|
a |
|
b/R/outbreaker_data.R |
|
|
1 |
#' Process input data for outbreaker |
|
|
2 |
#' |
|
|
3 |
#' This function performs various checks on input data given to outbreaker. It |
|
|
4 |
#' takes a list of named items as input, performs various checks, set defaults |
|
|
5 |
#' where arguments are missing, and return a correct list of data input. If no |
|
|
6 |
#' input is given, it returns the default settings. |
|
|
7 |
#' |
|
|
8 |
#' Acceptables arguments for ... are: |
|
|
9 |
#' \describe{ |
|
|
10 |
#' \item{dates}{dates a vector indicating the collection dates, provided either as |
|
|
11 |
#' integer numbers or in a usual date format such as \code{Date} or |
|
|
12 |
#' \code{POSIXct} format. By convention, zero will indicate the oldest date. If |
|
|
13 |
#' the vector is named, the vector names will be used for matching cases to |
|
|
14 |
#' contact tracing data and labelled DNA sequences.} |
|
|
15 |
#' |
|
|
16 |
#' \item{dna}{the DNA sequences in \code{DNAbin} format (see |
|
|
17 |
#' \code{\link[ape]{read.dna}} in the ape package); this can be imported from a |
|
|
18 |
#' fasta file (extension .fa, .fas, or .fasta) using \code{adegenet}'s function |
|
|
19 |
#' \link[adegenet]{fasta2DNAbin}.} |
|
|
20 |
#' |
|
|
21 |
#' \item{ctd}{the contact tracing data provided as a matrix/dataframe of two |
|
|
22 |
#' columns, indicating a reported contact between the two individuals whose ids |
|
|
23 |
#' are provided in a given row of the data, or an epicontacts object. In the case |
|
|
24 |
#' of the latter, linelist IDs will be used for matching dates and DNA |
|
|
25 |
#' sequences.} |
|
|
26 |
#' |
|
|
27 |
#' \item{w_dens}{a vector of numeric values indicating the generation time |
|
|
28 |
#' distribution, reflecting the infectious potential of a case t = 1, 2, ... |
|
|
29 |
#' time steps after infection. By convention, it is assumed that |
|
|
30 |
#' newly infected patients cannot see new infections on the same time step. If not |
|
|
31 |
#' standardized, this distribution is rescaled to sum to 1.} |
|
|
32 |
#' |
|
|
33 |
#' \item{f_dens}{similar to \code{w_dens}, except that this is the distribution |
|
|
34 |
#' of the colonization time, i_e. time interval during which the pathogen can |
|
|
35 |
#' be sampled from the patient.}} |
|
|
36 |
#' |
|
|
37 |
#' @param ... a list of data items to be processed (see description). |
|
|
38 |
#' |
|
|
39 |
#' @param data optionally, an existing list of data item as returned by \code{outbreaker_data}. |
|
|
40 |
#' |
|
|
41 |
#' @author Thibaut Jombart (\email{thibautjombart@@gmail.com}). |
|
|
42 |
#' |
|
|
43 |
#' @export |
|
|
44 |
#' |
|
|
45 |
#' @examples |
|
|
46 |
#' |
|
|
47 |
#' x <- fake_outbreak |
|
|
48 |
