[dfe06d]: / docs / articles / introduction.html

Download this file

565 lines (532 with data), 47.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Introduction to outbreaker2 • outbreaker2</title>
<!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css">
<script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous">
<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet">
<script src="../pkgdown.js"></script><meta property="og:title" content="Introduction to outbreaker2">
<meta property="og:description" content="outbreaker2">
<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body data-spy="scroll" data-target="#toc">
<div class="container template-article">
<header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">outbreaker2</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.1.2</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="../index.html">
<span class="fas fa-home fa-lg"></span>
</a>
</li>
<li>
<a href="../reference/index.html">Reference</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Articles
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="../articles/customisation.html">Using custom priors, likelihood, or movements in outbreaker2</a>
</li>
<li>
<a href="../articles/introduction.html">Introduction to outbreaker2</a>
</li>
<li>
<a href="../articles/overview.html">outbreaker2: package overview</a>
</li>
<li>
<a href="../articles/Rcpp_API.html">outbreaker2: Rcpp API</a>
</li>
</ul>
</li>
<li>
<a href="../news/index.html">Changelog</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right"></ul>
</div>
<!--/.nav-collapse -->
</div>
<!--/.container -->
</div>
<!--/.navbar -->
</header><script src="introduction_files/header-attrs-2.6/header-attrs.js"></script><script src="introduction_files/accessible-code-block-0.0.1/empty-anchor.js"></script><script src="introduction_files/htmlwidgets-1.5.3/htmlwidgets.js"></script><link href="introduction_files/vis-4.20.1/vis.css" rel="stylesheet">
<script src="introduction_files/vis-4.20.1/vis.min.js"></script><script src="introduction_files/visNetwork-binding-2.0.9/visNetwork.js"></script><div class="row">
<div class="col-md-9 contents">
<div class="page-header toc-ignore">
<h1 data-toc-skip>Introduction to outbreaker2</h1>
<h4 class="author">Thibaut Jombart</h4>
<h4 class="date">2021-02-09</h4>
<div class="hidden name"><code>introduction.Rmd</code></div>
</div>
<p>This tutorial provides a worked example of outbreak reconstruction using <em>outbreaker2</em>. For installation guidelines, a general overview of the package’s functionalities as well as other resources, see the ‘overview’ vignette:</p>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/utils/vignette.html">vignette</a></span><span class="op">(</span><span class="st">"Overview"</span>, package <span class="op">=</span> <span class="st">"outbreaker2"</span><span class="op">)</span></code></pre></div>
<p>We will be analysing a small simulated outbreak distributed with the package, <code>fake_outbreak</code>. This dataset contains simulated dates of onsets, partial contact tracing data and pathogen genome sequences for 30 cases:</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="kw"><a href="https://rdrr.io/r/base/library.html">library</a></span><span class="op">(</span><span class="va"><a href="http://ape-package.ird.fr/">ape</a></span><span class="op">)</span>
<span class="kw"><a href="https://rdrr.io/r/base/library.html">library</a></span><span class="op">(</span><span class="va">outbreaker2</span><span class="op">)</span>
<span class="va">col</span> <span class="op">&lt;-</span> <span class="st">"#6666cc"</span>
<span class="va">fake_outbreak</span>
<span class="co">#&gt; $onset</span>
<span class="co">#&gt; [1] 0 2 4 4 6 6 6 7 7 8 8 8 8 9 9 9 9 10 10 10 10 10 10 10 10</span>
<span class="co">#&gt; [26] 10 10 10 11 11</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $sample</span>
<span class="co">#&gt; [1] 3 5 6 6 7 9 8 9 9 9 11 10 10 10 10 11 11 12 11 13 12 13 11 12 11</span>
<span class="co">#&gt; [26] 11 13 12 14 14</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $dna</span>
<span class="co">#&gt; 30 DNA sequences in binary format stored in a matrix.</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; All sequences of same length: 10000 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; Labels:</span>
<span class="co">#&gt; ...</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; Base composition:</span>
<span class="co">#&gt; a c g t </span>
<span class="co">#&gt; 0.251 0.242 0.251 0.256 </span>
<span class="co">#&gt; (Total: 300 kb)</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $w</span>
