[dfe06d]: / docs / articles / customisation.html

Download this file

1072 lines (1001 with data), 92.5 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Using custom priors, likelihood, or movements in outbreaker2 • outbreaker2</title>
<!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous">
<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css">
<script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous">
<!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet">
<script src="../pkgdown.js"></script><meta property="og:title" content="Using custom priors, likelihood, or movements in outbreaker2">
<meta property="og:description" content="outbreaker2">
<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body data-spy="scroll" data-target="#toc">
<div class="container template-article">
<header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">outbreaker2</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.1.2</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="../index.html">
<span class="fas fa-home fa-lg"></span>
</a>
</li>
<li>
<a href="../reference/index.html">Reference</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Articles
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="../articles/customisation.html">Using custom priors, likelihood, or movements in outbreaker2</a>
</li>
<li>
<a href="../articles/introduction.html">Introduction to outbreaker2</a>
</li>
<li>
<a href="../articles/overview.html">outbreaker2: package overview</a>
</li>
<li>
<a href="../articles/Rcpp_API.html">outbreaker2: Rcpp API</a>
</li>
</ul>
</li>
<li>
<a href="../news/index.html">Changelog</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right"></ul>
</div>
<!--/.nav-collapse -->
</div>
<!--/.container -->
</div>
<!--/.navbar -->
</header><script src="customisation_files/header-attrs-2.6/header-attrs.js"></script><script src="customisation_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row">
<div class="col-md-9 contents">
<div class="page-header toc-ignore">
<h1 data-toc-skip>Using custom priors, likelihood, or movements in outbreaker2</h1>
<h4 class="author">Thibaut Jombart</h4>
<h4 class="date">2021-02-09</h4>
<div class="hidden name"><code>customisation.Rmd</code></div>
</div>
<p>In this vignette, we show how custom functions for priors, likelihood, or movement of parameters and augmented data can be used in <em>outbreaker2</em>. In all these functions, the process will be similar:</p>
<ol style="list-style-type: decimal">
<li>write your own function with the right arguments</li>
<li>pass this function as an argument to a <code>custom...</code> function</li>
<li>pass the result to <em>outbreaker2</em>
</li>
</ol>
<p>Note that 2-3 can be a single step if passing the function to the arguments of <em>outbreaker2</em> directly. Also note that <strong>all priors and likelihoods are expected on a log scale</strong>. Finally, also note that while the various <code>custom...</code> functions will try to some extent to check that the provided functions are valid, such tests are very difficult to implement. In short: you are using these custom features at your own risks - make sure these functions work before passing them to <em>outbreaker2</em>.</p>
<p><br></p>
<div id="customising-priors" class="section level1">
<h1 class="hasAnchor">
<a href="#customising-priors" class="anchor"></a>Customising priors</h1>
<p>Priors of <em>outbreaker2</em> must be a function of an <code>outbreaker_param</code> list (see <code><a href="../reference/create_param.html">?outbreaker_param</a></code>). Here, we decide to use a step function rather than the default Beta function as a prior for <em>pi</em>, the reporting probability, and a flat prior between 0 and 1 for the mutation rate (which is technically a probability in the basic genetic model used in <em>outbreaker2</em>).</p>
<p>We start by defining two functions: an auxiliary function <code>f</code> which returns values on the natural scale, and which we can use for plotting the prior distribution, and then a function <code>f_pi</code> which will be used for the customisation.</p>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">f</span> <span class="op">&lt;-</span> <span class="kw">function</span><span class="op">(</span><span class="va">pi</span><span class="op">)</span> <span class="op">{</span>
<span class="fu"><a href="https://rdrr.io/r/base/ifelse.html">ifelse</a></span><span class="op">(</span><span class="va">pi</span> <span class="op">&lt;</span> <span class="fl">0.8</span>, <span class="fl">0</span>, <span class="fl">5</span><span class="op">)</span>
<span class="op">}</span>
<span class="va">f_pi</span> <span class="op">&lt;-</span> <span class="kw">function</span><span class="op">(</span><span class="va">param</span><span class="op">)</span> <span class="op">{</span>
<span class="fu"><a href="https://rdrr.io/r/base/Log.html">log</a></span><span class="op">(</span><span class="fu">f</span><span class="op">(</span><span class="va">param</span><span class="op">$</span><span class="va">pi</span><span class="op">)</span><span class="op">)</span>
<span class="op">}</span>
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">f</span>, type <span class="op">=</span> <span class="st">"s"</span>, col <span class="op">=</span> <span class="st">"blue"</span>,
xlab <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/expression.html">expression</a></span><span class="op">(</span><span class="va">pi</span><span class="op">)</span>, ylab <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/expression.html">expression</a></span><span class="op">(</span><span class="fu">p</span><span class="op">(</span><span class="va">pi</span><span class="op">)</span><span class="op">)</span>,
main <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/expression.html">expression</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/paste.html">paste</a></span><span class="op">(</span><span class="st">"New prior for "</span>, <span class="va">pi</span><span class="op">)</span><span class="op">)</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/f_pi-1.png" width="768"></p>
<p>While <code>f</code> is a useful function to visualise the prior, <code>f_pi</code> is the function which will be passed to <code>outbreaker</code>. To do so, we pass it to <code>custom_priors</code>:</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="kw"><a href="https://rdrr.io/r/base/library.html">library</a></span><span class="op">(</span><span class="va">outbreaker2</span><span class="op">)</span>
<span class="va">f_mu</span> <span class="op">&lt;-</span> <span class="kw">function</span><span class="op">(</span><span class="va">param</span><span class="op">)</span> <span class="op">{</span>
<span class="kw">if</span> <span class="op">(</span><span class="va">param</span><span class="op">$</span><span class="va">mu</span> <span class="op">&lt;</span> <span class="fl">0</span> <span class="op">||</span> <span class="va">param</span><span class="op">$</span><span class="va">mu</span> <span class="op">&gt;</span> <span class="fl">1</span><span class="op">)</span> <span class="op">{</span>
<span class="kw"><a href="https://rdrr.io/r/base/function.html">return</a></span><span class="op">(</span><span class="op">-</span><span class="cn">Inf</span><span class="op">)</span>
<span class="op">}</span> <span class="kw">else</span> <span class="op">{</span>
<span class="kw"><a href="https://rdrr.io/r/base/function.html">return</a></span><span class="op">(</span><span class="fl">0.0</span><span class="op">)</span>
<span class="op">}</span>
<span class="op">}</span>
<span class="va">priors</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/custom_priors.html">custom_priors</a></span><span class="op">(</span>pi <span class="op">=</span> <span class="va">f_pi</span>, mu <span class="op">=</span> <span class="va">f_mu</span><span class="op">)</span>
<span class="va">priors</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; ///// outbreaker custom priors ///</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; class: custom_priors list</span>
<span class="co">#&gt; number of items: 4 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; /// custom priors set to NULL (default used) //</span>
<span class="co">#&gt; $eps</span>
<span class="co">#&gt; NULL</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $lambda</span>
<span class="co">#&gt; NULL</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; /// custom priors //</span>
<span class="co">#&gt; $mu</span>
<span class="co">#&gt; function(param) {</span>
<span class="co">#&gt; if (param$mu &lt; 0 || param$mu &gt; 1) {</span>
<span class="co">#&gt; return(-Inf)</span>
<span class="co">#&gt; } else {</span>
<span class="co">#&gt; return(0.0)</span>
<span class="co">#&gt; }</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; }</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $pi</span>
<span class="co">#&gt; function(param) { </span>
<span class="co">#&gt; log(f(param$pi))</span>
<span class="co">#&gt; }</span></code></pre></div>
<p>Note that <code>custom_priors</code> does more than just adding the custom function to a list. For instance, the following customisations are all wrong, and rightfully rejected:</p>
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="co">## wrong: not a function</span>
<span class="co">## should be pi = function(x){0.0}</span>
