[214c6e]: / 03_cage_prediction / cage_prediction.py

Download this file

385 lines (329 with data), 14.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import argparse
import os
import pandas as pd
import logging
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from sklearn.metrics import mean_absolute_error
from itertools import product
if 'CUDA_VISIBLE_DEVICES' not in os.environ:
os.environ['CUDA_VISIBLE_DEVICES'] = '3'
from keras import optimizers
import keras.backend as K
from keras.callbacks import EarlyStopping
from keras.layers import Conv2D
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import GlobalMaxPooling2D
from keras.layers import MaxPooling2D
from keras.layers import BatchNormalization
from keras.layers import Flatten
from keras.layers import Concatenate
from janggu.data import Bioseq
from janggu.data import Cover
from janggu.data import ReduceDim
from janggu.data import split_train_test
from janggu.data.genomicarray import LogTransform
from janggu.data.genomicarray import ZScore
from janggu import Janggu
from janggu import inputlayer, outputdense
from janggu import model_from_json
from janggu.layers import DnaConv2D
PARSER = argparse.ArgumentParser(description='DNA model.')
PARSER.add_argument('-order', dest='order',
default=1, type=int, help='One-hot encoding order')
PARSER.add_argument('-inputpath', dest='inputpath',
default='../data', type=str, help='Input path')
PARSER.add_argument('-outputpath', dest='outputpath',
default='../', type=str, help='Output path')
PARSER.add_argument('-evaluate', dest='evaluate', default=False,
action='store_true', help='Reevaluate pre-trained model.')
args = PARSER.parse_args()
dnaorder = args.order
np.random.seed(1234)
os.environ['JANGGU_OUTPUT'] = os.path.join(args.outputpath,
'results_cage_promoters_order{}'.format(dnaorder))
inpath = args.inputpath
print(args)
ROI_INPUT_TRAIN = os.path.join(inpath, 'gencode.v29.tss.gtf')
# ref genome
REFGENOME = os.path.join(inpath, 'hg38.fa')
# input training
DNASE = os.path.join(inpath, 'dnase.{}.bam')
H3K4me3 = os.path.join(inpath, 'h3k4me3.{}.bigWig')
# output training
RNA = os.path.join(inpath, 'cage.{}.{}.bam')
def get_opt(name):
if name == 'amsgrad':
opt = optimizers.Adam(amsgrad=True, clipvalue=.5, clipnorm=1.)
elif name == 'sgd':
opt = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9,
nesterov=True, clipvalue=.5, clipnorm=1.)
else:
opt = optimizers.RMSprop(clipvalue=.5, clipnorm=1.)
return opt
def get_data(params):
zscore = ZScore()
LABELS_TRAIN = ReduceDim(Cover.create_from_bam('geneexpr',
bamfiles=RNA.format(
params['traincell'], params['trainrep']),
roi=ROI_INPUT_TRAIN,
flank=params['cageflank'],
conditions=['GeneExpr'],
resolution=None,
store_whole_genome=False,
storage='ndarray',
normalizer=[LogTransform(), zscore],
stranded=False,
cache=True), aggregator="mean")
train_labels = LABELS_TRAIN
train_input = []
if params['inputs'] in ['dna_only', 'epi_dna']:
dnaflank = params['dnaflank']
order = params['order']
# DNA
DNA_TRAIN = Bioseq.create_from_refgenome('dna', refgenome=REFGENOME,
roi=ROI_INPUT_TRAIN,
flank=dnaflank,
order=order,
cache=True,
store_whole_genome=False)
train_input += [DNA_TRAIN]
if params['inputs'] in ['epi_only', 'epi_dna']:
zscore = ZScore()
dnase_TRAIN = ReduceDim(Cover.create_from_bam('dnase',
bamfiles=DNASE.format(params['traincell']),
roi=ROI_INPUT_TRAIN,
flank=params['dnaseflank'],
resolution=None,
store_whole_genome=False,
normalizer=[LogTransform(), zscore],
cache=True), aggregator="mean")
train_input += [dnase_TRAIN]
zscore = ZScore()
h3k4_TRAIN = ReduceDim(Cover.create_from_bigwig('h3k4',
bigwigfiles=[
H3K4me3.format(params['traincell'])],
roi=ROI_INPUT_TRAIN,
flank=params['dnaseflank'],
store_whole_genome=False,
normalizer=[LogTransform(), zscore],
cache=True), aggregator="mean")
train_input += [h3k4_TRAIN]
if len(train_input) == 0:
raise ValueError('no input')
