--- a +++ b/docs/references.rst @@ -0,0 +1,26 @@ +References +---------- + +.. _groenbech2020: + +Christopher Heje Grønbech, Maximillian Fornitz Vording, Pascal N. Timshel, Casper Kaae Sønderby, Tune H. Pers, and Ole Winther (2020). "`scVAE: Variational auto-encoders for single-cell gene expression data`_". *Bioinformatics*, btaa293. + +.. _`scVAE: Variational auto-encoders for single-cell gene expression data`: https://doi.org/10.1093/bioinformatics/btaa293 + +.. _kingma2014: + +Diederik P. Kingma and Max Welling (2014). "`Auto-encoding variational Bayes`_". *Proceedings of the 2nd International Conference on Learning Representations (ICLR)*. + +.. _`Auto-encoding variational Bayes`: https://arxiv.org/abs/1312.6114 + +.. _kingma2015: + +Diederik P. Kingma and Jimmy Ba (2015). "`Adam: A method for stochastic optimization`_". *Proceedings of the 3rd International Conference on Learning Representations (ICLR)*. + +.. _`Adam: A method for stochastic optimization`: https://arxiv.org/abs/1412.6980 + +.. _rezende2014: + +Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra (2014). "`Stochastic backpropagation and approximate inference in deep generative models`_". In: Xing, E.P. and Jebara, T. (eds.), *Proceedings of the 31st International Conference on Machine Learning*, volume 32 of *Proceedings of Machine Learning Research*, PMLR, pp. 1278--1286. + +.. _`Stochastic backpropagation and approximate inference in deep generative models`: https://arxiv.org/abs/1401.4082