<span class="fu"><a href="../reference/custom_priors.html">custom_priors</a></span><span class="op">(</span>pi <span class="op">=</span> <span class="fl">0.0</span><span class="op">)</span>
<span class="co">#&gt; Error in custom_priors(pi = 0): The following priors are not functions: pi</span>
<span class="co">## wrong: two arguments</span>
<span class="fu"><a href="../reference/custom_priors.html">custom_priors</a></span><span class="op">(</span>pi <span class="op">=</span> <span class="kw">function</span><span class="op">(</span><span class="va">x</span>, <span class="va">y</span><span class="op">)</span><span class="op">{</span><span class="fl">0.0</span><span class="op">}</span><span class="op">)</span>
<span class="co">#&gt; Error in custom_priors(pi = function(x, y) {: The following priors dont' have a single argument: pi</span></code></pre></div>
<p>We can now use the new priors to run <code>outbreaker</code> on the <code>fake_outbreak</code> data (see <a href="introduction.html"><em>introduction vignette</em></a>):</p>
<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">dna</span> <span class="op">&lt;-</span> <span class="va">fake_outbreak</span><span class="op">$</span><span class="va">dna</span>
<span class="va">dates</span> <span class="op">&lt;-</span> <span class="va">fake_outbreak</span><span class="op">$</span><span class="va">sample</span>
<span class="va">w</span> <span class="op">&lt;-</span> <span class="va">fake_outbreak</span><span class="op">$</span><span class="va">w</span>
<span class="va">data</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/outbreaker_data.html">outbreaker_data</a></span><span class="op">(</span>dna <span class="op">=</span> <span class="va">dna</span>, dates <span class="op">=</span> <span class="va">dates</span>, w_dens <span class="op">=</span> <span class="va">w</span><span class="op">)</span>
<span class="co">## we set the seed to ensure results won't change</span>
<span class="fu"><a href="https://rdrr.io/r/base/Random.html">set.seed</a></span><span class="op">(</span><span class="fl">1</span><span class="op">)</span>
<span class="va">res</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/outbreaker.html">outbreaker</a></span><span class="op">(</span>data <span class="op">=</span> <span class="va">data</span>, priors <span class="op">=</span> <span class="va">priors</span><span class="op">)</span></code></pre></div>
<p>We can check the results first by looking at the traces, and then by plotting the posterior distributions of <code>pi</code> and <code>mu</code>, respectively:</p>
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/traces_custom_priors-1.png" width="768"></p>
<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span>, <span class="st">"pi"</span>, burnin <span class="op">=</span> <span class="fl">500</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/traces_custom_priors-2.png" width="768"></p>
<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span>, <span class="st">"mu"</span>, burnin <span class="op">=</span> <span class="fl">500</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/traces_custom_priors-3.png" width="768"></p>
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span>, <span class="st">"pi"</span>, type <span class="op">=</span> <span class="st">"density"</span>, burnin <span class="op">=</span> <span class="fl">500</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/traces_custom_priors-4.png" width="768"></p>
<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res</span>, <span class="st">"mu"</span>, type <span class="op">=</span> <span class="st">"hist"</span>, burnin <span class="op">=</span> <span class="fl">500</span><span class="op">)</span>
<span class="co">#&gt; `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.</span></code></pre></div>
<p><img src="figs-customisation/traces_custom_priors-5.png" width="768"></p>
<p>Note that we are using density and histograms here for illustrative purposes, but there is no reason to prefer one or the other for a specific parameter.</p>
<p>Interestingly, the trace of <code>pi</code> suggests that the MCMC oscillates between two different states, on either bound of the interval on which the prior is positive (it is <code>-Inf</code> outside (0.8; 1)). This may be a consequence of the step function, which causes sharp ‘cliffs’ in the posterior landscape. What shall one do to derive good samples from the posterior distribution in this kind of situation? There are several options, which in fact apply to typical cases of multi-modal posterior distributions:</p>
<ul>
<li><p>Avoid ‘cliffs’, i.e. sharp drops in the posterior landscape, typically created by using step-functions in likelihoods and in priors.</p></li>
<li><p>Use larger samples, i.e. run more MCMC iterations.</p></li>
<li><p>Use a different sampler, better than Metropolis-Hasting at deriving samples from multi-modal distributions.</p></li>
</ul>
<p>Because we know what the real transmission tree is for this dataset, we can assess how the new priors impacted the inference of the transmission tree.</p>
<div class="sourceCode" id="cb10"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">res</span>, burnin <span class="op">=</span> <span class="fl">500</span><span class="op">)</span>
<span class="co">#&gt; $step</span>
<span class="co">#&gt; first last interval n_steps </span>
<span class="co">#&gt; 550 10000 50 190 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $post</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; -481.1 -467.5 -463.9 -464.7 -461.4 -456.7 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $like</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; -482.7 -469.1 -465.5 -466.3 -463.0 -458.3 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $prior</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 1.609 1.609 1.609 1.609 1.609 1.609 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $mu</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 8.215e-05 1.254e-04 1.400e-04 1.419e-04 1.566e-04 2.159e-04 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $pi</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 0.8031 0.9207 0.9556 0.9453 0.9813 0.9999 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $tree</span>
<span class="co">#&gt; from to time support generations</span>
<span class="co">#&gt; 1 NA 1 -1 NA NA</span>
<span class="co">#&gt; 2 1 2 1 1.000000000 1</span>
<span class="co">#&gt; 3 2 3 3 1.000000000 1</span>
<span class="co">#&gt; 4 NA 4 3 0.005263158 NA</span>
<span class="co">#&gt; 5 3 5 4 0.994736842 1</span>
<span class="co">#&gt; 6 9 6 6 1.000000000 1</span>
<span class="co">#&gt; 7 4 7 5 0.994736842 1</span>
<span class="co">#&gt; 8 5 8 6 0.989473684 1</span>
<span class="co">#&gt; 9 4 9 5 0.968421053 1</span>
<span class="co">#&gt; 10 6 10 8 1.000000000 1</span>
<span class="co">#&gt; 11 7 11 7 0.689473684 1</span>
<span class="co">#&gt; 12 5 12 7 0.826315789 1</span>
<span class="co">#&gt; 13 9 13 7 1.000000000 1</span>
<span class="co">#&gt; 14 5 14 7 0.768421053 1</span>
<span class="co">#&gt; 15 5 15 7 0.752631579 1</span>
<span class="co">#&gt; 16 7 16 8 0.794736842 1</span>
<span class="co">#&gt; 17 7 17 7 0.626315789 1</span>
<span class="co">#&gt; 18 8 18 9 0.431578947 1</span>
<span class="co">#&gt; 19 9 19 8 1.000000000 1</span>
<span class="co">#&gt; 20 10 20 10 0.968421053 1</span>
<span class="co">#&gt; 21 11 21 10 0.973684211 1</span>
<span class="co">#&gt; 22 11 22 10 1.000000000 1</span>
<span class="co">#&gt; 23 13 23 9 1.000000000 1</span>
<span class="co">#&gt; 24 13 24 9 1.000000000 1</span>
<span class="co">#&gt; 25 13 25 9 1.000000000 1</span>
<span class="co">#&gt; 26 17 26 9 1.000000000 1</span>
<span class="co">#&gt; 27 17 27 10 1.000000000 1</span>
<span class="co">#&gt; 28 NA 28 9 NA NA</span>
<span class="co">#&gt; 29 10 29 11 1.000000000 1</span>
<span class="co">#&gt; 30 13 30 10 1.000000000 1</span>
<span class="va">tree</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">res</span>, burnin <span class="op">=</span> <span class="fl">500</span><span class="op">)</span><span class="op">$</span><span class="va">tree</span>
<span class="va">comparison</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html">data.frame</a></span><span class="op">(</span>case <span class="op">=</span> <span class="fl">1</span><span class="op">:</span><span class="fl">30</span>,
inferred <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html">paste</a></span><span class="op">(</span><span class="va">tree</span><span class="op">$</span><span class="va">from</span><span class="op">)</span>,
true <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html">paste</a></span><span class="op">(</span><span class="va">fake_outbreak</span><span class="op">$</span><span class="va">ances</span><span class="op">)</span>,
stringsAsFactors <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>
<span class="va">comparison</span><span class="op">$</span><span class="va">correct</span> <span class="op">&lt;-</span> <span class="va">comparison</span><span class="op">$</span><span class="va">inferred</span> <span class="op">==</span> <span class="va">comparison</span><span class="op">$</span><span class="va">true</span>
<span class="va">comparison</span>
<span class="co">#&gt; case inferred true correct</span>
<span class="co">#&gt; 1 1 NA NA TRUE</span>
<span class="co">#&gt; 2 2 1 1 TRUE</span>
<span class="co">#&gt; 3 3 2 2 TRUE</span>
<span class="co">#&gt; 4 4 NA NA TRUE</span>