<span class="co">#&gt; [1] 0.04255319 0.21276596 0.42553191 0.31914894</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $ances</span>
<span class="co">#&gt; [1] NA 1 2 NA 3 4 4 5 6 6 7 8 9 5 5 7 7 8 9 10 11 11 13 13 13</span>
<span class="co">#&gt; [26] 17 17 NA 10 13</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $ctd</span>
<span class="co">#&gt; i j</span>
<span class="co">#&gt; 1 4 7</span>
<span class="co">#&gt; 2 10 29</span>
<span class="co">#&gt; 3 13 30</span>
<span class="co">#&gt; 4 11 22</span>
<span class="co">#&gt; 5 13 25</span>
<span class="co">#&gt; 6 16 7</span>
<span class="co">#&gt; 7 13 23</span>
<span class="co">#&gt; 8 10 6</span>
<span class="co">#&gt; 9 18 8</span>
<span class="co">#&gt; 10 14 5</span>
<span class="co">#&gt; 11 17 26</span>
<span class="co">#&gt; 12 11 21</span>
<span class="co">#&gt; 13 3 5</span>
<span class="co">#&gt; 14 17 27</span>
<span class="co">#&gt; 15 2 3</span>
<span class="co">#&gt; 16 17 7</span>
<span class="co">#&gt; 17 19 9</span>
<span class="co">#&gt; 18 12 8</span>
<span class="co">#&gt; 19 22 6</span>
<span class="co">#&gt; 20 30 9</span>
<span class="co">#&gt; 21 17 20</span>
<span class="co">#&gt; 22 21 29</span>
<span class="co">#&gt; 23 11 14</span>
<span class="co">#&gt; 24 18 9</span>
<span class="co">#&gt; 25 25 29</span>
<span class="co">#&gt; 26 1 17</span>
<span class="co">#&gt; 27 23 7</span>
<span class="co">#&gt; 28 25 3</span>
<span class="co">#&gt; 29 3 9</span>
<span class="co">#&gt; 30 1 4</span>
<span class="co">#&gt; 31 13 4</span>
<span class="co">#&gt; 32 21 27</span>
<span class="co">#&gt; 33 16 2</span>
<span class="co">#&gt; 34 29 3</span>
<span class="co">#&gt; 35 21 5</span></code></pre></div>
<p>Here, we will use the dates of case isolation <code>$sample</code>, DNA sequences <code>$dna</code>, contact tracing data <code>$ctd</code> and the empirical distribution of the generation time <code>$w</code>, which can be visualised as:</p>
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">fake_outbreak</span><span class="op">$</span><span class="va">w</span>, type <span class="op">=</span> <span class="st">"h"</span>, xlim <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">5</span><span class="op">)</span>,
lwd <span class="op">=</span> <span class="fl">30</span>, col <span class="op">=</span> <span class="va">col</span>, lend <span class="op">=</span> <span class="fl">2</span>,
xlab <span class="op">=</span> <span class="st">"Days after infection"</span>,
ylab <span class="op">=</span> <span class="st">"p(new case)"</span>,
main <span class="op">=</span> <span class="st">"Generation time distribution"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-introduction/w-1.png" width="768"></p>
<p><br></p>
<div id="running-the-analysis-with-defaults" class="section level1">
<h1 class="hasAnchor">
<a href="#running-the-analysis-with-defaults" class="anchor"></a>Running the analysis with defaults</h1>
<p>By default, <em>outbreaker2</em> uses the settings defined by <code><a href="../reference/create_config.html">create_config()</a></code>; see the documentation of this function for details. Note that the main function of <em>outbreaker2</em> is called <code>outbreaker</code> (without number). The function’s arguments are:</p>
<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/args.html">args</a></span><span class="op">(</span><span class="va">outbreaker</span><span class="op">)</span>
<span class="co">#&gt; function (data = outbreaker_data(), config = create_config(), </span>
<span class="co">#&gt; priors = custom_priors(), likelihoods = custom_likelihoods(), </span>
<span class="co">#&gt; moves = custom_moves()) </span>
<span class="co">#&gt; NULL</span></code></pre></div>
<p>The only mandatory input really is the data. For most cases, customising the method will be done through <code>config</code> and the function <code><a href="../reference/create_config.html">create_config()</a></code>, which creates default and alters settings such as prior parameters, length and rate of sampling from the MCMC, and definition of which parameters should be estimated (‘moved’). The last arguments of <code>outbreaker</code> are used to specify custom prior, likelihood, and movement functions, and are detailed in the ‘<em>Customisation</em>’ vignette.</p>
<p>Let us run the analysis with default settings:</p>
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">dna</span> <span class="op">&lt;-</span> <span class="va">fake_outbreak</span><span class="op">$</span><span class="va">dna</span>
<span class="va">dates</span> <span class="op">&lt;-</span> <span class="va">fake_outbreak</span><span class="op">$</span><span class="va">sample</span>
