from __future__ import division
import scipy.sparse as sp
import scipy.io
import numpy as np
import copy
from scipy import pi
import sys
import pandas as pd
from os.path import join
import gzip
from scipy.io import mmwrite,mmread
from sklearn.decomposition import PCA,TruncatedSVD
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics import pairwise_distances
from sklearn.cluster import KMeans
from sklearn.metrics.cluster import normalized_mutual_info_score, adjusted_rand_score
from sklearn.metrics.cluster import homogeneity_score, adjusted_mutual_info_score
from sklearn.preprocessing import MinMaxScaler,MaxAbsScaler
import metric
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("whitegrid", {'axes.grid' : False})
matplotlib.rc('xtick', labelsize=20)
matplotlib.rc('ytick', labelsize=20)
matplotlib.rcParams.update({'font.size': 22})
def compute_inertia(a, X, norm=True):
if norm:
W = [np.sum(pairwise_distances(X[a == c, :]))/(2.*sum(a == c)) for c in np.unique(a)]
return np.sum(W)
else:
W = [np.mean(pairwise_distances(X[a == c, :])) for c in np.unique(a)]
return np.mean(W)
#gap statistic
def compute_gap(clustering, data, k_max=10, n_references=100):
if len(data.shape) == 1:
data = data.reshape(-1, 1)
reference_inertia = []
for k in range(2, k_max+1):
reference = np.random.rand(*data.shape)
mins = np.min(data,axis=0)
maxs = np.max(data,axis=0)
reference = reference*(maxs-mins)+mins
local_inertia = []
for _ in range(n_references):
clustering.n_clusters = k
assignments = clustering.fit_predict(reference)
local_inertia.append(compute_inertia(assignments, reference))
reference_inertia.append(np.mean(local_inertia))
ondata_inertia = []
for k in range(2, k_max+1):
clustering.n_clusters = k
assignments = clustering.fit_predict(data)
ondata_inertia.append(compute_inertia(assignments, data))
gap = np.log(reference_inertia)-np.log(ondata_inertia)
return gap, np.log(reference_inertia), np.log(ondata_inertia)
#scATAC data
class scATAC_Sampler(object):
def __init__(self,name,dim=20,low=0.03,has_label=True):
self.name = name
self.dim = dim
self.has_label = has_label
X = pd.read_csv('datasets/%s/sc_mat.txt'%name,sep='\t',header=0,index_col=[0]).values
if has_label:
labels = [item.strip() for item in open('datasets/%s/label.txt'%name).readlines()]
uniq_labels = list(np.unique(labels))
Y = np.array([uniq_labels.index(item) for item in labels])
#X,Y = self.filter_cells(X,Y,min_peaks=10)
self.Y = Y
X = self.filter_peaks(X,low)
#TF-IDF transformation
nfreqs = 1.0 * X / np.tile(np.sum(X,axis=0), (X.shape[0],1))
X = nfreqs * np.tile(np.log(1 + 1.0 * X.shape[1] / np.sum(X,axis=1)).reshape(-1,1), (1,X.shape[1]))
X = X.T #(cells, peaks)
X = MinMaxScaler().fit_transform(X)
#PCA transformation
pca = PCA(n_components=dim, random_state=3456).fit(X)
X = pca.transform(X)
self.X = X
self.total_size = self.X.shape[0]
def filter_peaks(self,X,ratio):
ind = np.sum(X>0,axis=1) > X.shape[1]*ratio
return X[ind,:]
def filter_cells(self,X,Y,min_peaks):
ind = np.sum(X>0,axis=0) > min_peaks
return X[:,ind], Y[ind]
def correlation(self,X,Y,heatmap=False):
nb_classes = len(set(Y))
print(nb_classes)
km = KMeans(n_clusters=nb_classes,random_state=0).fit(X)
label_kmeans = km.labels_
purity = metric.compute_purity(label_kmeans, Y)
nmi = normalized_mutual_info_score(Y, label_kmeans)
ari = adjusted_rand_score(Y, label_kmeans)
homogeneity = homogeneity_score(Y, label_kmeans)
ami = adjusted_mutual_info_score(Y, label_kmeans)
print('NMI = {}, ARI = {}, Purity = {},AMI = {}, Homogeneity = {}'.format(nmi,ari,purity,ami,homogeneity))