<span class="co">#&gt; 5 5 3 3 TRUE</span>
<span class="co">#&gt; 6 6 9 4 FALSE</span>
<span class="co">#&gt; 7 7 4 4 TRUE</span>
<span class="co">#&gt; 8 8 5 5 TRUE</span>
<span class="co">#&gt; 9 9 4 6 FALSE</span>
<span class="co">#&gt; 10 10 6 6 TRUE</span>
<span class="co">#&gt; 11 11 7 7 TRUE</span>
<span class="co">#&gt; 12 12 5 8 FALSE</span>
<span class="co">#&gt; 13 13 9 9 TRUE</span>
<span class="co">#&gt; 14 14 5 5 TRUE</span>
<span class="co">#&gt; 15 15 5 5 TRUE</span>
<span class="co">#&gt; 16 16 7 7 TRUE</span>
<span class="co">#&gt; 17 17 7 7 TRUE</span>
<span class="co">#&gt; 18 18 8 8 TRUE</span>
<span class="co">#&gt; 19 19 9 9 TRUE</span>
<span class="co">#&gt; 20 20 10 10 TRUE</span>
<span class="co">#&gt; 21 21 11 11 TRUE</span>
<span class="co">#&gt; 22 22 11 11 TRUE</span>
<span class="co">#&gt; 23 23 13 13 TRUE</span>
<span class="co">#&gt; 24 24 13 13 TRUE</span>
<span class="co">#&gt; 25 25 13 13 TRUE</span>
<span class="co">#&gt; 26 26 17 17 TRUE</span>
<span class="co">#&gt; 27 27 17 17 TRUE</span>
<span class="co">#&gt; 28 28 NA NA TRUE</span>
<span class="co">#&gt; 29 29 10 10 TRUE</span>
<span class="co">#&gt; 30 30 13 13 TRUE</span>
<span class="fu"><a href="https://rdrr.io/r/base/mean.html">mean</a></span><span class="op">(</span><span class="va">comparison</span><span class="op">$</span><span class="va">correct</span><span class="op">)</span>
<span class="co">#&gt; [1] 0.9</span></code></pre></div>
<p><br></p>
</div>
<div id="customizing-likelihood" class="section level1">
<h1 class="hasAnchor">
<a href="#customizing-likelihood" class="anchor"></a>Customizing likelihood</h1>
<p>Likelihood functions customisation works identically to prior functions. The only difference is that custom functions will take two arguments (<code>data</code> and <code>param</code>) instead of one in the prior functions. The function used to specify custom likelihood is <code>custom_likelihoods</code>. Each custom function will correspond to a specific likelihood component:</p>
<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="../reference/custom_likelihoods.html">custom_likelihoods</a></span><span class="op">(</span><span class="op">)</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; ///// outbreaker custom likelihoods ///</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; class: custom_likelihoods list</span>
<span class="co">#&gt; number of items: 5 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; /// custom likelihoods //</span>
<span class="co">#&gt; $genetic</span>
<span class="co">#&gt; $genetic[[1]]</span>
<span class="co">#&gt; NULL</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $genetic[[2]]</span>
<span class="co">#&gt; [1] 0</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $reporting</span>
<span class="co">#&gt; $reporting[[1]]</span>
<span class="co">#&gt; NULL</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $reporting[[2]]</span>
<span class="co">#&gt; [1] 0</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $timing_infections</span>
<span class="co">#&gt; $timing_infections[[1]]</span>
<span class="co">#&gt; NULL</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $timing_infections[[2]]</span>
<span class="co">#&gt; [1] 0</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $timing_sampling</span>
<span class="co">#&gt; $timing_sampling[[1]]</span>
<span class="co">#&gt; NULL</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $timing_sampling[[2]]</span>
<span class="co">#&gt; [1] 0</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $contact</span>
<span class="co">#&gt; $contact[[1]]</span>
<span class="co">#&gt; NULL</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $contact[[2]]</span>
<span class="co">#&gt; [1] 0</span></code></pre></div>
<p>see <code><a href="../reference/custom_likelihoods.html">?custom_likelihoods</a></code> for details of these components, and see the section ‘Extending the model’ for new, other components. As for <code>custom_priors</code>, a few checks are performed by <code>custom_likelihoods</code>:</p>
<div class="sourceCode" id="cb12"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="co">## wrong: not a function</span>
<span class="fu"><a href="../reference/custom_likelihoods.html">custom_likelihoods</a></span><span class="op">(</span>genetic <span class="op">=</span> <span class="st">"fubar"</span><span class="op">)</span>
<span class="co">#&gt; Error in custom_likelihoods(genetic = "fubar"): The following likelihoods are not functions: genetic</span>
<span class="co">## wrong: only one argument</span>
<span class="fu"><a href="../reference/custom_likelihoods.html">custom_likelihoods</a></span><span class="op">(</span>genetic <span class="op">=</span> <span class="kw">function</span><span class="op">(</span><span class="va">x</span><span class="op">)</span><span class="op">{</span> <span class="fl">0.0</span> <span class="op">}</span><span class="op">)</span>
<span class="co">#&gt; Error in custom_likelihoods(genetic = function(x) {: The following likelihoods do not have arity two or three: genetic</span></code></pre></div>
<p>A trivial customisation is to disable some or all of the likelihood components of the model by returning a finite constant. Here, we apply this to two cases: first, we will disable all likelihood components as a sanity check, making sure that the transmission tree landscape is explored freely by the MCMC. Second, we will recreate the <a href="http://dx.doi.org/10.1093/aje/kwh255">Wallinga &amp; Teunis (1994)</a> model, by disabling specific components.</p>
<div id="a-null-model" class="section level2">
<h2 class="hasAnchor">
<a href="#a-null-model" class="anchor"></a>A null model</h2>
<div class="sourceCode" id="cb13"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">f_null</span> <span class="op">&lt;-</span> <span class="kw">function</span><span class="op">(</span><span class="va">data</span>, <span class="va">param</span><span class="op">)</span> <span class="op">{</span>
<span class="kw"><a href="https://rdrr.io/r/base/function.html">return</a></span><span class="op">(</span><span class="fl">0.0</span><span class="op">)</span>
<span class="op">}</span>
<span class="va">null_model</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/custom_likelihoods.html">custom_likelihoods</a></span><span class="op">(</span>genetic <span class="op">=</span> <span class="va">f_null</span>,
timing_sampling <span class="op">=</span> <span class="va">f_null</span>,
timing_infections <span class="op">=</span> <span class="va">f_null</span>,
reporting <span class="op">=</span> <span class="va">f_null</span>,
contact <span class="op">=</span> <span class="va">f_null</span><span class="op">)</span>
<span class="va">null_model</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; ///// outbreaker custom likelihoods ///</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; class: custom_likelihoods list</span>
<span class="co">#&gt; number of items: 5 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; /// custom likelihoods //</span>
<span class="co">#&gt; $genetic</span>
<span class="co">#&gt; $genetic[[1]]</span>
<span class="co">#&gt; function(data, param) {</span>
<span class="co">#&gt; return(0.0)</span>
<span class="co">#&gt; }</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $genetic[[2]]</span>
<span class="co">#&gt; [1] 2</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $reporting</span>
<span class="co">#&gt; $reporting[[1]]</span>
<span class="co">#&gt; function(data, param) {</span>
<span class="co">#&gt; return(0.0)</span>
<span class="co">#&gt; }</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $reporting[[2]]</span>
<span class="co">#&gt; [1] 2</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $timing_infections</span>
<span class="co">#&gt; $timing_infections[[1]]</span>
<span class="co">#&gt; function(data, param) {</span>
<span class="co">#&gt; return(0.0)</span>
<span class="co">#&gt; }</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $timing_infections[[2]]</span>
<span class="co">#&gt; [1] 2</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $timing_sampling</span>
<span class="co">#&gt; $timing_sampling[[1]]</span>
<span class="co">#&gt; function(data, param) {</span>
<span class="co">#&gt; return(0.0)</span>
<span class="co">#&gt; }</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $timing_sampling[[2]]</span>
<span class="co">#&gt; [1] 2</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $contact</span>
<span class="co">#&gt; $contact[[1]]</span>
<span class="co">#&gt; function(data, param) {</span>
<span class="co">#&gt; return(0.0)</span>
<span class="co">#&gt; }</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $contact[[2]]</span>
<span class="co">#&gt; [1] 2</span></code></pre></div>
<p>We also specify settings via the <code>config</code> argument to avoid detecting imported cases, reduce the number of iterations and sampling each of them:</p>
<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">null_config</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html">list</a></span><span class="op">(</span>find_import <span class="op">=</span> <span class="cn">FALSE</span>,
n_iter <span class="op">=</span> <span class="fl">500</span>,
sample_every <span class="op">=</span> <span class="fl">1</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/base/Random.html">set.seed</a></span><span class="op">(</span><span class="fl">1</span><span class="op">)</span>