<span class="va">ctd</span> <span class="op">&lt;-</span> <span class="va">fake_outbreak</span><span class="op">$</span><span class="va">ctd</span>
<span class="va">w</span> <span class="op">&lt;-</span> <span class="va">fake_outbreak</span><span class="op">$</span><span class="va">w</span>
<span class="va">data</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/outbreaker_data.html">outbreaker_data</a></span><span class="op">(</span>dna <span class="op">=</span> <span class="va">dna</span>, dates <span class="op">=</span> <span class="va">dates</span>, ctd <span class="op">=</span> <span class="va">ctd</span>, w_dens <span class="op">=</span> <span class="va">w</span><span class="op">)</span>
<span class="co">## we set the seed to ensure results won't change</span>
<span class="fu"><a href="https://rdrr.io/r/base/Random.html">set.seed</a></span><span class="op">(</span><span class="fl">1</span><span class="op">)</span>
<span class="va">res</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/outbreaker.html">outbreaker</a></span><span class="op">(</span>data <span class="op">=</span> <span class="va">data</span><span class="op">)</span></code></pre></div>
<p>This analysis will take around 40 seconds on a modern computer. Note that <em>outbreaker2</em> is slower than <em>outbreaker</em> for the same number of iterations, but the two implementations are actually different. In particular, <em>outbreaker2</em> performs many more moves than the original package for each iteration of the MCMC, resulting in more efficient mixing. In short: <em>outbreaker2</em> is slower, but it requires far less iterations.</p>
<p>Results are stored in a <code>data.frame</code> with the special class <code>outbreaker_chains</code>:</p>
<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/base/class.html">class</a></span><span class="op">(</span><span class="va">res</span><span class="op">)</span>
<span class="co">#&gt; [1] "outbreaker_chains" "data.frame"</span>
<span class="fu"><a href="https://rdrr.io/r/base/dim.html">dim</a></span><span class="op">(</span><span class="va">res</span><span class="op">)</span>
<span class="co">#&gt; [1] 201 98</span>
<span class="va">res</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; ///// outbreaker results ///</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; class: outbreaker_chains data.frame</span>
<span class="co">#&gt; dimensions 201 rows, 98 columns</span>
<span class="co">#&gt; ancestries not shown: alpha_1 - alpha_30</span>
<span class="co">#&gt; infection dates not shown: t_inf_1 - t_inf_30</span>
<span class="co">#&gt; intermediate generations not shown: kappa_1 - kappa_30</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; /// head //</span>
<span class="co">#&gt; step post like prior mu pi eps</span>
<span class="co">#&gt; 1 1 -1198.0669 -1199.4211 1.354240 0.0001000000 0.9000000 0.5000000</span>
<span class="co">#&gt; 2 50 -576.3898 -578.4358 2.046006 0.0001322360 0.9719080 0.6238018</span>
<span class="co">#&gt; 3 100 -579.1822 -580.9235 1.741283 0.0001218749 0.9395509 0.5810956</span>
<span class="co">#&gt; lambda</span>
<span class="co">#&gt; 1 0.05000000</span>
<span class="co">#&gt; 2 0.06582716</span>
<span class="co">#&gt; 3 0.10193745</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; ...</span>
<span class="co">#&gt; /// tail //</span>
<span class="co">#&gt; step post like prior mu pi eps</span>
<span class="co">#&gt; 199 9900 -563.6538 -565.2708 1.616983 0.0001236515 0.9266639 0.7634021</span>
<span class="co">#&gt; 200 9950 -567.0488 -569.0806 2.031785 0.0001179255 0.9703719 0.7057554</span>
<span class="co">#&gt; 201 10000 -564.4037 -565.6457 1.242090 0.0001456115 0.8888590 0.6301657</span>
<span class="co">#&gt; lambda</span>
<span class="co">#&gt; 199 0.07471296</span>
<span class="co">#&gt; 200 0.07418330</span>
<span class="co">#&gt; 201 0.08802858</span></code></pre></div>
<p>Each row of <code>res</code> contains a sample from the MCMC. For each, informations about the step (iteration of the MCMC), log-values of posterior, likelihood and priors, and all parameters and augmented data are returned. Ancestries (i.e. indices of the most recent ancestral case for a given case), are indicated by <code>alpha_[index of the case]</code>, dates of infections by <code>t_inf_[index of the case]</code>, and number of generations between cases and their infector / ancestor by <code>kappa_[index of the case]</code>:</p>
<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/base/names.html">names</a></span><span class="op">(</span><span class="va">res</span><span class="op">)</span>