#' outbreaker_data(dates = x$sample, dna = x$dna, w_dens = x$w) |
|
|
49 |
#' |
|
|
50 |
outbreaker_data <- function(..., data = list(...)) { |
|
|
51 |
|
|
|
52 |
## SET DEFAULTS ## |
|
|
53 |
defaults <- list(dates = NULL, |
|
|
54 |
w_dens = NULL, |
|
|
55 |
f_dens = NULL, |
|
|
56 |
dna = NULL, |
|
|
57 |
ctd = NULL, |
|
|
58 |
N = 0L, |
|
|
59 |
L = 0L, |
|
|
60 |
D = NULL, |
|
|
61 |
max_range = NA, |
|
|
62 |
can_be_ances = NULL, |
|
|
63 |
log_w_dens = NULL, |
|
|
64 |
log_f_dens = NULL, |
|
|
65 |
contacts = NULL, |
|
|
66 |
C_combn = NULL, |
|
|
67 |
C_nrow = NULL, |
|
|
68 |
ids = NULL, |
|
|
69 |
has_dna = logical(0), |
|
|
70 |
id_in_dna = integer(0)) |
|
|
71 |
|
|
|
72 |
## MODIFY DATA WITH ARGUMENTS ## |
|
|
73 |
data <- modify_defaults(defaults, data, FALSE) |
|
|
74 |
|
|
|
75 |
## Set up case ids |
|
|
76 |
if(is.null(data$ids)) { |
|
|
77 |
if(!is.null(names(data$dates))) { |
|
|
78 |
data$ids <- names(data$dates) |
|
|
79 |
} else if(!is.null(data$ctd) & inherits(data$ctd, "epicontacts")){ |
|
|
80 |
data$ids <- as.character(data$ctd$linelist$id) |
|
|
81 |
} else { |
|
|
82 |
data$ids <- as.character(seq_along(data$dates)) |
|
|
83 |
} |
|
|
84 |
} |
|
|
85 |
|
|
|
86 |
## CHECK DATA ## |
|
|
87 |
## CHECK DATES |
|
|
88 |
if (!is.null(data$dates)) { |
|
|
89 |
if (inherits(data$dates, "Date")) { |
|
|
90 |
data$dates <- data$dates-min(data$dates) |
|
|
91 |
} |
|
|
92 |
if (inherits(data$dates, "POSIXct")) { |
|
|
93 |
data$dates <- difftime(data$dates, min(data$dates), units="days") |
|
|
94 |
} |
|
|
95 |
if (inherits(data$dates, "numeric") && any(data$dates %% 1 != 0)) { |
|
|
96 |
warning("Rounding non-integer dates to nearest integer") |
|
|
97 |
} |
|
|
98 |
data$dates <- as.integer(round(data$dates)) |
|
|
99 |
data$N <- length(data$dates) |
|
|
100 |
data$max_range <- diff(range(data$dates)) |
|
|
101 |
} |
|
|
102 |
|
|
|
103 |
## CHECK W_DENS |
|
|
104 |
if (!is.null(data$w_dens)) { |
|
|
105 |
if (any(data$w_dens<0)) { |
|
|
106 |
stop("w_dens has negative entries (these should be probabilities!)") |
|
|
107 |
} |
|
|
108 |
|
|
|
109 |
if (any(!is.finite(data$w_dens))) { |
|
|
110 |
stop("non-finite values detected in w_dens") |
|
|
111 |
} |
|
|
112 |
|
|
|
113 |
|
|
|
114 |
## Remove trailing zeroes to prevent starting with -Inf temporal loglike |
|
|
115 |
if(data$w_dens[length(data$w_dens)] < 1e-15) { |
|
|
116 |
final_index <- max(which(data$w_dens > 1e-15)) |
|
|
117 |
data$w_dens <- data$w_dens[1:final_index] |
|
|
118 |
} |
|
|
119 |
|
|
|
120 |
## add an exponential tail summing to 1e-4 to 'w' |
|
|
121 |
## to cover the span of the outbreak |
|
|
122 |
## (avoids starting with -Inf temporal loglike) |
|
|
123 |
if (length(data$w_dens) < data$max_range) { |
|
|
124 |