<span class="va">res_null</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/outbreaker.html">outbreaker</a></span><span class="op">(</span>data <span class="op">=</span> <span class="va">data</span>,
config <span class="op">=</span> <span class="va">null_config</span>,
likelihoods <span class="op">=</span> <span class="va">null_model</span><span class="op">)</span></code></pre></div>
<div class="sourceCode" id="cb15"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_null</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/res_null_model-1.png" width="768"></p>
<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_null</span>, <span class="st">"pi"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/res_null_model-2.png" width="768"></p>
<div class="sourceCode" id="cb17"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_null</span>, <span class="st">"mu"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/res_null_model-3.png" width="768"></p>
<p>By typical MCMC standards, these traces look appaling, as they haven’t reach stationarity (i.e. same mean and variance over time), and are grossly autocorrelated in parts. Fair enough, as these are only the first 500 iterations of the MCMC, so that autocorrelation is expected. In fact, what we observe here literally is the random walk across the posterior landscape, which in this case is only impacted by the priors.</p>
<p>We can check that transmission trees are indeed freely explored:</p>
<div class="sourceCode" id="cb18"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_null</span>, type <span class="op">=</span> <span class="st">"alpha"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/null_trees-1.png" width="768"></p>
<p>Do <strong>not</strong> try to render the corresponding network using <code><a href="https://rdrr.io/r/graphics/plot.default.html">plot(..., type = "network")</a></code> as the force-direction algorithm will go insane. However, this network can be visualised using <em>igraph</em>, extracting the edges and nodes from the plot (without displaying it):</p>
<div class="sourceCode" id="cb19"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="co">## extract nodes and edges from the visNetwork object</span>
<span class="va">temp</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_null</span>, type <span class="op">=</span> <span class="st">"network"</span>, min_support <span class="op">=</span> <span class="fl">0</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/base/class.html">class</a></span><span class="op">(</span><span class="va">temp</span><span class="op">)</span>
<span class="co">#&gt; [1] "visNetwork" "htmlwidget"</span>
<span class="fu"><a href="https://rdrr.io/r/utils/head.html">head</a></span><span class="op">(</span><span class="va">temp</span><span class="op">$</span><span class="va">x</span><span class="op">$</span><span class="va">edges</span><span class="op">)</span>
<span class="co">#&gt; from to value arrows color</span>
<span class="co">#&gt; 1 1 1 0.004 to #CCDDFF</span>
<span class="co">#&gt; 2 1 2 0.026 to #CCDDFF</span>
<span class="co">#&gt; 3 1 3 0.036 to #CCDDFF</span>
<span class="co">#&gt; 4 1 4 0.040 to #CCDDFF</span>
<span class="co">#&gt; 5 1 5 0.020 to #CCDDFF</span>
<span class="co">#&gt; 6 1 6 0.042 to #CCDDFF</span>
<span class="fu"><a href="https://rdrr.io/r/utils/head.html">head</a></span><span class="op">(</span><span class="va">temp</span><span class="op">$</span><span class="va">x</span><span class="op">$</span><span class="va">nodes</span><span class="op">)</span>
<span class="co">#&gt; id label value color shape shaped</span>
<span class="co">#&gt; 1 1 1 0.916 #CCDDFF dot star</span>
<span class="co">#&gt; 2 2 2 0.940 #B2D9E3 dot &lt;NA&gt;</span>
<span class="co">#&gt; 3 3 3 0.984 #98D6C7 dot &lt;NA&gt;</span>
<span class="co">#&gt; 4 4 4 0.986 #7ED2AC dot &lt;NA&gt;</span>
<span class="co">#&gt; 5 5 5 0.900 #99CAA9 dot &lt;NA&gt;</span>
<span class="co">#&gt; 6 6 6 1.066 #C2C0AD dot &lt;NA&gt;</span>
<span class="co">## make an igraph object</span>
<span class="kw"><a href="https://rdrr.io/r/base/library.html">library</a></span><span class="op">(</span><span class="va"><a href="https://igraph.org">igraph</a></span><span class="op">)</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; Attaching package: 'igraph'</span>
<span class="co">#&gt; The following objects are masked from 'package:stats':</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; decompose, spectrum</span>
<span class="co">#&gt; The following object is masked from 'package:base':</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; union</span>
<span class="va">net_null</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/pkg/igraph/man/graph_from_data_frame.html">graph.data.frame</a></span><span class="op">(</span><span class="va">temp</span><span class="op">$</span><span class="va">x</span><span class="op">$</span><span class="va">edges</span>,
vertices <span class="op">=</span> <span class="va">temp</span><span class="op">$</span><span class="va">x</span><span class="op">$</span><span class="va">nodes</span><span class="op">[</span><span class="fl">1</span><span class="op">:</span><span class="fl">4</span><span class="op">]</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">net_null</span>, layout <span class="op">=</span> <span class="va">layout.circle</span>,
main <span class="op">=</span> <span class="st">"Null model, posterior trees"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/null_net-1.png" width="768"></p>
<p>We can derive similar diagnostics for the number of generations betweens cases (<code>kappa</code>), only constrained by default settings to be between 1 and 5, and for the infection dates (<em>t_inf</em>):</p>
<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_null</span>, type <span class="op">=</span> <span class="st">"kappa"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/res_null_diag-1.png" width="768"></p>
<div class="sourceCode" id="cb21"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_null</span>, type <span class="op">=</span> <span class="st">"t_inf"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/res_null_diag-2.png" width="768"></p>
<p>Finally, we can verify that the distributions of <code>mu</code> and <code>pi</code> match their priors, respectively an exponential distribution with rate 1000 and a beta with parameters 10 and 1. Here, we get a qualitative assessment by comparing the observed distribution (histograms) to the densities of similar sized random samples from the priors:</p>
<div class="sourceCode" id="cb22"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/par.html">par</a></span><span class="op">(</span>xpd<span class="op">=</span><span class="cn">TRUE</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/graphics/hist.html">hist</a></span><span class="op">(</span><span class="va">res_null</span><span class="op">$</span><span class="va">mu</span>, prob <span class="op">=</span> <span class="cn">TRUE</span>, col <span class="op">=</span> <span class="st">"grey"</span>,
border <span class="op">=</span> <span class="st">"white"</span>,
main <span class="op">=</span> <span class="st">"Distribution of mu"</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/base/invisible.html">invisible</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/lapply.html">replicate</a></span><span class="op">(</span><span class="fl">30</span>,
<span class="fu"><a href="https://rdrr.io/r/graphics/points.html">points</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/stats/density.html">density</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/stats/Exponential.html">rexp</a></span><span class="op">(</span><span class="fl">500</span>, <span class="fl">1000</span><span class="op">)</span><span class="op">)</span>, type <span class="op">=</span> <span class="st">"l"</span>, col <span class="op">=</span> <span class="st">"blue"</span><span class="op">)</span><span class="op">)</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/res_null_priors-1.png" width="768"></p>
<div class="sourceCode" id="cb23"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/hist.html">hist</a></span><span class="op">(</span><span class="va">res_null</span><span class="op">$</span><span class="va">pi</span>, prob <span class="op">=</span> <span class="cn">TRUE</span>, col <span class="op">=</span> <span class="st">"grey"</span>,
border <span class="op">=</span> <span class="st">"white"</span>, main <span class="op">=</span> <span class="st">"Distribution of pi"</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/base/invisible.html">invisible</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/lapply.html">replicate</a></span><span class="op">(</span><span class="fl">30</span>,
<span class="fu"><a href="https://rdrr.io/r/graphics/points.html">points</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/stats/density.html">density</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/stats/Beta.html">rbeta</a></span><span class="op">(</span><span class="fl">500</span>, <span class="fl">10</span>, <span class="fl">1</span><span class="op">)</span><span class="op">)</span>, type <span class="op">=</span> <span class="st">"l"</span>, col <span class="op">=</span> <span class="st">"blue"</span><span class="op">)</span><span class="op">)</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/res_null_priors-2.png" width="768"></p>
