|
a |
|
b/catenets/experiment_utils/base.py |
|
|
1 |
""" |
|
|
2 |
Some utils for experiments |
|
|
3 |
""" |
|
|
4 |
# Author: Alicia Curth |
|
|
5 |
from typing import Callable, Dict, Optional, Union |
|
|
6 |
|
|
|
7 |
import jax.numpy as jnp |
|
|
8 |
|
|
|
9 |
from catenets.models.jax import ( |
|
|
10 |
DRNET_NAME, |
|
|
11 |
PSEUDOOUT_NAME, |
|
|
12 |
RANET_NAME, |
|
|
13 |
RNET_NAME, |
|
|
14 |
SNET1_NAME, |
|
|
15 |
SNET2_NAME, |
|
|
16 |
SNET3_NAME, |
|
|
17 |
SNET_NAME, |
|
|
18 |
T_NAME, |
|
|
19 |
XNET_NAME, |
|
|
20 |
PseudoOutcomeNet, |
|
|
21 |
get_catenet, |
|
|
22 |
) |
|
|
23 |
from catenets.models.jax.base import check_shape_1d_data |
|
|
24 |
from catenets.models.jax.transformation_utils import ( |
|
|
25 |
DR_TRANSFORMATION, |
|
|
26 |
PW_TRANSFORMATION, |
|
|
27 |
RA_TRANSFORMATION, |
|
|
28 |
) |
|
|
29 |
|
|
|
30 |
SEP = "_" |
|
|
31 |
|
|
|
32 |
|
|
|
33 |
def eval_mse_model( |
|
|
34 |
inputs: jnp.ndarray, |
|
|
35 |
targets: jnp.ndarray, |
|
|
36 |
predict_fun: Callable, |
|
|
37 |
params: jnp.ndarray, |
|
|
38 |
) -> jnp.ndarray: |
|
|
39 |
# evaluate the mse of a model given its function and params |
|
|
40 |
preds = predict_fun(params, inputs) |
|
|
41 |
return jnp.mean((preds - targets) ** 2) |
|
|
42 |
|
|
|
43 |
|
|
|
44 |
def eval_mse(preds: jnp.ndarray, targets: jnp.ndarray) -> jnp.ndarray: |
|
|
45 |
preds = check_shape_1d_data(preds) |
|
|
46 |
targets = check_shape_1d_data(targets) |
|
|
47 |
return jnp.mean((preds - targets) ** 2) |
|
|
48 |
|
|
|
49 |
|
|
|
50 |
def eval_root_mse(cate_pred: jnp.ndarray, cate_true: jnp.ndarray) -> jnp.ndarray: |
|
|
51 |
cate_true = check_shape_1d_data(cate_true) |
|
|
52 |
cate_pred = check_shape_1d_data(cate_pred) |
|
|
53 |
return jnp.sqrt(eval_mse(cate_pred, cate_true)) |
|
|
54 |
|
|
|
55 |
|
|
|
56 |
def eval_abs_error_ate(cate_pred: jnp.ndarray, cate_true: jnp.ndarray) -> jnp.ndarray: |
|
|
57 |
cate_true = check_shape_1d_data(cate_true) |
|
|
58 |
cate_pred = check_shape_1d_data(cate_pred) |
|
|
59 |
return jnp.abs(jnp.mean(cate_pred) - jnp.mean(cate_true)) |
|
|
60 |
|
|
|
61 |
|
|
|
62 |
def get_model_set( |
|
|
63 |
model_selection: Union[str, list] = "all", model_params: Optional[dict] = None |
|
|
64 |
) -> Dict: |
|
|
65 |
"""Helper function to retrieve a set of models""" |
|
|
66 |
# get model selection |
|
|
67 |
if type(model_selection) is str: |
|
|
68 |
if model_selection == "snet": |
|
|
69 |
models = get_all_snets() |
|
|
70 |
elif model_selection == "pseudo": |
|
|
71 |
models = get_all_pseudoout_models() |
|
|
72 |
elif model_selection == "twostep": |
|
|
73 |
models = get_all_twostep_models() |
|
|
74 |
elif model_selection == "all": |
|
|
75 |
models = dict(**get_all_snets(), **get_all_pseudoout_models()) |
|
|
76 |
else: |
|
|
77 |
models = {model_selection: get_catenet(model_selection)()} # type: ignore |
|
|
78 |
elif type(model_selection) is list: |
|
|
79 |
models = {} |
|
|
80 |
for model in model_selection: |
|
|
81 |
models.update({model: get_catenet(model)()}) |
|
|
82 |
else: |
|
|
83 |
raise ValueError("model_selection should be string or list.") |
|
|
84 |
|
|
|
85 |
# set hyperparameters |
|
|
86 |
if model_params is not None: |
|
|
87 |
for model in models.values(): |
|
|
88 |
existing_params = model.get_params() |
|
|
89 |
new_params = { |
|
|
90 |
key: val |
|
|
91 |
for key, val in model_params.items() |
|
|
92 |
if key in existing_params.keys() |
|
|
93 |
} |
|
|
94 |
model.set_params(**new_params) |
|
|
95 |
|
|
|
96 |
return models |
|
|
97 |
|
|
|
98 |
|
|
|
99 |
ALL_SNETS = [T_NAME, SNET1_NAME, SNET2_NAME, SNET3_NAME, SNET_NAME] |
|
|
100 |
ALL_PSEUDOOUT_MODELS = [DR_TRANSFORMATION, PW_TRANSFORMATION, RA_TRANSFORMATION] |
|
|
101 |
ALL_TWOSTEP_MODELS = [DRNET_NAME, RANET_NAME, XNET_NAME, RNET_NAME] |
|
|
102 |
|
|
|
103 |
|
|
|
104 |
def get_all_snets() -> Dict: |
|
|
105 |
model_dict = {} |
|
|
106 |
for name in ALL_SNETS: |
|
|
107 |
model_dict.update({name: get_catenet(name)()}) |
|
|
108 |
return model_dict |
|
|
109 |
|
|
|
110 |
|
|
|
111 |
def get_all_pseudoout_models() -> Dict: # DR, RA, PW learner |
|
|
112 |
model_dict = {} |
|
|
113 |
for trans in ALL_PSEUDOOUT_MODELS: |
|
|
114 |
model_dict.update( |
|
|
115 |
{PSEUDOOUT_NAME + SEP + trans: PseudoOutcomeNet(transformation=trans)} |
|
|
116 |
) |
|
|
117 |
return model_dict |
|
|
118 |
|
|
|
119 |
|
|
|
120 |
def get_all_twostep_models() -> Dict: # DR, RA, R, X learner |
|
|
121 |
model_dict = {} |
|
|
122 |
for name in ALL_TWOSTEP_MODELS: |
|
|
123 |
model_dict.update({name: get_catenet(name)()}) |
|
|
124 |
return model_dict |