<span class="co">#&gt; [1] "step" "post" "like" "prior" "mu" "pi" </span>
<span class="co">#&gt; [7] "eps" "lambda" "alpha_1" "alpha_2" "alpha_3" "alpha_4" </span>
<span class="co">#&gt; [13] "alpha_5" "alpha_6" "alpha_7" "alpha_8" "alpha_9" "alpha_10"</span>
<span class="co">#&gt; [19] "alpha_11" "alpha_12" "alpha_13" "alpha_14" "alpha_15" "alpha_16"</span>
<span class="co">#&gt; [25] "alpha_17" "alpha_18" "alpha_19" "alpha_20" "alpha_21" "alpha_22"</span>
<span class="co">#&gt; [31] "alpha_23" "alpha_24" "alpha_25" "alpha_26" "alpha_27" "alpha_28"</span>
<span class="co">#&gt; [37] "alpha_29" "alpha_30" "t_inf_1" "t_inf_2" "t_inf_3" "t_inf_4" </span>
<span class="co">#&gt; [43] "t_inf_5" "t_inf_6" "t_inf_7" "t_inf_8" "t_inf_9" "t_inf_10"</span>
<span class="co">#&gt; [49] "t_inf_11" "t_inf_12" "t_inf_13" "t_inf_14" "t_inf_15" "t_inf_16"</span>
<span class="co">#&gt; [55] "t_inf_17" "t_inf_18" "t_inf_19" "t_inf_20" "t_inf_21" "t_inf_22"</span>
<span class="co">#&gt; [61] "t_inf_23" "t_inf_24" "t_inf_25" "t_inf_26" "t_inf_27" "t_inf_28"</span>
<span class="co">#&gt; [67] "t_inf_29" "t_inf_30" "kappa_1" "kappa_2" "kappa_3" "kappa_4" </span>
<span class="co">#&gt; [73] "kappa_5" "kappa_6" "kappa_7" "kappa_8" "kappa_9" "kappa_10"</span>
<span class="co">#&gt; [79] "kappa_11" "kappa_12" "kappa_13" "kappa_14" "kappa_15" "kappa_16"</span>
<span class="co">#&gt; [85] "kappa_17" "kappa_18" "kappa_19" "kappa_20" "kappa_21" "kappa_22"</span>
<span class="co">#&gt; [91] "kappa_23" "kappa_24" "kappa_25" "kappa_26" "kappa_27" "kappa_28"</span>
<span class="co">#&gt; [97] "kappa_29" "kappa_30"</span></code></pre></div>
<p><br></p>
</div>
<div id="analysing-the-results" class="section level1">
<h1 class="hasAnchor">
<a href="#analysing-the-results" class="anchor"></a>Analysing the results</h1>
<div id="graphics" class="section level2">
<h2 class="hasAnchor">
<a href="#graphics" class="anchor"></a>Graphics</h2>
<p>Results can be visualised using <code>plot</code>, which has several options and can be used to derive various kinds of graphics (see <code><a href="../reference/print.outbreaker_chains.html">?plot.outbreaker_chains</a></code>). The basic plot shows the trace of the log-posterior values, which is useful to assess mixing:</p>
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span><span class="op">)</span></code></pre></div>
<p><img src="figs-introduction/basic_trace-1.png" width="768"></p>
<p>The second argument of <code>plot</code> can be used to visualise traces of any other column in <code>res</code>:</p>
<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span>, <span class="st">"prior"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-introduction/traces-1.png" width="768"></p>
<div class="sourceCode" id="cb10"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span>, <span class="st">"mu"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-introduction/traces-2.png" width="768"></p>
<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span>, <span class="st">"t_inf_15"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-introduction/traces-3.png" width="768"></p>
<p><code>burnin</code> can be used to discard the first iterations prior to mixing:</p>
<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="co">## compare this to plot(res)</span>
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span>, burnin <span class="op">=</span> <span class="fl">2000</span><span class="op">)</span></code></pre></div>
<p><img src="figs-introduction/basic_trace_burn-1.png" width="768"></p>
<p><code>type</code> indicates the type of graphic to plot; roughly:</p>
<ul>
<li><p><code>trace</code> for traces of the MCMC (default)</p></li>
<li><p><code>hist</code>, <code>density</code> to assess distributions of quantitative values</p></li>
<li><p><code>alpha</code>, <code>network</code> to visualise ancestries / transmission tree; note that <code>network</code> opens up an interactive plot and requires a web browser with Javascript enabled; the argument <code>min_support</code> is useful to select only the most supported ancestries and avoid displaying too many links</p></li>
<li><p><code>kappa</code> to visualise the distributions generations between cases and their ancestor / infector</p></li>
</ul>
<p>Here are a few examples:</p>
<div class="sourceCode" id="cb13"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span>, <span class="st">"mu"</span>, <span class="st">"hist"</span>, burnin <span class="op">=</span> <span class="fl">2000</span><span class="op">)</span>
<span class="co">#&gt; `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.</span></code></pre></div>
<p><img src="figs-introduction/many_plots-1.png" width="768"></p>
