[dfe06d]: / tests / testthat / test_moves.R

Download this file

236 lines (159 with data), 6.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
context("Test movements")
## test various movements ##
test_that("Movements preserve param structure", {
## skip on CRAN
skip_on_cran()
## generate inputs
data(fake_outbreak)
data <- with(fake_outbreak,
outbreaker_data(dates = onset,
w_dens = w,
dna = dna))
config <- create_config(data = data)
config_no_move <- create_config(
move_alpha = FALSE,
move_t_inf = FALSE,
move_mu = FALSE, move_pi = FALSE,
move_eps = FALSE, move_lambda = FALSE,
move_kappa = FALSE,
move_swap_cases = FALSE, data = data)
data <- add_convolutions(data = data, config = config)
param <- create_param(data = data, config = config)$current
ll <- custom_likelihoods()
priors <- custom_priors()
moves <- bind_moves(config = config, data = data,
likelihoods = ll, priors = priors)
moves_no_move <- bind_moves(config = config_no_move,
likelihoods = ll, priors = priors)
## test moves lists ##
expect_equal(length(moves_no_move), 0L)
expect_equal(length(moves), 6L)
expect_true(all(vapply(moves, is.function, logical(1))))
## test moves ##
for (i in seq_along(moves)) {
## chech closure: data
expect_identical(environment(moves[[i]])$data, data)
## make moves
set.seed(1)
res <- moves[[i]](param = param)
## check that content in param after movements has identical shape
expect_equal(length(param), length(res))
expect_equal(length(unlist(param)), length(unlist(res)))
expect_equal(names(param), names(res))
}
})
test_that("Binding of moves works", {
## skip on CRAN
skip_on_cran()
## generate inputs
data(fake_outbreak)
data <- with(fake_outbreak,
outbreaker_data(dates = onset,
w_dens = w,
dna = dna))
config <- create_config(data = data)
data <- add_convolutions(data = data, config = config)
param <- create_param(data = data, config = config)$current
ll <- custom_likelihoods()
priors <- custom_priors()
## check re-input consistency
expect_identical(custom_moves(),
custom_moves(custom_moves()))
## check custom_moves defaults
moves <- custom_moves()
expect_length(moves, 8L)
expect_true(all(vapply(moves, is.function, FALSE)))
expect_named(moves)
expected_names <- c("mu", "pi", "eps", "lambda", "alpha", "swap_cases", "t_inf", "kappa")
expect_true(all(expected_names %in% names(moves)))
## check binding
moves <- bind_moves(moves, config = config, data = data,
likelihoods = ll, priors = priors)
exp_names <- c("custom_prior", "custom_ll", "config", "data")
expect_true(all(exp_names %in% names(environment(moves$mu))))
exp_names <- c("custom_prior", "custom_ll", "config", "data")
expect_true(all(exp_names %in% names(environment(moves$pi))))
exp_names <- c("list_custom_ll", "data")
expect_true(all(exp_names %in% names(environment(moves$alpha))))
exp_names <- c("list_custom_ll", "data")
expect_true(all(exp_names %in% names(environment(moves$swap_cases))))
exp_names <- c("list_custom_ll", "data")
expect_true(all(exp_names %in% names(environment(moves$t_inf))))
exp_names <- c("list_custom_ll", "config", "data")
expect_true(all(exp_names %in% names(environment(moves$kappa))))
})
test_that("Customisation of moves works", {
## skip on CRAN
skip_on_cran()
## generate inputs
data(fake_outbreak)
data <- with(fake_outbreak,
outbreaker_data(dates = onset,
w_dens = w,
dna = dna))
config <- create_config(data = data, n_iter = 1000,
find_import = FALSE,
sample_every = 10)
data <- add_convolutions(data = data, config = config)
param <- create_param(data = data, config = config)$current
ll <- custom_likelihoods()
priors <- custom_priors()
## check custom movement for mu - outside outbreaker
f <- function(param, data, config = NULL) {
return(param)
}
moves <- bind_moves(list(mu = f), config = config, data = data,
likelihoods = ll, priors = priors)
expect_identical(body(moves$mu), body(f))
expect_identical(names(formals(moves$mu)), "param")
expect_identical(data, environment(moves$mu)$data)
expect_identical(config, environment(moves$mu)$config)
expect_identical(moves$mu(param), param)
## same check, run within outbreaker
out <- outbreaker(data, config, moves = list(mu = f))
expect_true(all(out$mu == 1e-4))
})
## test swapping and temporal ordering ##
test_that("Swap equally likely index cases", {
## skip on CRAN
skip_on_cran()
## generate inputs
data <- outbreaker_data(dates = c(50, 51, 110),
w_dens = rep(1, 100))
config <- create_config(init_kappa = 1,
move_kappa = FALSE,
find_import = FALSE,
data = data)
set.seed(1)
res <- outbreaker(data, config)
table(res$alpha_1)
table(res$alpha_2)
table(res$alpha_3)
})
## test kappa estimates
test_that("Kappa estimates are correct", {
## skip on CRAN
skip_on_cran()
## sequence and onset data that supports kappa = c(3, 1, 1)
dna <- matrix(c("t", "t", "t", "t", "t", "t", "t", "t", "t", "t", "t", "t", "t", "t", "t", "t", "t", "t",
"g", "g", "g", "g", "g", "g", "t", "t", "t", "t", "t", "t", "t", "t", "t", "t", "t", "t",
"g", "g", "g", "g", "g", "g", "c", "c", "t", "t", "t", "t", "t", "t", "t", "t", "t", "t",
"g", "g", "g", "g", "g", "g", "c", "c", "a", "a", "t", "t", "t", "t", "t", "t", "t", "t"),
byrow = TRUE, nrow = 4)
dna <- ape::as.DNAbin(dna)
dates <- c(10, 40, 50, 60)
## strong suport for generation time = 10 days
w <- dgamma(1:20, shape = 25, scale = 0.4)
data <- outbreaker_data(dates = dates, dna = dna, w_dens = w)
config <- create_config(prior_pi = c(1, 1), prior_mu = c(0.1),
init_mu = 2/18, sd_mu = 0.1, n_iter = 5e4)
set.seed(2)
res <- outbreaker(data, config)
## function to get most frequent item
get_mode <- function(x) {
as.integer(names(sort(table(x, exclude = NULL), decreasing = TRUE)[1]))
}
kappa <- as.matrix(res[,grep("kappa", names(res))])
kappa <- as.vector(apply(kappa, 2, get_mode))
expect_equal(c(NA, 3, 1, 1), kappa)
})