a b/src/utils/pipelines/genomicAnalysis.ts
1
import { GeneAssembly } from '../../types';
2
3
export interface GenomicAnalysisResult {
4
  id: string;
5
  assemblyId: string;
6
  timestamp: string;
7
  metrics: {
8
    geneExpression: number[];
9
    regulatoryElements: string[];
10
    pathwayEnrichment: {
11
      pathway: string;
12
      score: number;
13
    }[];
14
    structuralVariants: {
15
      type: string;
16
      position: number;
17
      impact: number;
18
    }[];
19
  };
20
  predictions: {
21
    phenotype: string;
22
    probability: number;
23
    confidence: number;
24
  }[];
25
}
26
27
export class GenomicAnalysisPipeline {
28
  // Simulated quantum-enhanced analysis
29
  static async analyzeGeneAssembly(assembly: GeneAssembly): Promise<GenomicAnalysisResult> {
30
    // Simulate processing time
31
    await new Promise(resolve => setTimeout(resolve, 2000));
32
33
    const mockPathways = [
34
      'Photosynthesis',
35
      'Stress Response',
36
      'Growth Regulation',
37
      'Nutrient Uptake',
38
      'Secondary Metabolism'
39
    ];
40
41
    return {
42
      id: Math.random().toString(36).substr(2, 9),
43
      assemblyId: assembly.id,
44
      timestamp: new Date().toISOString(),
45
      metrics: {
46
        geneExpression: Array(10).fill(0).map(() => Math.random() * 2), // Fold change values
47
        regulatoryElements: [
48
          'Promoter_Region_1',
49
          'Enhancer_Element_A',
50
          'Silencer_Region_B',
51
          'TATA_Box_Modified'
52
        ],
53
        pathwayEnrichment: mockPathways.map(pathway => ({
54
          pathway,
55
          score: Math.random() * 0.5 + 0.5 // Score between 0.5 and 1.0
56
        })),
57
        structuralVariants: Array(3).fill(0).map(() => ({
58
          type: ['Insertion', 'Deletion', 'Inversion'][Math.floor(Math.random() * 3)],
59
          position: Math.floor(Math.random() * 1000000),
60
          impact: Math.random()
61
        }))
62
      },
63
      predictions: [
64
        {
65
          phenotype: 'Drought Resistance',
66
          probability: Math.random() * 0.3 + 0.7, // High probability 0.7-1.0
67
          confidence: Math.random() * 0.2 + 0.8 // High confidence 0.8-1.0
68
        },
69
        {
70
          phenotype: 'Growth Rate',
71
          probability: Math.random() * 0.4 + 0.6,
72
          confidence: Math.random() * 0.3 + 0.7
73
        },
74
        {
75
          phenotype: 'Yield Improvement',
76
          probability: Math.random() * 0.5 + 0.5,
77
          confidence: Math.random() * 0.4 + 0.6
78
        }
79
      ]
80
    };
81
  }
82
}