<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span>, <span class="st">"mu"</span>, <span class="st">"density"</span>, burnin <span class="op">=</span> <span class="fl">2000</span><span class="op">)</span></code></pre></div>
<p><img src="figs-introduction/many_plots-2.png" width="768"></p>
<div class="sourceCode" id="cb15"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span>, type <span class="op">=</span> <span class="st">"alpha"</span>, burnin <span class="op">=</span> <span class="fl">2000</span><span class="op">)</span></code></pre></div>
<p><img src="figs-introduction/many_plots-3.png" width="768"></p>
<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span>, type <span class="op">=</span> <span class="st">"t_inf"</span>, burnin <span class="op">=</span> <span class="fl">2000</span><span class="op">)</span></code></pre></div>
<p><img src="figs-introduction/many_plots-4.png" width="768"></p>
<div class="sourceCode" id="cb17"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span>, type <span class="op">=</span> <span class="st">"kappa"</span>, burnin <span class="op">=</span> <span class="fl">2000</span><span class="op">)</span></code></pre></div>
<p><img src="figs-introduction/many_plots-5.png" width="768"></p>
<div class="sourceCode" id="cb18"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span>, type <span class="op">=</span> <span class="st">"network"</span>, burnin <span class="op">=</span> <span class="fl">2000</span>, min_support <span class="op">=</span> <span class="fl">0.01</span><span class="op">)</span></code></pre></div>
<div id="htmlwidget-d56e504469a866f43f99" style="width:768px;height:480px;" class="visNetwork html-widget"></div>
<script type="application/json" data-for="htmlwidget-d56e504469a866f43f99">{"x":{"nodes":{"id":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30],"label":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30],"value":[1,1,1,2.125,2.875,0,2.875,2.075,3,3,2,0.05,4,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0],"color":["#CCDDFF","#B2D9E3","#98D6C7","#7ED2AC","#99CAA9","#C2C0AD","#ECB7B1","#EFB0B5","#D3ABB9","#B6A7BE","#ADA8AD","#C9B471","#E5C035","#FFCA04","#FFBC2C","#FFAE53","#FFA07B","#F0B986","#E1D78E","#D1F596","#CFEBA0","#D5CDAC","#DBAFB8","#E3A5B9","#EDB3AD","#F7C1A2","#FBCC9C","#ECCCAC","#DCCCBC","#CDCDCD"],"shape":["dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot"],"shaped":["star",null,null,"star",null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,"star",null,null]},"edges":{"from":[1,2,3,4,4,4,5,5,5,5,5,7,7,7,7,8,8,8,8,9,9,9,10,10,10,11,11,12,12,13,13,13,13,17,17],"to":[2,3,5,7,9,11,8,12,14,15,18,9,11,16,17,12,14,15,18,10,13,19,6,20,29,21,22,8,15,23,24,25,30,26,27],"value":[1,1,1,1,0.94375,0.175,0.9625,0.1625,0.9875,0.75,0.0125,0.05625,0.825,1,0.99375,0.8375,0.0125,0.2375,0.9875,1,1,1,1,1,1,1,1,0.0375,0.0125,1,1,1,1,1,1],"arrows":["to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to"],"color":["#CCDDFF","#B2D9E3","#98D6C7","#7ED2AC","#7ED2AC","#7ED2AC","#99CAA9","#99CAA9","#99CAA9","#99CAA9","#99CAA9","#ECB7B1","#ECB7B1","#ECB7B1","#ECB7B1","#EFB0B5","#EFB0B5","#EFB0B5","#EFB0B5","#D3ABB9","#D3ABB9","#D3ABB9","#B6A7BE","#B6A7BE","#B6A7BE","#ADA8AD","#ADA8AD","#C9B471","#C9B471","#E5C035","#E5C035","#E5C035","#E5C035","#FFA07B","#FFA07B"]},"nodesToDataframe":true,"edgesToDataframe":true,"options":{"width":"100%","height":"100%","nodes":{"shape":"dot","color":{"highlight":"red"},"shadow":{"enabled":true,"size":10}},"manipulation":{"enabled":false},"edges":{"arrows":{"to":{"enabled":true,"scaleFactor":0.2}},"color":{"highlight":"red"}}},"groups":null,"width":null,"height":null,"idselection":{"enabled":false},"byselection":{"enabled":false},"main":null,"submain":null,"footer":null,"background":"rgba(0, 0, 0, 0)"},"evals":[],"jsHooks":[]}</script>
</div>
<div id="using-summary" class="section level2">
<h2 class="hasAnchor">
<a href="#using-summary" class="anchor"></a>Using <code>summary</code>
</h2>
<p>The summary of results derives various distributional statistics for posterior, likelihood and prior densities, as well as for the quantitative parameters. It also builds a consensus tree, by finding for each case the most frequent infector / ancestor in the posterior samples. The corresponding frequencies are reported as ‘support’. The most frequent value of kappa is also reported as ‘generations’:</p>
<div class="sourceCode" id="cb19"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">res</span><span class="op">)</span>
<span class="co">#&gt; $step</span>
<span class="co">#&gt; first last interval n_steps </span>
