import { ExperimentConfig } from '../../types';
export interface QuantumSimulationResult {
id: string;
experimentId: string;
timestamp: string;
quantumMetrics: {
coherenceTime: number;
gateErrors: number;
quantumVolume: number;
circuitDepth: number;
};
optimizationMetrics: {
convergenceRate: number;
energyLandscape: number[];
quantumSpeedup: number;
};
results: {
timepoint: number;
predictions: {
trait: string;
value: number;
uncertainty: number;
}[];
}[];
}
export class QuantumSimulationPipeline {
static async runSimulation(experiment: ExperimentConfig): Promise<QuantumSimulationResult> {
// Simulate quantum processing time
await new Promise(resolve => setTimeout(resolve, 3000));
const timepoints = Array.from({ length: 5 }, (_, i) => i * 24); // 0h, 24h, 48h, 72h, 96h
const traits = ['growth_rate', 'stress_tolerance', 'nutrient_efficiency'];
return {
id: Math.random().toString(36).substr(2, 9),
experimentId: experiment.id,
timestamp: new Date().toISOString(),
quantumMetrics: {
coherenceTime: Math.random() * 50 + 50, // 50-100 microseconds
gateErrors: Math.random() * 0.01, // 0-1% error rate
quantumVolume: Math.floor(Math.random() * 512) + 512, // 512-1024
circuitDepth: Math.floor(Math.random() * 100) + 100 // 100-200 gates
},
optimizationMetrics: {
convergenceRate: Math.random() * 0.3 + 0.7, // 70-100% convergence
energyLandscape: Array(10).fill(0).map(() => Math.random() * -10), // Energy values
quantumSpeedup: Math.random() * 50 + 50 // 50-100x classical speedup
},
results: timepoints.map(timepoint => ({
timepoint,
predictions: traits.map(trait => ({
trait,
value: Math.random() * 0.5 + 0.5, // 0.5-1.0 normalized values
uncertainty: Math.random() * 0.1 // 0-10% uncertainty
}))
}))
};
}
}