length_to_add <- (data$max_range-length(data$w_dens)) + 10 # +10 to be on the safe side |
|
|
125 |
val_to_add <- stats::dexp(seq_len(length_to_add), 1) |
|
|
126 |
val_to_add <- 1e-4*(val_to_add/sum(val_to_add)) |
|
|
127 |
data$w_dens <- c(data$w_dens, val_to_add) |
|
|
128 |
} |
|
|
129 |
|
|
|
130 |
## standardize the mass function |
|
|
131 |
data$w_dens <- data$w_dens / sum(data$w_dens) |
|
|
132 |
data$log_w_dens <- matrix(log(data$w_dens), nrow = 1) |
|
|
133 |
} |
|
|
134 |
|
|
|
135 |
## CHECK F_DENS |
|
|
136 |
if (!is.null(data$w_dens) && is.null(data$f_dens)) { |
|
|
137 |
data$f_dens <- data$w_dens |
|
|
138 |
} |
|
|
139 |
if (!is.null(data$f_dens)) { |
|
|
140 |
if (any(data$f_dens<0)) { |
|
|
141 |
stop("f_dens has negative entries (these should be probabilities!)") |
|
|
142 |
} |
|
|
143 |
|
|
|
144 |
if (any(!is.finite(data$f_dens))) { |
|
|
145 |
stop("non-finite values detected in f_dens") |
|
|
146 |
} |
|
|
147 |
|
|
|
148 |
data$f_dens <- data$f_dens / sum(data$f_dens) |
|
|
149 |
data$log_f_dens <- log(data$f_dens) |
|
|
150 |
} |
|
|
151 |
|
|
|
152 |
## CHECK POTENTIAL ANCESTRIES |
|
|
153 |
if(!is.null(data$dates)) { |
|
|
154 |
## get temporal ordering constraint: |
|
|
155 |
## canBeAnces[i,j] is 'i' can be ancestor of 'j' |
|
|
156 |
## Calculate the serial interval from w_dens and f_dens |
|
|
157 |
.get_SI <- function(w_dens, f_dens) { |
|
|
158 |
wf <- stats::convolve(w_dens, rev(f_dens), type = 'open') |
|
|
159 |
conv <- stats::convolve(rev(f_dens), rev(wf), type = 'open') |
|
|
160 |
lf <- length(f_dens) |
|
|
161 |
lw <- length(w_dens) |
|
|
162 |
return(data.frame(x = (-lf + 2):(lw + lf - 1), d = conv)) |
|
|
163 |
} |
|
|
164 |
## Check if difference in sampling dates falls within serial interval |
|
|
165 |
## This allows for i to infect j even if it sampled after (SI < 0) |
|
|
166 |
.can_be_ances <- function(date1, date2, SI) { |
|
|
167 |
tdiff <- date2 - date1 |
|
|
168 |
out <- sapply(tdiff, function(i) return(i %in% SI$x)) |
|
|
169 |
return(out) |
|
|
170 |
} |
|
|
171 |
SI <- .get_SI(data$w_dens, data$f_dens) |
|
|
172 |
data$can_be_ances <- outer(data$dates, |
|
|
173 |
data$dates, |
|
|
174 |
FUN=.can_be_ances, |
|
|
175 |
SI = SI) # strict < is needed as we impose w(0)=0 |
|
|
176 |
diag(data$can_be_ances) <- FALSE |
|
|
177 |
} |
|
|
178 |
|
|
|
179 |
## CHECK DNA |
|
|
180 |
|
|
|
181 |
if (!is.null(data$dna)) { |
|
|
182 |
if (!inherits(data$dna, "DNAbin")) stop("dna is not a DNAbin object.") |
|
|
183 |
if (!is.matrix(data$dna)) data$dna <- as.matrix(data$dna) |
|
|
184 |
|
|
|
185 |
## get matrix of distances |
|
|
186 |
|
|
|
187 |
data$L <- ncol(data$dna) # (genome length) |
|
|
188 |
data$D <- as.matrix(ape::dist.dna(data$dna, model="N")) # distance matrix |
|
|
189 |