<span class="co">#&gt; 1 10000 50 201 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $post</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; -1198.1 -564.5 -561.8 -565.2 -559.2 -553.3 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $like</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; -1199.4 -566.4 -563.7 -567.1 -561.2 -555.4 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $prior</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 0.6565 1.7928 2.0318 1.9224 2.1461 2.2984 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $mu</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 9.733e-05 1.301e-04 1.448e-04 1.475e-04 1.646e-04 2.108e-04 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $pi</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 0.8329 0.9449 0.9704 0.9593 0.9828 0.9995 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $tree</span>
<span class="co">#&gt; from to time support generations</span>
<span class="co">#&gt; 1 NA 1 -1 NA NA</span>
<span class="co">#&gt; 2 1 2 1 1.0000000 1</span>
<span class="co">#&gt; 3 2 3 3 1.0000000 1</span>
<span class="co">#&gt; 4 NA 4 2 NA NA</span>
<span class="co">#&gt; 5 3 5 4 1.0000000 1</span>
<span class="co">#&gt; 6 10 6 8 0.9950249 1</span>
<span class="co">#&gt; 7 4 7 5 1.0000000 1</span>
<span class="co">#&gt; 8 5 8 6 0.9601990 1</span>
<span class="co">#&gt; 9 4 9 5 0.9502488 1</span>
<span class="co">#&gt; 10 9 10 6 0.9950249 1</span>
<span class="co">#&gt; 11 7 11 7 0.8109453 1</span>
<span class="co">#&gt; 12 8 12 7 0.8358209 1</span>
<span class="co">#&gt; 13 9 13 7 1.0000000 1</span>
<span class="co">#&gt; 14 5 14 7 0.9900498 1</span>
<span class="co">#&gt; 15 5 15 7 0.7263682 1</span>
<span class="co">#&gt; 16 7 16 8 0.9950249 1</span>
<span class="co">#&gt; 17 7 17 7 0.9701493 1</span>
<span class="co">#&gt; 18 8 18 9 0.9651741 1</span>
<span class="co">#&gt; 19 9 19 8 1.0000000 1</span>
<span class="co">#&gt; 20 10 20 10 1.0000000 1</span>
<span class="co">#&gt; 21 11 21 10 1.0000000 1</span>
<span class="co">#&gt; 22 11 22 10 1.0000000 1</span>
<span class="co">#&gt; 23 13 23 9 1.0000000 1</span>
<span class="co">#&gt; 24 13 24 9 1.0000000 1</span>
<span class="co">#&gt; 25 13 25 9 1.0000000 1</span>
<span class="co">#&gt; 26 17 26 9 0.9751244 1</span>
<span class="co">#&gt; 27 17 27 10 1.0000000 1</span>
<span class="co">#&gt; 28 NA 28 9 NA NA</span>
<span class="co">#&gt; 29 10 29 10 1.0000000 1</span>
<span class="co">#&gt; 30 13 30 10 1.0000000 1</span></code></pre></div>
<p><br></p>
</div>
</div>
<div id="customising-settings-and-priors" class="section level1">
<h1 class="hasAnchor">
<a href="#customising-settings-and-priors" class="anchor"></a>Customising settings and priors</h1>
<p>As said before, most customisation can be achieved via <code>create_config</code>. In the following, we make the following changes to the defaults:</p>
<ul>
<li><p>increase the number of iterations to 30,000</p></li>
<li><p>set the sampling rate to 20</p></li>
<li><p>use a star-like initial tree</p></li>
<li><p>disable to movement of <code>kappa</code>, so that we assume that all cases have observed</p></li>
<li><p>set a lower rate for the exponential prior of <code>mu</code> (10 instead of 1000)</p></li>
</ul>
<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">config2</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/create_config.html">create_config</a></span><span class="op">(</span>n_iter <span class="op">=</span> <span class="fl">3e4</span>,
sample_every <span class="op">=</span> <span class="fl">20</span>,
init_tree <span class="op">=</span><span class="st">"star"</span>,
move_kappa <span class="op">=</span> <span class="cn">FALSE</span>,
prior_mu <span class="op">=</span> <span class="fl">10</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/base/Random.html">set.seed</a></span><span class="op">(</span><span class="fl">1</span><span class="op">)</span>
<span class="va">res2</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/outbreaker.html">outbreaker</a></span><span class="op">(</span><span class="va">data</span>, <span class="va">config2</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res2</span><span class="op">)</span></code></pre></div>
<p><img src="figs-introduction/config2-1.png" width="768"></p>
<div class="sourceCode" id="cb21"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res2</span>, burnin <span class="op">=</span> <span class="fl">2000</span><span class="op">)</span></code></pre></div>
<p><img src="figs-introduction/config2-2.png" width="768"></p>
<p>We can see that the burnin is around 2,500 iterations (i.e. after the initial step corresponding to a local optimum). We get the consensus tree from the new results, and compare the inferred tree to the actual ancestries stored in the dataset (<code>fake_outbreak$ances</code>):</p>
