|
a |
|
b/docs/references.rst |
|
|
1 |
References |
|
|
2 |
---------- |
|
|
3 |
|
|
|
4 |
.. _groenbech2020: |
|
|
5 |
|
|
|
6 |
Christopher Heje Grønbech, Maximillian Fornitz Vording, Pascal N. Timshel, Casper Kaae Sønderby, Tune H. Pers, and Ole Winther (2020). "`scVAE: Variational auto-encoders for single-cell gene expression data`_". *Bioinformatics*, btaa293. |
|
|
7 |
|
|
|
8 |
.. _`scVAE: Variational auto-encoders for single-cell gene expression data`: https://doi.org/10.1093/bioinformatics/btaa293 |
|
|
9 |
|
|
|
10 |
.. _kingma2014: |
|
|
11 |
|
|
|
12 |
Diederik P. Kingma and Max Welling (2014). "`Auto-encoding variational Bayes`_". *Proceedings of the 2nd International Conference on Learning Representations (ICLR)*. |
|
|
13 |
|
|
|
14 |
.. _`Auto-encoding variational Bayes`: https://arxiv.org/abs/1312.6114 |
|
|
15 |
|
|
|
16 |
.. _kingma2015: |
|
|
17 |
|
|
|
18 |
Diederik P. Kingma and Jimmy Ba (2015). "`Adam: A method for stochastic optimization`_". *Proceedings of the 3rd International Conference on Learning Representations (ICLR)*. |
|
|
19 |
|
|
|
20 |
.. _`Adam: A method for stochastic optimization`: https://arxiv.org/abs/1412.6980 |
|
|
21 |
|
|
|
22 |
.. _rezende2014: |
|
|
23 |
|
|
|
24 |
Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra (2014). "`Stochastic backpropagation and approximate inference in deep generative models`_". In: Xing, E.P. and Jebara, T. (eds.), *Proceedings of the 31st International Conference on Machine Learning*, volume 32 of *Proceedings of Machine Learning Research*, PMLR, pp. 1278--1286. |
|
|
25 |
|
|
|
26 |
.. _`Stochastic backpropagation and approximate inference in deep generative models`: https://arxiv.org/abs/1401.4082 |