return (train_input, train_labels)
# load the dataset
@inputlayer
def dna_model_(inputs, inp, oup, params):
with inputs.use('dna') as dna_in:
layer = dna_in
layer = Dropout(params['seq_dropout'], name='dna_dropout_1')(layer)
cl = Conv2D(params['nmotifs1'], (params['motiflen'], 1),
activation='relu', name='dna_conv2d_1')
if params['stranded'] == 'double':
layer = DnaConv2D(cl, name='dna_dnaconv2d_2')(layer)
else:
layer = cl(layer)
layer = MaxPooling2D((params['pool1'], 1), name='dna_maxpooling1')(layer)
layer = BatchNormalization(name='dna_batchnorm_1')(layer)
layer = Conv2D(params['nmotifs2'], (params['hypermotiflen'], 1),
activation='relu',
name='dna_conv2d_2')(layer)
layer = GlobalMaxPooling2D(name='global_max_pooling')(layer)
layer = BatchNormalization(name='dna_batchnorm_2')(layer)
return inputs, layer
@inputlayer
def epi_model_(inputs, inp, oup, params):
layer = []
with inputs.use('dnase') as dnase_in:
layer += [dnase_in]
with inputs.use('h3k4') as h3k4_in:
layer += [h3k4_in]
layer = Concatenate(name='epi_concat')(layer)
layer = BatchNormalization(name='epi_batchnorm')(layer)
return inputs, layer
@inputlayer
def joint_model_(inputs, inp, oup, params):
_, epi_hidden = epi_model_(inputs, inp, oup, params)
_, dna_hidden = dna_model_(inputs, inp, oup, params)
layer = Concatenate()([epi_hidden, dna_hidden])
return inputs, layer
@inputlayer
@outputdense('linear')
def get_model(inputs, inp, oup, params):
if params['inputs'] == 'dna_only':
_, layer = dna_model_(inputs, inp, oup, params)
elif params['inputs'] == 'epi_only':
_, layer = epi_model_(inputs, inp, oup, params)
else:
_, layer = joint_model_(inputs, inp, oup, params)
return inputs, layer
val_chroms = ['chr{}'.format(i) for i in range(2, 23)]
test_chrom = 'chr1'
main_logger = logging.getLogger('rna_predict')
def objective(params):
print(params)
try:
train_data = get_data(params)
train_data, test = split_train_test(train_data, [test_chrom])
train, val = split_train_test(train_data, [params['val_chrom']])
# define a keras model only based on DNA
K.clear_session()
if params['inputs'] == 'epi_dna':
dnam = Janggu.create_by_name('cage_promoters_dna_only')
epim = Janggu.create_by_name('cage_promoters_epi_only')
layer = Concatenate()([dnam.kerasmodel.layers[-2].output,
epim.kerasmodel.layers[-2].output])
layer = Dense(1, name='geneexpr')(layer)
model = Janggu([dnam.kerasmodel.input] + epim.kerasmodel.input,
layer, name='cage_promoters_epi_dna')
if not params['pretrained']:
# This part randomly reinitializes the network
# so that we can train it from scratch
newjointmodel = model_from_json(model.kerasmodel.to_json())
newjointmodel = Janggu(newjointmodel.inputs,
newjointmodel.outputs,
name='cage_promoters_epi_dna_randominit')
model = newjointmodel
else:
model = Janggu.create(get_model, params, train_data[0],
train_data[1],
name='cage_promoters_{}'.format(params['inputs']))
except ValueError:
main_logger.exception('objective:')
return {'status': 'fail'}
model.compile(optimizer=get_opt(params['opt']), loss='mae', metrics=['mse'])
hist = model.fit(train_data[0], train_data[1], epochs=params['epochs'], batch_size=64,
validation_data=[params['val_chrom']],
callbacks=[EarlyStopping(patience=5, restore_best_weights=True)])
print('#' * 40)
for key in hist.history:
print('{}: {}'.format(key, hist.history[key][-1]))
print('#' * 40)
pred_train = model.predict(train[0])
pred_val = model.predict(val[0])
pred_test = model.predict(test[0])
model.evaluate(train[0], train[1],
callbacks=['var_explained', 'mse', 'mae', 'cor'],
datatags=['train'])
mae_val = model.evaluate(val[0], val[1],
callbacks=['var_explained', 'mse', 'mae', 'cor'],
datatags=['val'])
mae_val = mae_val[0]
model.evaluate(test[0], test[1],
callbacks=['var_explained', 'mse', 'mae', 'cor'],
datatags=['test'])
cor_train = np.corrcoef(train[1][:][:, 0], pred_train[:, 0])[0, 1]
cor_val = np.corrcoef(val[1][:][:, 0], pred_val[:, 0])[0, 1]
