import argparse
import os
import pandas as pd
import logging
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from sklearn.metrics import mean_absolute_error
from itertools import product
if 'CUDA_VISIBLE_DEVICES' not in os.environ:
os.environ['CUDA_VISIBLE_DEVICES'] = '3'
from keras import optimizers
import keras.backend as K
from keras.callbacks import EarlyStopping
from keras.layers import Conv2D
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import GlobalMaxPooling2D
from keras.layers import MaxPooling2D
from keras.layers import BatchNormalization
from keras.layers import Flatten
from keras.layers import Concatenate
from janggu.data import Bioseq
from janggu.data import Cover
from janggu.data import ReduceDim
from janggu.data import split_train_test
from janggu.data.genomicarray import LogTransform
from janggu.data.genomicarray import ZScore
from janggu import Janggu
from janggu import inputlayer, outputdense
from janggu import model_from_json
from janggu.layers import DnaConv2D
PARSER = argparse.ArgumentParser(description='DNA model.')
PARSER.add_argument('-order', dest='order',
default=1, type=int, help='One-hot encoding order')
PARSER.add_argument('-inputpath', dest='inputpath',
default='../data', type=str, help='Input path')
PARSER.add_argument('-outputpath', dest='outputpath',
default='../', type=str, help='Output path')
PARSER.add_argument('-evaluate', dest='evaluate', default=False,
action='store_true', help='Reevaluate pre-trained model.')
args = PARSER.parse_args()
dnaorder = args.order
np.random.seed(1234)
os.environ['JANGGU_OUTPUT'] = os.path.join(args.outputpath,
'results_cage_promoters_order{}'.format(dnaorder))
inpath = args.inputpath
print(args)
ROI_INPUT_TRAIN = os.path.join(inpath, 'gencode.v29.tss.gtf')
# ref genome
REFGENOME = os.path.join(inpath, 'hg38.fa')
# input training
DNASE = os.path.join(inpath, 'dnase.{}.bam')
H3K4me3 = os.path.join(inpath, 'h3k4me3.{}.bigWig')
# output training
RNA = os.path.join(inpath, 'cage.{}.{}.bam')
def get_opt(name):
if name == 'amsgrad':
opt = optimizers.Adam(amsgrad=True, clipvalue=.5, clipnorm=1.)
elif name == 'sgd':
opt = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9,
nesterov=True, clipvalue=.5, clipnorm=1.)
else:
opt = optimizers.RMSprop(clipvalue=.5, clipnorm=1.)
return opt
def get_data(params):
zscore = ZScore()
LABELS_TRAIN = ReduceDim(Cover.create_from_bam('geneexpr',
bamfiles=RNA.format(
params['traincell'], params['trainrep']),
roi=ROI_INPUT_TRAIN,
flank=params['cageflank'],
conditions=['GeneExpr'],
resolution=None,
store_whole_genome=False,
storage='ndarray',
normalizer=[LogTransform(), zscore],
stranded=False,
cache=True), aggregator="mean")
train_labels = LABELS_TRAIN
train_input = []
if params['inputs'] in ['dna_only', 'epi_dna']:
dnaflank = params['dnaflank']
order = params['order']
# DNA
DNA_TRAIN = Bioseq.create_from_refgenome('dna', refgenome=REFGENOME,
roi=ROI_INPUT_TRAIN,
flank=dnaflank,
order=order,
cache=True,
store_whole_genome=False)
train_input += [DNA_TRAIN]
if params['inputs'] in ['epi_only', 'epi_dna']:
zscore = ZScore()
dnase_TRAIN = ReduceDim(Cover.create_from_bam('dnase',
bamfiles=DNASE.format(params['traincell']),
roi=ROI_INPUT_TRAIN,
flank=params['dnaseflank'],
resolution=None,
store_whole_genome=False,
normalizer=[LogTransform(), zscore],
cache=True), aggregator="mean")
train_input += [dnase_TRAIN]
zscore = ZScore()
h3k4_TRAIN = ReduceDim(Cover.create_from_bigwig('h3k4',
bigwigfiles=[
H3K4me3.format(params['traincell'])],
roi=ROI_INPUT_TRAIN,
flank=params['dnaseflank'],