storage.mode(data$D) <- "integer" # essential for C/C++ interface |
|
|
190 |
|
|
|
191 |
## get matching between sequences and cases |
|
|
192 |
|
|
|
193 |
if (is.null(rownames(data$dna))) { |
|
|
194 |
if (nrow(data$dna) != data$N) { |
|
|
195 |
msg <- sprintf(paste("numbers of sequences and cases differ (%d vs %d):", |
|
|
196 |
"please label sequences"), |
|
|
197 |
nrow(data$dna), data$N) |
|
|
198 |
stop(msg) |
|
|
199 |
} |
|
|
200 |
|
|
|
201 |
## These need to be indices |
|
|
202 |
rownames(data$D) <- colnames(data$D) <- seq_len(data$N) |
|
|
203 |
|
|
|
204 |
## These need to match dates/ctd ids |
|
|
205 |
rownames(data$dna) <- data$ids |
|
|
206 |
} |
|
|
207 |
data$id_in_dna <- match(data$ids, rownames(data$dna)) |
|
|
208 |
if(any(is.na(match(rownames(data$dna), data$ids)))) { |
|
|
209 |
stop("DNA sequence labels don't match case ids") |
|
|
210 |
} |
|
|
211 |
|
|
|
212 |
} else { |
|
|
213 |
data$L <- 0L |
|
|
214 |
data$D <- matrix(integer(0), ncol = 0, nrow = 0) |
|
|
215 |
data$id_in_dna <- rep(NA_integer_, data$N) |
|
|
216 |
} |
|
|
217 |
data$has_dna <- !is.na(data$id_in_dna) |
|
|
218 |
|
|
|
219 |
|
|
|
220 |
## CHECK CTD |
|
|
221 |
|
|
|
222 |
if (!is.null(data$ctd)) { |
|
|
223 |
ctd <- data$ctd |
|
|
224 |
if (inherits(ctd, c("matrix", "data.frame"))) { |
|
|
225 |
## prevent factor -> integer conversion |
|
|
226 |
ctd <- apply(ctd, 2, as.character) |
|
|
227 |
if (!is.matrix(ctd)) { |
|
|
228 |
ctd <- as.matrix(ctd) |
|
|
229 |
} |
|
|
230 |
if(ncol(ctd) != 2) { |
|
|
231 |
stop("ctd must contain two columns") |
|
|
232 |
} |
|
|
233 |
} else if(inherits(ctd, "epicontacts")) { |
|
|
234 |
## prevent factor -> integer conversion |
|
|
235 |
ctd <- apply(ctd$contacts[c("from", "to")], 2, as.character) |
|
|
236 |
} else { |
|
|
237 |
stop("ctd is not a matrix, data.frame or epicontacts object") |
|
|
238 |
} |
|
|
239 |
|
|
|
240 |
unq <- unique(as.vector(ctd[,1:2])) |
|
|
241 |
not_found <- unq[!unq %in% data$ids] |
|
|
242 |
if (length(not_found) != 0) { |
|
|
243 |
not_found <- sort(unique(not_found)) |
|
|
244 |
stop(paste("Individual(s)", paste(not_found, collapse = ", "), |
|
|
245 |
"in ctd are unknown cases (idx < 1 or > N") |
|
|
246 |
) |
|
|
247 |
} |
|
|
248 |
contacts <- matrix(0, data$N, data$N) |
|
|
249 |
mtch_1 <- match(ctd[,1], data$ids) |
|
|
250 |
mtch_2 <- match(ctd[,2], data$ids) |
|
|
251 |
contacts[cbind(mtch_2, mtch_1)] <- 1 |
|
|
252 |
|
|
|
253 |
data$contacts <- contacts |
|
|
254 |
data$C_combn <- data$N*(data$N - 1) |
|
|
255 |
data$C_nrow <- nrow(ctd) |
|
|
256 |
} else { |
|
|
257 |
data$contacts <- matrix(integer(0), ncol = 0, nrow = 0) |
|
|
258 |
} |
|
|
259 |
|
|
|
260 |
## output is a list of checked data |
|
|
261 |
return(data) |
|
|
262 |
|
|
|
263 |
} |