def train(self, batch_size):
indx = np.random.randint(low = 0, high = self.total_size, size = batch_size)
if self.has_label:
return self.X[indx, :], self.Y[indx]
else:
return self.X[indx, :]
def load_all(self):
if self.has_label:
return self.X, self.Y
else:
return self.X
#load data from 10x Genomic paired ARC technology
class ARC_Sampler(object):
def __init__(self,name='PBMC10k',n_components=50,scale=10000,filter_feat=True,filter_cell=False,random_seed=1234,mode=1, \
min_rna_c=0,max_rna_c=None,min_atac_c=0,max_atac_c=None):
#c:cell, g:gene, l:locus
self.name = name
self.mode = mode
self.min_rna_c = min_rna_c
self.max_rna_c = max_rna_c
self.min_atac_c = min_atac_c
self.max_atac_c = max_atac_c
self.rna_mat, self.atac_mat, self.genes, self.peaks = self.load_data(filter_feat,filter_cell)
self.rna_mat = self.rna_mat*scale/self.rna_mat.sum(1)
self.rna_mat = np.log10(self.rna_mat+1)
self.atac_mat = self.atac_mat*scale/self.atac_mat.sum(1)
self.atac_mat = np.log10(self.atac_mat+1)
self.rna_reducer = PCA(n_components=n_components, random_state=random_seed)
self.rna_reducer.fit(self.rna_mat)
self.pca_rna_mat = self.rna_reducer.transform(self.rna_mat)
self.atac_reducer = PCA(n_components=n_components, random_state=random_seed)
self.atac_reducer.fit(self.atac_mat)
self.pca_atac_mat = self.atac_reducer.transform(self.atac_mat)
def load_data(self,filter_feat,filter_cell):
mtx_file = 'datasets/%s/matrix.mtx'%self.name
feat_file = 'datasets/%s/features.tsv'%self.name
barcode_file = 'datasets/%s/barcodes.tsv'%self.name
combined_mat = mmread(mtx_file).T.tocsr() #(cells, genes+peaks)
cells = [item.strip() for item in open(barcode_file).readlines()]
genes = [item.split('\t')[1] for item in open(feat_file).readlines() if item.split('\t')[2]=="Gene Expression"]
peaks = [item.split('\t')[1] for item in open(feat_file).readlines() if item.split('\t')[2]=="Peaks"]
assert len(genes)+len(peaks) == combined_mat.shape[1]
rna_mat = combined_mat[:,:len(genes)]
atac_mat = combined_mat[:,len(genes):]
print('scRNA-seq: ', rna_mat.shape, 'scATAC-seq: ', atac_mat.shape)
if filter_feat:
rna_mat, atac_mat, genes, peaks = self.filter_feats(rna_mat, atac_mat, genes, peaks)
print('scRNA-seq filtered: ', rna_mat.shape, 'scATAC-seq filtered: ', atac_mat.shape)
return rna_mat, atac_mat, genes, peaks
def filter_feats(self, rna_mat_sp, atac_mat_sp, genes, peaks):
#filter genes
gene_select = np.array((rna_mat_sp>0).sum(axis=0)).squeeze() > self.min_rna_c
if self.max_rna_c is not None:
gene_select *= np.array((rna_mat_sp>0).sum(axis=0)).squeeze() < self.max_rna_c
rna_mat_sp = rna_mat_sp[:,gene_select]
genes = np.array(genes)[gene_select]
#filter peaks
locus_select = np.array((atac_mat_sp>0).sum(axis=0)).squeeze() > self.min_atac_c
if self.max_atac_c is not None:
locus_select *= np.array((atac_mat_sp>0).sum(axis=0)).squeeze() < self.max_atac_c
atac_mat_sp = atac_mat_sp[:,locus_select]
peaks = np.array(peaks)[locus_select]
return rna_mat_sp, atac_mat_sp, genes, peaks
def get_batch(self,batch_size):
idx = np.random.randint(low = 0, high = self.atac_mat.shape[0], size = batch_size)
if self.mode == 1:
return self.pca_rna_mat[idx,:]
elif self.mode == 2:
return self.pca_atac_mat[idx,:]
elif self.mode == 3:
return np.hstack((self.pca_rna_mat, self.pca_atac_mat))[idx,:]
else:
print('Wrong mode!')
sys.exit()
def load_all(self):
#mode: 1 only scRNA-seq, 2 only scATAC-seq, 3 both
if self.mode == 1:
return self.pca_rna_mat
elif self.mode == 2:
return self.pca_atac_mat
elif self.mode == 3:
return np.hstack((self.pca_rna_mat, self.pca_atac_mat))
else:
print('Wrong mode!')