<p><br></p>
</div>
<div id="a-model-using-symptom-onset-only" class="section level2">
<h2 class="hasAnchor">
<a href="#a-model-using-symptom-onset-only" class="anchor"></a>A model using symptom onset only</h2>
<p>We can use data and likelihood customisation to change the default <em>outbreaker2</em> model into a <a href="http://dx.doi.org/10.1093/aje/kwh255">Wallinga &amp; Teunis (1994)</a> model. To do so, we need to:</p>
<ul>
<li><p>Remove the DNA sequences from the data; alternatively we could also specify a ‘null’ function (i.e. returning a finite constant, as above) for the genetic likelihood.</p></li>
<li><p>Disable all likelihood components other than <code>timing_infections</code> using <code>custom_likelihoods</code>. This means that the dates provided will be treated as dates of symptom onset, and the timing distribution <code>w</code> will be taken as the serial interval.</p></li>
<li>
<p>Disable the detection of imported cases, and forcing all <code>kappa</code> values to be</p>
<ol style="list-style-type: decimal">
<li>
</ol>
</li>
</ul>
<p>While these are fairly major changes, they are straightforward to implement. We first create the dataset and custom likelihood functions:</p>
<div class="sourceCode" id="cb24"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">onset_data</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/outbreaker_data.html">outbreaker_data</a></span><span class="op">(</span>dates <span class="op">=</span> <span class="va">fake_outbreak</span><span class="op">$</span><span class="va">onset</span>,
w_dens <span class="op">=</span> <span class="va">fake_outbreak</span><span class="op">$</span><span class="va">w</span><span class="op">)</span>
<span class="va">wt_model</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/custom_likelihoods.html">custom_likelihoods</a></span><span class="op">(</span>timing_sampling <span class="op">=</span> <span class="va">f_null</span>,
reporting <span class="op">=</span> <span class="va">f_null</span><span class="op">)</span></code></pre></div>
<p>To fix parameters or augmented data (here, fix all <code>kappa</code> values to 1), we set the initial states to the desired values and disable the corresponding moves:</p>
<div class="sourceCode" id="cb25"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">wt_config</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/create_config.html">create_config</a></span><span class="op">(</span>init_kappa <span class="op">=</span> <span class="fl">1</span>, move_kappa <span class="op">=</span> <span class="cn">FALSE</span>,
init_pi <span class="op">=</span> <span class="fl">1</span>, move_pi <span class="op">=</span> <span class="cn">FALSE</span>,
move_mu <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div>
<p>We can now run the analyses for this new model:</p>
<div class="sourceCode" id="cb26"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/base/Random.html">set.seed</a></span><span class="op">(</span><span class="fl">1</span><span class="op">)</span>
<span class="va">res_wt</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/outbreaker.html">outbreaker</a></span><span class="op">(</span>data <span class="op">=</span> <span class="va">onset_data</span>,
config <span class="op">=</span> <span class="va">wt_config</span>,
likelihoods <span class="op">=</span> <span class="va">wt_model</span><span class="op">)</span>
<span class="co">#&gt; Can't use seqTrack initialization with missing DNA sequences; using a star-like tree</span></code></pre></div>
<div class="sourceCode" id="cb27"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_wt</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/res_wt-1.png" width="768"></p>
<div class="sourceCode" id="cb28"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_wt</span>, burnin <span class="op">=</span> <span class="fl">500</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/res_wt-2.png" width="768"></p>
<div class="sourceCode" id="cb29"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_wt</span>, burnin <span class="op">=</span> <span class="fl">500</span>, type <span class="op">=</span> <span class="st">"alpha"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/res_wt-3.png" width="768"></p>
<div class="sourceCode" id="cb30"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">res_wt</span><span class="op">)</span>
<span class="co">#&gt; $step</span>
<span class="co">#&gt; first last interval n_steps </span>
<span class="co">#&gt; 1 10000 50 201 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $post</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; -354.93 -35.56 -33.78 -35.23 -31.48 -26.79 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $like</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; -357.23 -37.86 -36.08 -37.53 -33.78 -29.10 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $prior</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 2.302 2.302 2.302 2.302 2.302 2.302 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $mu</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 1e-04 1e-04 1e-04 1e-04 1e-04 1e-04 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $pi</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 1 1 1 1 1 1 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $tree</span>
<span class="co">#&gt; from to time support generations</span>
<span class="co">#&gt; 1 4 1 1 0.05472637 1</span>
<span class="co">#&gt; 2 NA 2 1 0.05472637 NA</span>
<span class="co">#&gt; 3 25 3 1 0.06467662 1</span>
<span class="co">#&gt; 4 21 4 0 0.07462687 1</span>
<span class="co">#&gt; 5 26 5 0 0.08457711 1</span>
<span class="co">#&gt; 6 19 6 -1 0.06965174 1</span>
<span class="co">#&gt; 7 15 7 1 0.06467662 1</span>
<span class="co">#&gt; 8 11 8 0 0.06467662 1</span>
<span class="co">#&gt; 9 15 9 -1 0.04975124 1</span>
<span class="co">#&gt; 10 12 10 -1 0.05472637 1</span>
<span class="co">#&gt; 11 16 11 0 0.05970149 1</span>
<span class="co">#&gt; 12 2 12 0 0.07462687 1</span>
<span class="co">#&gt; 13 24 13 0 0.05970149 1</span>
<span class="co">#&gt; 14 10 14 1 0.06467662 1</span>
<span class="co">#&gt; 15 9 15 1 0.07462687 1</span>
<span class="co">#&gt; 16 22 16 0 0.05472637 1</span>
<span class="co">#&gt; 17 2 17 0 0.05472637 1</span>
<span class="co">#&gt; 18 1 18 1 0.05472637 1</span>
<span class="co">#&gt; 19 24 19 0 0.06965174 1</span>
<span class="co">#&gt; 20 28 20 0 0.05970149 1</span>
<span class="co">#&gt; 21 12 21 -1 0.05472637 1</span>
<span class="co">#&gt; 22 10 22 -1 0.05970149 1</span>
<span class="co">#&gt; 23 5 23 1 0.06965174 1</span>
<span class="co">#&gt; 24 11 24 0 0.05970149 1</span>
<span class="co">#&gt; 25 10 25 0 0.05472637 1</span>
<span class="co">#&gt; 26 22 26 2 0.07462687 1</span>
<span class="co">#&gt; 27 7 27 0 0.05970149 1</span>
<span class="co">#&gt; 28 17 28 2 0.05970149 1</span>
<span class="co">#&gt; 29 2 29 0 0.06965174 1</span>
<span class="co">#&gt; 30 22 30 2 0.07462687 1</span></code></pre></div>
<p>As before for the ‘null’ model, the transmission tree is very poorly resolved in this case. We use the same approach to visualise it: extract nodes and edges from the <code>visNetork</code> object, use this information to create an <code>igraph</code> object, and visualise the result using a circular layout:</p>
<div class="sourceCode" id="cb31"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="co">## extract nodes and edges from the visNetwork object</span>
<span class="va">temp</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_wt</span>, type <span class="op">=</span> <span class="st">"network"</span>, min_support <span class="op">=</span> <span class="fl">0.05</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/base/class.html">class</a></span><span class="op">(</span><span class="va">temp</span><span class="op">)</span>
<span class="co">#&gt; [1] "visNetwork" "htmlwidget"</span>
<span class="fu"><a href="https://rdrr.io/r/utils/head.html">head</a></span><span class="op">(</span><span class="va">temp</span><span class="op">$</span><span class="va">x</span><span class="op">$</span><span class="va">edges</span><span class="op">)</span>
<span class="co">#&gt; from to value arrows color</span>
<span class="co">#&gt; 10 1 11 0.05472637 to #CCDDFF</span>
<span class="co">#&gt; 17 1 18 0.05472637 to #CCDDFF</span>
<span class="co">#&gt; 23 1 24 0.05472637 to #CCDDFF</span>
<span class="co">#&gt; 32 2 4 0.06965174 to #B2D9E3</span>
<span class="co">#&gt; 39 2 12 0.07462687 to #B2D9E3</span>
<span class="co">#&gt; 42 2 15 0.05970149 to #B2D9E3</span>
<span class="fu"><a href="https://rdrr.io/r/utils/head.html">head</a></span><span class="op">(</span><span class="va">temp</span><span class="op">$</span><span class="va">x</span><span class="op">$</span><span class="va">nodes</span><span class="op">)</span>
<span class="co">#&gt; id label value color shape shaped</span>
<span class="co">#&gt; 1 1 1 0.9751244 #CCDDFF dot &lt;NA&gt;</span>
<span class="co">#&gt; 2 2 2 1.0696517 #B2D9E3 dot star</span>
<span class="co">#&gt; 3 3 3 0.9402985 #98D6C7 dot &lt;NA&gt;</span>
<span class="co">#&gt; 4 4 4 1.0845771 #7ED2AC dot &lt;NA&gt;</span>
<span class="co">#&gt; 5 5 5 0.9353234 #99CAA9 dot &lt;NA&gt;</span>
<span class="co">#&gt; 6 6 6 0.9303483 #C2C0AD dot &lt;NA&gt;</span>
<span class="co">## make an igraph object</span>
