed_data[:, :, 5:].squeeze()
## # print('x_batch.shape', x_batch.shape) # x_batch.shape torch.Size([8, 177])
t_batch = observed_data[:, :, 0].squeeze()
## # print('t_batch.shape', t_batch.shape) # t_batch.shape torch.Size([8])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
propnet = propnet.to(device)
## # print('propnet in calc_loss function', propnet)
pi_hat = propnet.forward(x_batch.float())
## # print('pi_hat.shape', pi_hat.shape) # pi_hat.shape torch.Size([8, 2])
# # # print('pi_hat', pi_hat)
# # # print('t_batch', t_batch)
# # # print('(t_batch / pi_hat[:, 1])', (t_batch / pi_hat[:, 1]))
# # # print('((1 - t_batch) / pi_hat[:, 0])', (1 - t_batch) / pi_hat[:, 0])
weights = (t_batch / pi_hat[:, 1]) + ((1 - t_batch) / pi_hat[:, 0])
# # # print('weights.shape', weights.shape) # weights.shape torch.Size([8])
# # # print('weight', weights)
weights = weights.reshape(-1, 1, 1)
## # print('residual.shape', residual.shape) # residual.shape torch.Size([8, 1, 182])
loss = (weights * (residual ** 2)).sum() / (num_eval if num_eval > 0 else 1)
## # print('weighted loss', loss)
#======================#======================#======================#======================
return loss
def set_input_to_diffmodel(self, noisy_data, observed_data, cond_mask):
if self.is_unconditional == True:
total_input = noisy_data.unsqueeze(1) # (B,1,K,L)
else:
#cond_obs = (cond_mask * observed_data).unsqueeze(1) # t, x
a = observed_data[:,:,0].unsqueeze(2)
# # print('a.shape', a.shape) # t.shape torch.Size([8, 1, 1])
x = observed_data[:,:,5:]
# # print('x.shape', x.shape) # x.shape torch.Size([8, 1, 177])
cond_obs = torch.cat([a,x], dim=2)
# # print('cond_obs.shape', cond_obs.shape) # cond_obs.shape torch.Size([8, 1, 178])
noisy_target = self.mapping_noise(noisy_data)
# print('noisy_target.shape', noisy_target.shape) # noisy_target.shape torch.Size([8, 1, 178])
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
total_input = cond_obs + noisy_target
# # print('total_input', total_input.shape) # total_input torch.Size([8, 1, 178])
return total_input
def impute(self, observed_data, cond_mask, side_info, n_samples):
## print('n_samples', n_samples) # n_samples 15??
B, K, L = observed_data.shape
imputed_samples = torch.zeros(B, n_samples, 2).to(self.device)
for i in range(n_samples):
generated_target = observed_data[:,:,1:3]
# # print(generated_target.shape)
current_sample = torch.randn_like(generated_target)
# # print('current_sample.shape', current_sample.shape)
# perform T steps backward
for t in range(self.num_steps - 1, -1, -1):
## print('Inside impute')
# cond_obs = (cond_mask * observed_data).unsqueeze(1)
# # print('cond_obs.shape', cond_obs.shape) #cond_obs.shape torch.Size([8, 1, 1, 182])
a = observed_data[:,:,0].unsqueeze(2)
## print('a.shape', a.shape) # t.shape torch.Size([8, 1, 1])
x = observed_data[:,:,5:]
## print('x.shape', x.shape) # x.shape torch.Size([8, 1, 177])
cond_obs = torch.cat([a,x], dim=2)
## print('cond_obs.shape', cond_obs.shape) # cond_obs.shape torch.Size([8, 1, 178])
noisy_target = self.mapping_noise(current_sample)
diff_input = cond_obs + noisy_target
# predicted = self.diffmodel(diff_input, side_info, t).to(self.device)
predicted = self.diffmodel(diff_input, cond_obs, t).to(self.device)
## print('predicted.shape', predicted.shape) # predicted.shape torch.Size([8, 2])
coeff1 = 1 / self.alpha_hat[t] ** 0.5
## print('coeff1', coeff1) # a number
coeff2 = (1 - self.alpha_hat[t]) / (1 - self.alpha[t]) ** 0.5
## print('coeff2', coeff2) # a number
current_sample = current_sample.squeeze(1)
current_sample = coeff1 * (current_sample - coeff2 * predicted)
if t > 0:
noise = torch.randn_like(current_sample)
sigma = (
(1.0 - self.alpha[t - 1]) / (1.0 - self.alpha[t]) * self.beta[t]
) ** 0.5
current_sample += sigma * noise
## print('if t current_sample.shape', current_sample.shape)
current_sample = current_sample.unsqueeze(1)
current_sample = current_sample.squeeze(1) #[8,2]
imputed_samples[:, i] = current_sample.detach()
# # print(imputed_samples.shape) # torch.Size([8, 15, 2])
# # # print('imputed_samples', torch.mean(imputed_samples[:, 1], torch.mean(imputed_samples[:, 2])))
return imputed_samples
def forward(self, batch, is_train=1, propnet = None):
(
observed_data,
observed_mask,
observed_tp,
gt_mask,
for_pattern_mask,
_,
) = self.process_data(batch)
# In testing, using `gt_mask` (generated with fixed missing rate).
if is_train == 0:
cond_mask = gt_mask.clone()
# In training, generate random mask
else:
# cond_mask = self.get_randmask(observed_mask)
# Try both mask all factual or randomly mask partial factual y, keep t, x unmask.
cond_mask = gt_mask.clone() # shape(8,1,30)
cond_mask[:, :, 1] = 0
cond_mask[:, :, 2] = 0
side_info = self.get_side_info(observed_tp, cond_mask)
loss_func = self.calc_loss(observed_data, cond_mask, gt_mask, side_info, is_train, set_t=-1, propnet=propnet) if is_train == 1 else self.calc_loss_valid
return loss_func
def evaluate(self, batch, n_samples):
(
observed_data,
observed_mask,
observed_tp,
gt_mask,
_,
cut_length,
) = self.process_data(batch)
with torch.no_grad():
cond_mask = gt_mask
# # # print('cond_mask.shape', cond_mask.shape) #(8,1,30)
cond_mask[:,:,0] = 0 # Do not need to give factual t at test.
target_mask = observed_mask - cond_mask
side_info = self.get_side_info(observed_tp, cond_mask)
samples = self.impute(observed_data, cond_mask, side_info, n_samples)
return samples, observed_data, target_mask, observed_mask, observed_tp
class TabCSDI(CSDI_base):
def __init__(self, config, device, target_dim=1):
super(TabCSDI, self).__init__(target_dim, config, device)
def process_data(self, batch):
# Insert K=1 axis. All mask now with shape (B, 1, L).
observed_data = batch["observed_data"][:, np.newaxis, :] # shape (8,1,10)
observed_data = observed_data.to(self.device).float()
observed_mask = batch["observed_mask"][:, np.newaxis, :]
observed_mask = observed_mask.to(self.device).float()
observed_tp = batch["timepoints"].to(self.device).float() #shape (8,10)
gt_mask = batch["gt_mask"][:, np.newaxis, :]
gt_mask = gt_mask.to(self.device).float()
cut_length = torch.zeros(len(observed_data)).long().to(self.device)
for_pattern_mask = observed_mask
return (
observed_data,
observed_mask,
observed_tp,
gt_mask,
for_pattern_mask,
cut_length,
)