sys.exit()
#sample continuous (Gaussian) and discrete (Catagory) latent variables together
class Mixture_sampler(object):
def __init__(self, nb_classes, N, dim, sd, scale=1):
self.nb_classes = nb_classes
self.total_size = N
self.dim = dim
self.sd = sd
self.scale = scale
np.random.seed(1024)
self.X_c = self.scale*np.random.normal(0, self.sd**2, (self.total_size,self.dim))
#self.X_c = self.scale*np.random.uniform(-1, 1, (self.total_size,self.dim))
self.label_idx = np.random.randint(low = 0 , high = self.nb_classes, size = self.total_size)
self.X_d = np.eye(self.nb_classes)[self.label_idx]
self.X = np.hstack((self.X_c,self.X_d))
def train(self,batch_size,weights=None):
X_batch_c = self.scale*np.random.normal(0, 1, (batch_size,self.dim))
#X_batch_c = self.scale*np.random.uniform(-1, 1, (batch_size,self.dim))
if weights is None:
weights = np.ones(self.nb_classes, dtype=np.float64) / float(self.nb_classes)
label_batch_idx = np.random.choice(self.nb_classes, size=batch_size, replace=True, p=weights)
X_batch_d = np.eye(self.nb_classes)[label_batch_idx]
return X_batch_c, X_batch_d
def load_all(self):
return self.X_c, self.X_d
#sample continuous (Gaussian Mixture) and discrete (Catagory) latent variables together
class Mixture_sampler_v2(object):
def __init__(self, nb_classes, N, dim, weights=None,sd=0.5):
self.nb_classes = nb_classes
self.total_size = N
self.dim = dim
np.random.seed(1024)
if nb_classes<=dim:
self.mean = np.random.uniform(-5,5,size =(nb_classes, dim))
#self.mean = np.zeros((nb_classes,dim))
#self.mean[:,:nb_classes] = np.eye(nb_classes)
else:
if dim==2:
self.mean = np.array([(np.cos(2*np.pi*idx/float(self.nb_classes)),np.sin(2*np.pi*idx/float(self.nb_classes))) for idx in range(self.nb_classes)])
else:
self.mean = np.zeros((nb_classes,dim))
self.mean[:,:2] = np.array([(np.cos(2*np.pi*idx/float(self.nb_classes)),np.sin(2*np.pi*idx/float(self.nb_classes))) for idx in range(self.nb_classes)])
self.cov = [sd**2*np.eye(dim) for item in range(nb_classes)]
if weights is None:
weights = np.ones(self.nb_classes, dtype=np.float64) / float(self.nb_classes)
self.Y = np.random.choice(self.nb_classes, size=N, replace=True, p=weights)
self.X_c = np.array([np.random.multivariate_normal(mean=self.mean[i],cov=self.cov[i]) for i in self.Y],dtype='float64')
self.X_d = np.eye(self.nb_classes)[self.Y]
self.X = np.hstack((self.X_c,self.X_d))
def train(self, batch_size, label = False):
indx = np.random.randint(low = 0, high = self.total_size, size = batch_size)
if label:
return self.X_c[indx, :], self.X_d[indx, :], self.Y[indx, :]
else:
return self.X_c[indx, :], self.X_d[indx, :]
def get_batch(self,batch_size,weights=None):
if weights is None:
weights = np.ones(self.nb_classes, dtype=np.float64) / float(self.nb_classes)
label_batch_idx = np.random.choice(self.nb_classes, size=batch_size, replace=True, p=weights)
return self.X_c[label_batch_idx, :], self.X_d[label_batch_idx, :]
def predict_onepoint(self,array):#return component index with max likelyhood
from scipy.stats import multivariate_normal
assert len(array) == self.dim
return np.argmax([multivariate_normal.pdf(array,self.mean[idx],self.cov[idx]) for idx in range(self.nb_classes)])
def predict_multipoints(self,arrays):
assert arrays.shape[-1] == self.dim
return map(self.predict_onepoint,arrays)
def load_all(self):
return self.X_c, self.X_d, self.label_idx
#get a batch of data from previous 50 batches, add stochastic
class DataPool(object):
def __init__(self, maxsize=50):
self.maxsize = maxsize
self.nb_batch = 0
self.pool = []
def __call__(self, data):
if self.nb_batch < self.maxsize:
self.pool.append(data)
self.nb_batch += 1
return data
if np.random.rand() > 0.5:
results=[]
for i in range(len(data)):
idx = int(np.random.rand()*self.maxsize)
results.append(copy.copy(self.pool[idx])[i])
self.pool[idx][i] = data[i]
return results
else:
return data