<span class="va">net_wt</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/pkg/igraph/man/graph_from_data_frame.html">graph.data.frame</a></span><span class="op">(</span><span class="va">temp</span><span class="op">$</span><span class="va">x</span><span class="op">$</span><span class="va">edges</span>,
vertices <span class="op">=</span> <span class="va">temp</span><span class="op">$</span><span class="va">x</span><span class="op">$</span><span class="va">nodes</span><span class="op">[</span><span class="fl">1</span><span class="op">:</span><span class="fl">4</span><span class="op">]</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">net_wt</span>, layout <span class="op">=</span> <span class="va">layout.circle</span>,
main <span class="op">=</span> <span class="st">"WT model, posterior trees"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/wt_net-1.png" width="768"></p>
<p><br></p>
</div>
</div>
<div id="customising-movements" class="section level1">
<h1 class="hasAnchor">
<a href="#customising-movements" class="anchor"></a>Customising movements</h1>
<p>Customising movements works in similar ways to priors and likelihoods. In practice, this type of customisation is more complex as it most likely will require evaluation of likelihoods and priors, and therefore require the user to know which functions to all, and how. These are documented in the <a href="Rcpp_API.html">API vignette</a>. In the following, we provide two examples:</p>
<ul>
<li><p>a (fake) Gibbs sampler for the movement of the mutation rate <code>mu</code></p></li>
<li><p>a new ‘naive’ movement of ancestries in which infectors are picked at random from all cases</p></li>
</ul>
<p>But before getting into these, we need to explicit how movements are happening in <em>outbreaker2</em>.</p>
<div id="movements-in-outbreaker2" class="section level2">
<h2 class="hasAnchor">
<a href="#movements-in-outbreaker2" class="anchor"></a>Movements in <em>outbreaker2</em>
</h2>
<p>At the core of the <code>outbreaker</code> function, movements are implemented as a list of functions, which are all evaluated in turn during every iteration of the MCMC. All movement functions must obey two rules:</p>
<ul>
<li><p>The first argument must be an <code>outbreaker_param</code> object (typically called <code>param</code> in the original code); see <code><a href="../reference/create_param.html">?create_param</a></code> for details.</p></li>
<li><p>All movement functions must return a valid, <code>outbreaker_param</code> object.</p></li>
</ul>
<p>However, a new difficulty compared to prior or likelihood customisation is that different movements may require different components of the model, and a different set of arguments after <code>param</code>. In fact, this can be seen by examining the arguments of all the default movement functions:</p>
<div class="sourceCode" id="cb32"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/base/lapply.html">lapply</a></span><span class="op">(</span><span class="fu"><a href="../reference/custom_moves.html">custom_moves</a></span><span class="op">(</span><span class="op">)</span>, <span class="va">args</span><span class="op">)</span>
<span class="co">#&gt; $mu</span>
<span class="co">#&gt; function (param, data, config, custom_ll = NULL, custom_prior = NULL) </span>
<span class="co">#&gt; NULL</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $pi</span>
<span class="co">#&gt; function (param, data, config, custom_ll = NULL, custom_prior = NULL) </span>
<span class="co">#&gt; NULL</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $eps</span>
<span class="co">#&gt; function (param, data, config, custom_ll = NULL, custom_prior = NULL) </span>
<span class="co">#&gt; NULL</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $lambda</span>
<span class="co">#&gt; function (param, data, config, custom_ll = NULL, custom_prior = NULL) </span>
<span class="co">#&gt; NULL</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $alpha</span>
<span class="co">#&gt; function (param, data, list_custom_ll = NULL) </span>
<span class="co">#&gt; NULL</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $swap_cases</span>
<span class="co">#&gt; function (param, data, list_custom_ll = NULL) </span>
<span class="co">#&gt; NULL</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $t_inf</span>
<span class="co">#&gt; function (param, data, list_custom_ll = NULL) </span>
<span class="co">#&gt; NULL</span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $kappa</span>
<span class="co">#&gt; function (param, data, config, list_custom_ll = NULL) </span>
<span class="co">#&gt; NULL</span></code></pre></div>
<p>To handle this difficulty, <em>outbreaker2</em> transforms every movement function before running the MCMC into a new function with a single parameter <code>param</code>, attaching all other required argument to the function’s environment. The function achieving this transformation is called <code>bind_moves</code>. This function ‘knows’ what these components are for known moves listed aboves. For new, unknown moves, it attaches the following components, provided they are used as arguments of the new function:</p>
<ul>
<li><p><code>data</code>: the processed data; see <code><a href="../reference/outbreaker_data.html">?outbreaker_data</a></code></p></li>
<li><p><code>config</code>: the configuration list; see <code>create_config</code></p></li>
<li><p><code>likelihoods</code>: a list of custom likelihood functions; see <code><a href="../reference/custom_likelihoods.html">?custom_likelihoods</a></code></p></li>
<li><p><code>priors</code>: a list of custom prior functions; see <code><a href="../reference/custom_priors.html">?custom_priors</a></code></p></li>
</ul>
<p>See examples in <code>?bind_moves</code> for details of how this process works.</p>
</div>
<div id="a-fake-gibbs-sampler-for-mu" class="section level2">
<h2 class="hasAnchor">
<a href="#a-fake-gibbs-sampler-for-mu" class="anchor"></a>A (fake) Gibbs sampler for <code>mu</code>
</h2>
<p>A Gibbs sampler supposes that the conditional distribution of a parameter is known and can directly be sampled from. Here, we use this principle to provide a toy example of custom movement for <code>mu</code>, assuming that this conditional distribution is always an Exponential distribution with a rate of 1000. This is easy to implement; to make sure that the function is actually used, we set a global variable changed when the function is called.</p>
<div class="sourceCode" id="cb33"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">move_mu</span> <span class="op">&lt;-</span> <span class="kw">function</span><span class="op">(</span><span class="va">param</span>, <span class="va">config</span><span class="op">)</span> <span class="op">{</span>
<span class="va">NEW_MOVE_HAS_BEEN_USED</span> <span class="op">&lt;&lt;-</span> <span class="cn">TRUE</span>
<span class="va">param</span><span class="op">$</span><span class="va">mu</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/stats/Exponential.html">rexp</a></span><span class="op">(</span><span class="fl">1</span>, <span class="fl">1000</span><span class="op">)</span>
<span class="kw"><a href="https://rdrr.io/r/base/function.html">return</a></span><span class="op">(</span><span class="va">param</span><span class="op">)</span>
<span class="op">}</span>
<span class="va">moves</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/custom_moves.html">custom_moves</a></span><span class="op">(</span>mu <span class="op">=</span> <span class="va">move_mu</span><span class="op">)</span>
<span class="va">quick_config</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html">list</a></span><span class="op">(</span>n_iter <span class="op">=</span> <span class="fl">500</span>, sample_every <span class="op">=</span> <span class="fl">1</span>, find_import <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div>
<p>Note that the new movement function <code>move_mu</code> has two arguments, and that we do not specify <code>config</code>. Internally, what happens is:</p>
<div class="sourceCode" id="cb34"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="co">## bind quick_config to function</span>
<span class="va">move_mu_intern</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/bind_to_function.html">bind_to_function</a></span><span class="op">(</span><span class="va">move_mu</span>, config <span class="op">=</span> <span class="va">quick_config</span><span class="op">)</span>
<span class="co">## new function has just one argument</span>
<span class="va">move_mu_intern</span>
<span class="co">#&gt; function (param) </span>
<span class="co">#&gt; {</span>
<span class="co">#&gt; NEW_MOVE_HAS_BEEN_USED &lt;&lt;- TRUE</span>
<span class="co">#&gt; param$mu &lt;- rexp(1, 1000)</span>
<span class="co">#&gt; return(param)</span>
<span class="co">#&gt; }</span>
<span class="co">#&gt; &lt;environment: 0x0000000022775760&gt;</span>
<span class="co">## 'config' is in the function's environment</span>
<span class="fu"><a href="https://rdrr.io/r/base/names.html">names</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/environment.html">environment</a></span><span class="op">(</span><span class="va">move_mu_intern</span><span class="op">)</span><span class="op">)</span>
<span class="co">#&gt; [1] "config"</span>
<span class="co">## 'config' is actually 'quick_config'</span>
<span class="fu"><a href="https://rdrr.io/r/base/identical.html">identical</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/environment.html">environment</a></span><span class="op">(</span><span class="va">move_mu_intern</span><span class="op">)</span><span class="op">$</span><span class="va">config</span>, <span class="va">quick_config</span><span class="op">)</span>