<div class="sourceCode" id="cb22"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">res2</span>, burnin <span class="op">=</span> <span class="fl">3000</span><span class="op">)</span>
<span class="co">#&gt; $step</span>
<span class="co">#&gt; first last interval n_steps </span>
<span class="co">#&gt; 3020 30000 20 1350 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $post</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; -543.7 -525.3 -523.1 -523.3 -520.8 -513.7 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $like</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; -548.0 -529.6 -527.5 -527.6 -525.2 -518.1 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $prior</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 2.456 4.277 4.434 4.364 4.528 4.604 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $mu</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 7.752e-05 1.219e-04 1.358e-04 1.382e-04 1.541e-04 2.270e-04 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $pi</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 0.7877 0.9643 0.9814 0.9740 0.9917 1.0000 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $tree</span>
<span class="co">#&gt; from to time support generations</span>
<span class="co">#&gt; 1 NA 1 -1 NA NA</span>
<span class="co">#&gt; 2 1 2 1 0.9992593 1</span>
<span class="co">#&gt; 3 2 3 3 0.9992593 1</span>
<span class="co">#&gt; 4 NA 4 2 NA NA</span>
<span class="co">#&gt; 5 3 5 4 0.9970370 1</span>
<span class="co">#&gt; 6 4 6 5 0.9614815 1</span>
<span class="co">#&gt; 7 4 7 5 1.0000000 1</span>
<span class="co">#&gt; 8 5 8 6 0.9400000 1</span>
<span class="co">#&gt; 9 6 9 6 1.0000000 1</span>
<span class="co">#&gt; 10 6 10 7 1.0000000 1</span>
<span class="co">#&gt; 11 7 11 7 0.8311111 1</span>
<span class="co">#&gt; 12 8 12 8 0.8311111 1</span>
<span class="co">#&gt; 13 9 13 7 1.0000000 1</span>
<span class="co">#&gt; 14 5 14 7 0.9844444 1</span>
<span class="co">#&gt; 15 5 15 7 0.7281481 1</span>
<span class="co">#&gt; 16 7 16 8 0.9992593 1</span>
<span class="co">#&gt; 17 7 17 7 0.9881481 1</span>
<span class="co">#&gt; 18 8 18 9 0.9829630 1</span>
<span class="co">#&gt; 19 9 19 9 1.0000000 1</span>
<span class="co">#&gt; 20 10 20 10 0.9755556 1</span>
<span class="co">#&gt; 21 11 21 10 1.0000000 1</span>
<span class="co">#&gt; 22 11 22 10 1.0000000 1</span>
<span class="co">#&gt; 23 13 23 9 1.0000000 1</span>
<span class="co">#&gt; 24 13 24 10 1.0000000 1</span>
<span class="co">#&gt; 25 13 25 9 1.0000000 1</span>
<span class="co">#&gt; 26 17 26 9 1.0000000 1</span>
<span class="co">#&gt; 27 17 27 10 1.0000000 1</span>
<span class="co">#&gt; 28 NA 28 9 NA NA</span>
<span class="co">#&gt; 29 10 29 11 1.0000000 1</span>
<span class="co">#&gt; 30 13 30 11 1.0000000 1</span>
<span class="va">tree2</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">res2</span>, burnin <span class="op">=</span> <span class="fl">3000</span><span class="op">)</span><span class="op">$</span><span class="va">tree</span>
<span class="va">comparison</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html">data.frame</a></span><span class="op">(</span>case <span class="op">=</span> <span class="fl">1</span><span class="op">:</span><span class="fl">30</span>,
inferred <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html">paste</a></span><span class="op">(</span><span class="va">tree2</span><span class="op">$</span><span class="va">from</span><span class="op">)</span>,
true <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html">paste</a></span><span class="op">(</span><span class="va">fake_outbreak</span><span class="op">$</span><span class="va">ances</span><span class="op">)</span>,
stringsAsFactors <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>
<span class="va">comparison</span><span class="op">$</span><span class="va">correct</span> <span class="op">&lt;-</span> <span class="va">comparison</span><span class="op">$</span><span class="va">inferred</span> <span class="op">==</span> <span class="va">comparison</span><span class="op">$</span><span class="va">true</span>
<span class="va">comparison</span>
<span class="co">#&gt; case inferred true correct</span>
<span class="co">#&gt; 1 1 NA NA TRUE</span>
<span class="co">#&gt; 2 2 1 1 TRUE</span>
<span class="co">#&gt; 3 3 2 2 TRUE</span>
<span class="co">#&gt; 4 4 NA NA TRUE</span>
<span class="co">#&gt; 5 5 3 3 TRUE</span>
<span class="co">#&gt; 6 6 4 4 TRUE</span>
<span class="co">#&gt; 7 7 4 4 TRUE</span>
<span class="co">#&gt; 8 8 5 5 TRUE</span>