cor_test = np.corrcoef(test[1][:][:, 0], pred_test[:, 0])[0, 1]
model.summary()
main_logger.info('cor [train/val/test]: {:.2f}/{:.2f}/{:.2f}'.format(
cor_train, cor_val, cor_test))
return {'loss': mae_val, 'status': 'ok', 'all_losses': hist.history,
'cor_train': cor_train,
'cor_val': cor_val,
'cor_test': cor_test,
'model_config': model.kerasmodel.to_json(),
'model_weights': model.kerasmodel.get_weights(),
'concrete_params': params}
# first do an exhaustive grid search
print("#" * 20)
print("Test effect of scanning single or both strands and higher-order motifs")
shared_space = {
'seq_dropout': 0.2,
'dnaflank': 350,
'nmotifs1': 10,
'motiflen': 15,
'pool1': 5,
'nmotifs2': 8,
'hypermotiflen': 5,
'dnaseflank': 200,
'inception': False,
'traincell': 'hepg2',
'trainrep': 'rep1',
'cageflank': 400,
'opt': 'amsgrad',
'epochs': 100,
}
results = {'run':[], 'val_chrom':[], 'inputs':[], 'dnaorder':[], 'strand':[],
'cor':[],
'cor_val':[],
'pretrained': []}
orders = [dnaorder]
strands = ['double']
def write_results(params, res):
results['run'].append(params['run'])
results['val_chrom'].append(params['val_chrom'])
results['dnaorder'].append(params['order'])
results['inputs'].append(params['inputs'])
results['strand'].append(params['stranded'])
results['cor'].append(res['cor_test'])
results['cor_val'].append(res['cor_val'])
results['pretrained'].append('pretrained' if params['pretrained'] else 'randominit')
df = pd.DataFrame(results)
df.to_csv(os.path.join(os.environ['JANGGU_OUTPUT'], "gridsearch_cage_prediction.tsv"), sep='\t')
if not args.evaluate:
run = 0
for val_chrom, order, strand in product(val_chroms, orders, strands):
run += 1
shared_space['run'] = run
shared_space['val_chrom'] = val_chrom
shared_space['order'] = order
shared_space['pretrained'] = False
shared_space['seq_dropout'] = 0.2
if order == 1:
shared_space['seq_dropout'] = 0.0
shared_space['stranded'] = strand
shared_space['inputs'] = 'dna_only'
res = objective(shared_space)
write_results(shared_space, res)
shared_space['inputs'] = 'epi_only'
res = objective(shared_space)
write_results(shared_space, res)
shared_space['inputs'] = 'epi_dna'
shared_space['pretrained'] = True
res = objective(shared_space)
write_results(shared_space, res)
shared_space['inputs'] = 'epi_dna'
shared_space['pretrained'] = False
res = objective(shared_space)
write_results(shared_space, res)
else:
print('no training')
shared_space['val_chrom'] = "chr22"
shared_space['order'] = dnaorder
shared_space['pretrained'] = False
shared_space['seq_dropout'] = 0.2
shared_space['inputs'] = 'epi_dna'
params = shared_space
train_data = get_data(params)
train, test = split_train_test(train_data, [test_chrom])
model = Janggu.create_by_name('cage_promoters_epi_dna')
testpred = model.predict(test[0])
fig, ax = plt.subplots()
ax.scatter(test[1][:], testpred)
ax.set_xlabel('Observed normalized CAGE signal')
ax.set_ylabel('Predicted normalized CAGE signal')
fig.savefig(os.path.join(os.environ['JANGGU_OUTPUT'], 'cage_promoter_testchrom_agreement.png'))
fig, ax = plt.subplots()
ax.scatter(test[1][:], testpred)
ax.set_xlabel('Observed normalized CAGE signal')
ax.set_ylabel('Predicted normalized CAGE signal')
# prepare for linear regression
X = np.ones((len(testpred),2))
X[:,1] = test[1][:][:,0]
y = pd.DataFrame(testpred[:,0], columns=['Observed'])
X_ = pd.DataFrame(X, columns=['Intercept', 'Prediction'])
mod = sm.OLS(y,X_)
res= mod.fit()
w = res.params.values
# add regression line to plot
ax.plot([-1, 3], [np.dot(w,np.array([1., -1])), np.dot(w,np.array([1., 3.]))], color='red')
if res.f_pvalue < 2.2e-16:
ax.text(1, 1.6, 'F-stat={:1.3e}\nP-value<{}'.format(res.fvalue, 2.2e-16))
else:
ax.text(1, 1.6, 'F-stat={:1.3e}\nP-value={}'.format(res.fvalue, res.f_pvalue))
fig.savefig(os.path.join(os.environ['JANGGU_OUTPUT'], 'cage_promoter_testchrom_agreement_annot.png'))
print(res.summary())