<span class="co">#&gt; [1] TRUE</span></code></pre></div>
<p>We perform a quick run using this new movement:</p>
<div class="sourceCode" id="cb35"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">NEW_MOVE_HAS_BEEN_USED</span> <span class="op">&lt;-</span> <span class="cn">FALSE</span>
<span class="fu"><a href="https://rdrr.io/r/base/Random.html">set.seed</a></span><span class="op">(</span><span class="fl">1</span><span class="op">)</span>
<span class="va">res_move_mu</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/outbreaker.html">outbreaker</a></span><span class="op">(</span><span class="va">data</span>, <span class="va">quick_config</span>, moves <span class="op">=</span> <span class="va">moves</span><span class="op">)</span>
<span class="va">NEW_MOVE_HAS_BEEN_USED</span>
<span class="co">#&gt; [1] TRUE</span>
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_move_mu</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/run_custom_move_mu-1.png" width="768"></p>
<div class="sourceCode" id="cb36"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_move_mu</span>, <span class="st">"pi"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/run_custom_move_mu-2.png" width="768"></p>
<div class="sourceCode" id="cb37"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_move_mu</span>, <span class="st">"mu"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/run_custom_move_mu-3.png" width="768"></p>
<p>This short, full trace, clearly hasn’t mixed well (as is to be expected). But while we see the effect of accept/reject sampling (Metropolis algorithm) for <code>pi</code> with a lot of autocorrelation, the trace of <code>mu</code> shows complete independence between successive values. While the Gibbs sampler used here is not correct, this result is: a Gibbs sampler will be more efficient than the classical Metropolis(-Hasting) algorithm for a given number a iterations.</p>
<p><br></p>
</div>
<div id="a-new-movement-of-ancestries" class="section level2">
<h2 class="hasAnchor">
<a href="#a-new-movement-of-ancestries" class="anchor"></a>A new movement of ancestries</h2>
<p>Moves of ancestries are done in two ways in outbreaker: by picking ancestors at random from any prior case, and by swapping cases from a transmission link. Here, we implement a new move, which will propose infectors which have been infected on the same day of the current infector. As before, we will use global variables to keep track of the resulting movements (see <code>N_ACCEPT</code> and <code>N_REJECT</code>).</p>
<div class="sourceCode" id="cb38"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">api</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/get_cpp_api.html">get_cpp_api</a></span><span class="op">(</span><span class="op">)</span>
<span class="va">new_move_ances</span> <span class="op">&lt;-</span> <span class="kw">function</span><span class="op">(</span><span class="va">param</span>, <span class="va">data</span>, <span class="va">custom_likelihoods</span> <span class="op">=</span> <span class="cn">NULL</span><span class="op">)</span> <span class="op">{</span>
<span class="kw">for</span> <span class="op">(</span><span class="va">i</span> <span class="kw">in</span> <span class="fl">1</span><span class="op">:</span><span class="va">data</span><span class="op">$</span><span class="va">N</span><span class="op">)</span> <span class="op">{</span>
<span class="va">current_ances</span> <span class="op">&lt;-</span> <span class="va">param</span><span class="op">$</span><span class="va">alpha</span><span class="op">[</span><span class="va">i</span><span class="op">]</span>
<span class="kw">if</span> <span class="op">(</span><span class="op">!</span><span class="fu"><a href="https://rdrr.io/r/base/NA.html">is.na</a></span><span class="op">(</span><span class="va">current_ances</span><span class="op">)</span><span class="op">)</span> <span class="op">{</span>
<span class="co">## find cases infected on the same days</span>
<span class="va">current_t_inf</span> <span class="op">&lt;-</span> <span class="va">param</span><span class="op">$</span><span class="va">t_inf</span><span class="op">[</span><span class="va">current_ances</span><span class="op">]</span>
<span class="va">pool</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/which.html">which</a></span><span class="op">(</span><span class="va">param</span><span class="op">$</span><span class="va">t_inf</span> <span class="op">==</span> <span class="va">current_t_inf</span><span class="op">)</span>
<span class="va">pool</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/sets.html">setdiff</a></span><span class="op">(</span><span class="va">pool</span>, <span class="va">i</span><span class="op">)</span>
<span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/length.html">length</a></span><span class="op">(</span><span class="va">pool</span><span class="op">)</span> <span class="op">&gt;</span> <span class="fl">0</span><span class="op">)</span> <span class="op">{</span>
<span class="co">## propose new ancestor</span>
<span class="va">current_ll</span> <span class="op">&lt;-</span> <span class="va">api</span><span class="op">$</span><span class="fu">cpp_ll_all</span><span class="op">(</span><span class="va">data</span>, <span class="va">param</span>, i <span class="op">=</span> <span class="va">i</span>, <span class="va">custom_likelihoods</span><span class="op">)</span>
<span class="va">param</span><span class="op">$</span><span class="va">alpha</span><span class="op">[</span><span class="va">i</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/sample.html">sample</a></span><span class="op">(</span><span class="va">pool</span>, <span class="fl">1</span><span class="op">)</span>
<span class="va">new_ll</span> <span class="op">&lt;-</span> <span class="va">api</span><span class="op">$</span><span class="fu">cpp_ll_all</span><span class="op">(</span><span class="va">data</span>, <span class="va">param</span>, i <span class="op">=</span> <span class="va">i</span>, <span class="va">custom_likelihoods</span><span class="op">)</span>
<span class="co">## likelihood ratio - no correction, move is symmetric</span>
<span class="va">ratio</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/Log.html">exp</a></span><span class="op">(</span><span class="va">new_ll</span> <span class="op">-</span> <span class="va">current_ll</span><span class="op">)</span>
<span class="co">## accept / reject</span>
<span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/stats/Uniform.html">runif</a></span><span class="op">(</span><span class="fl">1</span><span class="op">)</span> <span class="op">&lt;=</span> <span class="va">ratio</span><span class="op">)</span> <span class="op">{</span> <span class="co"># accept</span>
<span class="va">N_ACCEPT</span> <span class="op">&lt;&lt;-</span> <span class="va">N_ACCEPT</span> <span class="op">+</span> <span class="fl">1</span>
<span class="op">}</span> <span class="kw">else</span> <span class="op">{</span> <span class="co"># reject</span>
<span class="va">N_REJECT</span> <span class="op">&lt;&lt;-</span> <span class="va">N_REJECT</span> <span class="op">+</span> <span class="fl">1</span>
<span class="va">param</span><span class="op">$</span><span class="va">alpha</span><span class="op">[</span><span class="va">i</span><span class="op">]</span> <span class="op">&lt;-</span> <span class="va">current_ances</span>
<span class="op">}</span>
<span class="op">}</span>
<span class="op">}</span>
<span class="op">}</span>
<span class="kw"><a href="https://rdrr.io/r/base/function.html">return</a></span><span class="op">(</span><span class="va">param</span><span class="op">)</span>
<span class="op">}</span>
<span class="va">moves</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/custom_moves.html">custom_moves</a></span><span class="op">(</span>new_move <span class="op">=</span> <span class="va">new_move_ances</span><span class="op">)</span></code></pre></div>
<p>We can now use this new move in our transmission tree reconstruction. We will use a shorter chain than the defaults as this new move is likely to be computer intensive.</p>
<div class="sourceCode" id="cb39"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">N_ACCEPT</span> <span class="op">&lt;-</span> <span class="fl">0</span>
<span class="va">N_REJECT</span> <span class="op">&lt;-</span> <span class="fl">0</span>
<span class="fu"><a href="https://rdrr.io/r/base/Random.html">set.seed</a></span><span class="op">(</span><span class="fl">1</span><span class="op">)</span>
<span class="va">res_new_move</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/outbreaker.html">outbreaker</a></span><span class="op">(</span><span class="va">data</span>, <span class="fu"><a href="https://rdrr.io/r/base/list.html">list</a></span><span class="op">(</span>move_kappa <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>, moves <span class="op">=</span> <span class="va">moves</span><span class="op">)</span>
<span class="va">N_ACCEPT</span>
<span class="co">#&gt; [1] 150958</span>
<span class="va">N_REJECT</span>
<span class="co">#&gt; [1] 263986</span></code></pre></div>
<div class="sourceCode" id="cb40"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_new_move</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/res_new_move-1.png" width="768"></p>