<span class="co">#&gt; 9 9 6 6 TRUE</span>
<span class="co">#&gt; 10 10 6 6 TRUE</span>
<span class="co">#&gt; 11 11 7 7 TRUE</span>
<span class="co">#&gt; 12 12 8 8 TRUE</span>
<span class="co">#&gt; 13 13 9 9 TRUE</span>
<span class="co">#&gt; 14 14 5 5 TRUE</span>
<span class="co">#&gt; 15 15 5 5 TRUE</span>
<span class="co">#&gt; 16 16 7 7 TRUE</span>
<span class="co">#&gt; 17 17 7 7 TRUE</span>
<span class="co">#&gt; 18 18 8 8 TRUE</span>
<span class="co">#&gt; 19 19 9 9 TRUE</span>
<span class="co">#&gt; 20 20 10 10 TRUE</span>
<span class="co">#&gt; 21 21 11 11 TRUE</span>
<span class="co">#&gt; 22 22 11 11 TRUE</span>
<span class="co">#&gt; 23 23 13 13 TRUE</span>
<span class="co">#&gt; 24 24 13 13 TRUE</span>
<span class="co">#&gt; 25 25 13 13 TRUE</span>
<span class="co">#&gt; 26 26 17 17 TRUE</span>
<span class="co">#&gt; 27 27 17 17 TRUE</span>
<span class="co">#&gt; 28 28 NA NA TRUE</span>
<span class="co">#&gt; 29 29 10 10 TRUE</span>
<span class="co">#&gt; 30 30 13 13 TRUE</span>
<span class="fu"><a href="https://rdrr.io/r/base/mean.html">mean</a></span><span class="op">(</span><span class="va">comparison</span><span class="op">$</span><span class="va">correct</span><span class="op">)</span>
<span class="co">#&gt; [1] 1</span></code></pre></div>
<p>Let’s visualise the posterior trees:</p>
<div class="sourceCode" id="cb23"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res2</span>, type <span class="op">=</span> <span class="st">"network"</span>, burnin <span class="op">=</span> <span class="fl">3000</span>, min_support <span class="op">=</span> <span class="fl">0.01</span><span class="op">)</span></code></pre></div>
<div id="htmlwidget-cf71394605ab0ca30d68" style="width:768px;height:480px;" class="visNetwork html-widget"></div>
<script type="application/json" data-for="htmlwidget-cf71394605ab0ca30d68">{"x":{"nodes":{"id":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30],"label":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30],"value":[1,0.999259259259259,1.00148148148148,2.14296296296296,2.83185185185185,2,2.85703703703704,2.06444444444444,2,1.97555555555556,2,0.102962962962963,4,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0.0244444444444444,0],"color":["#CCDDFF","#B2D9E3","#98D6C7","#7ED2AC","#99CAA9","#C2C0AD","#ECB7B1","#EFB0B5","#D3ABB9","#B6A7BE","#ADA8AD","#C9B471","#E5C035","#FFCA04","#FFBC2C","#FFAE53","#FFA07B","#F0B986","#E1D78E","#D1F596","#CFEBA0","#D5CDAC","#DBAFB8","#E3A5B9","#EDB3AD","#F7C1A2","#FBCC9C","#ECCCAC","#DCCCBC","#CDCDCD"],"shape":["dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot","dot"],"shaped":["star",null,null,"star",null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,"star",null,null]},"edges":{"from":[1,2,3,4,4,4,4,5,5,5,5,5,6,6,7,7,7,7,8,8,8,8,9,9,10,10,11,11,12,12,13,13,13,13,17,17,29],"to":[2,3,5,6,7,11,17,8,12,14,15,18,9,10,6,11,16,17,12,14,15,18,13,19,20,29,21,22,8,15,23,24,25,30,26,27,20],"value":[0.999259259259259,0.999259259259259,0.997037037037037,0.961481481481481,1,0.168888888888889,0.0118518518518519,0.94,0.168888888888889,0.984444444444444,0.728148148148148,0.0103703703703704,1,1,0.0385185185185185,0.831111111111111,0.999259259259259,0.988148148148148,0.831111111111111,0.0111111111111111,0.236296296296296,0.982962962962963,1,1,0.975555555555556,1,1,1,0.0562962962962963,0.0355555555555556,1,1,1,1,1,1,0.0244444444444444],"arrows":["to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to","to"],"color":["#CCDDFF","#B2D9E3","#98D6C7","#7ED2AC","#7ED2AC","#7ED2AC","#7ED2AC","#99CAA9","#99CAA9","#99CAA9","#99CAA9","#99CAA9","#C2C0AD","#C2C0AD","#ECB7B1","#ECB7B1","#ECB7B1","#ECB7B1","#EFB0B5","#EFB0B5","#EFB0B5","#EFB0B5","#D3ABB9","#D3ABB9","#B6A7BE","#B6A7BE","#ADA8AD","#ADA8AD","#C9B471","#C9B471","#E5C035","#E5C035","#E5C035","#E5C035","#FFA07B","#FFA07B","#DCCCBC"]},"nodesToDataframe":true,"edgesToDataframe":true,"options":{"width":"100%","height":"100%","nodes":{"shape":"dot","color":{"highlight":"red"},"shadow":{"enabled":true,"size":10}},"manipulation":{"enabled":false},"edges":{"arrows":{"to":{"enabled":true,"scaleFactor":0.2}},"color":{"highlight":"red"}}},"groups":null,"width":null,"height":null,"idselection":{"enabled":false},"byselection":{"enabled":false},"main":null,"submain":null,"footer":null,"background":"rgba(0, 0, 0, 0)"},"evals":[],"jsHooks":[]}</script>
</div>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc"><h2 data-toc-skip>Contents</h2>
</nav>
</div>
</div>
<footer><div class="copyright">
<p>Developed by Thibaut Jombart, Finlay Campbell, Rich Fitzjohn.</p>
</div>
<div class="pkgdown">
<p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
</div>
</footer>
</div>
</body>
</html>