<div class="sourceCode" id="cb41"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html">plot</a></span><span class="op">(</span><span class="va">res_new_move</span>, type <span class="op">=</span> <span class="st">"alpha"</span><span class="op">)</span></code></pre></div>
<p><img src="figs-customisation/res_new_move-2.png" width="768"></p>
<div class="sourceCode" id="cb42"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">res_new_move</span><span class="op">)</span>
<span class="co">#&gt; $step</span>
<span class="co">#&gt; first last interval n_steps </span>
<span class="co">#&gt; 1 10000 50 201 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $post</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; -1087.1 -447.3 -444.8 -448.5 -443.0 -436.8 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $like</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; -1088.4 -449.5 -446.9 -450.6 -445.2 -439.0 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $prior</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; -0.01622 1.99783 2.14793 2.05799 2.23686 2.30230 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $mu</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 8.573e-05 1.282e-04 1.421e-04 1.453e-04 1.619e-04 2.329e-04 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $pi</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 0.7729 0.9667 0.9830 0.9737 0.9927 1.0000 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $tree</span>
<span class="co">#&gt; from to time support generations</span>
<span class="co">#&gt; 1 NA 1 -1 0.004975124 NA</span>
<span class="co">#&gt; 2 1 2 1 0.995024876 1</span>
<span class="co">#&gt; 3 2 3 3 0.995024876 1</span>
<span class="co">#&gt; 4 NA 4 3 0.014925373 NA</span>
<span class="co">#&gt; 5 3 5 4 0.985074627 1</span>
<span class="co">#&gt; 6 4 6 5 0.965174129 1</span>
<span class="co">#&gt; 7 4 7 5 0.985074627 1</span>
<span class="co">#&gt; 8 5 8 6 0.960199005 1</span>
<span class="co">#&gt; 9 13 9 7 0.995024876 1</span>
<span class="co">#&gt; 10 6 10 7 0.995024876 1</span>
<span class="co">#&gt; 11 7 11 7 0.681592040 1</span>
<span class="co">#&gt; 12 5 12 7 0.850746269 1</span>
<span class="co">#&gt; 13 6 13 6 0.995024876 1</span>
<span class="co">#&gt; 14 5 14 7 0.761194030 1</span>
<span class="co">#&gt; 15 5 15 7 0.800995025 1</span>
<span class="co">#&gt; 16 7 16 8 0.805970149 1</span>
<span class="co">#&gt; 17 7 17 7 0.626865672 1</span>
<span class="co">#&gt; 18 8 18 9 0.467661692 1</span>
<span class="co">#&gt; 19 9 19 9 1.000000000 1</span>
<span class="co">#&gt; 20 10 20 10 0.985074627 1</span>
<span class="co">#&gt; 21 11 21 10 0.970149254 1</span>
<span class="co">#&gt; 22 11 22 10 1.000000000 1</span>
<span class="co">#&gt; 23 13 23 9 1.000000000 1</span>
<span class="co">#&gt; 24 13 24 9 1.000000000 1</span>
<span class="co">#&gt; 25 13 25 9 1.000000000 1</span>
<span class="co">#&gt; 26 17 26 9 0.990049751 1</span>
<span class="co">#&gt; 27 17 27 10 1.000000000 1</span>
<span class="co">#&gt; 28 NA 28 9 NA NA</span>
<span class="co">#&gt; 29 10 29 10 1.000000000 1</span>
<span class="co">#&gt; 30 13 30 10 1.000000000 1</span></code></pre></div>
<p>Results show a switch to a new mode at about 5000 iterations. Let us compare the consensus tree to the actual one (store in <code>fake_outbreak$ances</code>):</p>
<div class="sourceCode" id="cb43"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">res_new_move</span>, burnin <span class="op">=</span> <span class="fl">5000</span><span class="op">)</span>
<span class="co">#&gt; $step</span>
<span class="co">#&gt; first last interval n_steps </span>
<span class="co">#&gt; 5050 10000 50 100 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $post</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; -452.5 -447.0 -444.5 -445.0 -443.0 -437.9 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $like</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; -453.9 -449.2 -446.5 -447.1 -445.2 -440.2 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $prior</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 1.212 2.020 2.170 2.086 2.238 2.302 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $mu</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 0.0001006 0.0001281 0.0001416 0.0001450 0.0001620 0.0002308 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $pi</span>
<span class="co">#&gt; Min. 1st Qu. Median Mean 3rd Qu. Max. </span>
<span class="co">#&gt; 0.8859 0.9691 0.9854 0.9765 0.9929 1.0000 </span>
<span class="co">#&gt; </span>
<span class="co">#&gt; $tree</span>
<span class="co">#&gt; from to time support generations</span>
<span class="co">#&gt; 1 NA 1 -1 NA NA</span>
<span class="co">#&gt; 2 1 2 1 1.00 1</span>
<span class="co">#&gt; 3 2 3 3 0.99 1</span>
<span class="co">#&gt; 4 NA 4 3 0.01 NA</span>
<span class="co">#&gt; 5 3 5 4 0.99 1</span>
<span class="co">#&gt; 6 4 6 5 0.96 1</span>
<span class="co">#&gt; 7 4 7 5 0.99 1</span>
<span class="co">#&gt; 8 5 8 6 0.95 1</span>
<span class="co">#&gt; 9 13 9 7 1.00 1</span>
<span class="co">#&gt; 10 6 10 7 1.00 1</span>
<span class="co">#&gt; 11 7 11 7 0.70 1</span>
<span class="co">#&gt; 12 5 12 7 0.88 1</span>
<span class="co">#&gt; 13 6 13 6 1.00 1</span>
<span class="co">#&gt; 14 5 14 7 0.79 1</span>
<span class="co">#&gt; 15 5 15 7 0.81 1</span>
<span class="co">#&gt; 16 7 16 8 0.85 1</span>
<span class="co">#&gt; 17 7 17 7 0.68 1</span>
<span class="co">#&gt; 18 8 18 9 0.47 1</span>
<span class="co">#&gt; 19 9 19 9 1.00 1</span>
<span class="co">#&gt; 20 10 20 10 0.97 1</span>
<span class="co">#&gt; 21 11 21 10 0.98 1</span>
<span class="co">#&gt; 22 11 22 10 1.00 1</span>
<span class="co">#&gt; 23 13 23 9 1.00 1</span>
<span class="co">#&gt; 24 13 24 9 1.00 1</span>
<span class="co">#&gt; 25 13 25 8 1.00 1</span>
<span class="co">#&gt; 26 17 26 9 1.00 1</span>
<span class="co">#&gt; 27 17 27 10 1.00 1</span>
<span class="co">#&gt; 28 NA 28 9 NA NA</span>
<span class="co">#&gt; 29 10 29 10 1.00 1</span>
<span class="co">#&gt; 30 13 30 10 1.00 1</span>
<span class="va">tree2</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">res_new_move</span>, burnin <span class="op">=</span> <span class="fl">5000</span><span class="op">)</span><span class="op">$</span><span class="va">tree</span>
<span class="va">comparison</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html">data.frame</a></span><span class="op">(</span>case <span class="op">=</span> <span class="fl">1</span><span class="op">:</span><span class="fl">30</span>,
inferred <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html">paste</a></span><span class="op">(</span><span class="va">tree2</span><span class="op">$</span><span class="va">from</span><span class="op">)</span>,
true <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html">paste</a></span><span class="op">(</span><span class="va">fake_outbreak</span><span class="op">$</span><span class="va">ances</span><span class="op">)</span>,
stringsAsFactors <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>
<span class="va">comparison</span><span class="op">$</span><span class="va">correct</span> <span class="op">&lt;-</span> <span class="va">comparison</span><span class="op">$</span><span class="va">inferred</span> <span class="op">==</span> <span class="va">comparison</span><span class="op">$</span><span class="va">true</span>
<span class="va">comparison</span>
<span class="co">#&gt; case inferred true correct</span>
<span class="co">#&gt; 1 1 NA NA TRUE</span>
<span class="co">#&gt; 2 2 1 1 TRUE</span>
<span class="co">#&gt; 3 3 2 2 TRUE</span>
<span class="co">#&gt; 4 4 NA NA TRUE</span>
<span class="co">#&gt; 5 5 3 3 TRUE</span>
<span class="co">#&gt; 6 6 4 4 TRUE</span>
<span class="co">#&gt; 7 7 4 4 TRUE</span>
<span class="co">#&gt; 8 8 5 5 TRUE</span>
<span class="co">#&gt; 9 9 13 6 FALSE</span>
<span class="co">#&gt; 10 10 6 6 TRUE</span>
<span class="co">#&gt; 11 11 7 7 TRUE</span>
<span class="co">#&gt; 12 12 5 8 FALSE</span>
<span class="co">#&gt; 13 13 6 9 FALSE</span>
<span class="co">#&gt; 14 14 5 5 TRUE</span>
<span class="co">#&gt; 15 15 5 5 TRUE</span>
<span class="co">#&gt; 16 16 7 7 TRUE</span>
<span class="co">#&gt; 17 17 7 7 TRUE</span>
<span class="co">#&gt; 18 18 8 8 TRUE</span>
<span class="co">#&gt; 19 19 9 9 TRUE</span>
<span class="co">#&gt; 20 20 10 10 TRUE</span>
<span class="co">#&gt; 21 21 11 11 TRUE</span>
<span class="co">#&gt; 22 22 11 11 TRUE</span>
<span class="co">#&gt; 23 23 13 13 TRUE</span>
<span class="co">#&gt; 24 24 13 13 TRUE</span>
<span class="co">#&gt; 25 25 13 13 TRUE</span>
<span class="co">#&gt; 26 26 17 17 TRUE</span>
<span class="co">#&gt; 27 27 17 17 TRUE</span>
<span class="co">#&gt; 28 28 NA NA TRUE</span>
<span class="co">#&gt; 29 29 10 10 TRUE</span>
<span class="co">#&gt; 30 30 13 13 TRUE</span>
<span class="fu"><a href="https://rdrr.io/r/base/mean.html">mean</a></span><span class="op">(</span><span class="va">comparison</span><span class="op">$</span><span class="va">correct</span><span class="op">)</span>
<span class="co">#&gt; [1] 0.9</span></code></pre></div>
</div>
</div>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc"><h2 data-toc-skip>Contents</h2>
</nav>
</div>
</div>
<footer><div class="copyright">
<p>Developed by Thibaut Jombart, Finlay Campbell, Rich Fitzjohn.</p>
</div>
<div class="pkgdown">
<p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
</div>
</footer>
</div>
</body>
</html>