store_whole_genome=False,
normalizer=[LogTransform(), zscore],
cache=True), aggregator="mean")
train_input += [h3k4_TRAIN]
if len(train_input) == 0:
raise ValueError('no input')
return (train_input, train_labels)
# load the dataset
@inputlayer
def dna_model_(inputs, inp, oup, params):
with inputs.use('dna') as dna_in:
layer = dna_in
layer = Dropout(params['seq_dropout'], name='dna_dropout_1')(layer)
cl = Conv2D(params['nmotifs1'], (params['motiflen'], 1),
activation='relu', name='dna_conv2d_1')
if params['stranded'] == 'double':
layer = DnaConv2D(cl, name='dna_dnaconv2d_2')(layer)
else:
layer = cl(layer)
layer = MaxPooling2D((params['pool1'], 1), name='dna_maxpooling1')(layer)
layer = BatchNormalization(name='dna_batchnorm_1')(layer)
layer = Conv2D(params['nmotifs2'], (params['hypermotiflen'], 1),
activation='relu',
name='dna_conv2d_2')(layer)
layer = GlobalMaxPooling2D(name='global_max_pooling')(layer)
layer = BatchNormalization(name='dna_batchnorm_2')(layer)
return inputs, layer
@inputlayer
def epi_model_(inputs, inp, oup, params):
layer = []
with inputs.use('dnase') as dnase_in:
layer += [dnase_in]
with inputs.use('h3k4') as h3k4_in:
layer += [h3k4_in]
layer = Concatenate(name='epi_concat')(layer)
layer = BatchNormalization(name='epi_batchnorm')(layer)
return inputs, layer
@inputlayer
def joint_model_(inputs, inp, oup, params):
_, epi_hidden = epi_model_(inputs, inp, oup, params)
_, dna_hidden = dna_model_(inputs, inp, oup, params)
layer = Concatenate()([epi_hidden, dna_hidden])
return inputs, layer
@inputlayer
@outputdense('linear')
def get_model(inputs, inp, oup, params):
if params['inputs'] == 'dna_only':
_, layer = dna_model_(inputs, inp, oup, params)
elif params['inputs'] == 'epi_only':
_, layer = epi_model_(inputs, inp, oup, params)
else:
_, layer = joint_model_(inputs, inp, oup, params)
return inputs, layer
val_chroms = ['chr{}'.format(i) for i in range(2, 23)]
test_chrom = 'chr1'
main_logger = logging.getLogger('rna_predict')
def objective(params):
print(params)
try:
train_data = get_data(params)
train_data, test = split_train_test(train_data, [test_chrom])
train, val = split_train_test(train_data, [params['val_chrom']])
# define a keras model only based on DNA
K.clear_session()
if params['inputs'] == 'epi_dna':
dnam = Janggu.create_by_name('cage_promoters_dna_only')
epim = Janggu.create_by_name('cage_promoters_epi_only')
layer = Concatenate()([dnam.kerasmodel.layers[-2].output,
epim.kerasmodel.layers[-2].output])
layer = Dense(1, name='geneexpr')(layer)
model = Janggu([dnam.kerasmodel.input] + epim.kerasmodel.input,
layer, name='cage_promoters_epi_dna')
if not params['pretrained']:
# This part randomly reinitializes the network
# so that we can train it from scratch
newjointmodel = model_from_json(model.kerasmodel.to_json())
newjointmodel = Janggu(newjointmodel.inputs,
newjointmodel.outputs,
name='cage_promoters_epi_dna_randominit')
model = newjointmodel
else:
model = Janggu.create(get_model, params, train_data[0],
train_data[1],
name='cage_promoters_{}'.format(params['inputs']))
except ValueError:
main_logger.exception('objective:')
return {'status': 'fail'}
model.compile(optimizer=get_opt(params['opt']), loss='mae', metrics=['mse'])
hist = model.fit(train_data[0], train_data[1], epochs=params['epochs'], batch_size=64,
validation_data=[params['val_chrom']],
callbacks=[EarlyStopping(patience=5, restore_best_weights=True)])
print('#' * 40)
for key in hist.history:
print('{}: {}'.format(key, hist.history[key][-1]))
print('#' * 40)
pred_train = model.predict(train[0])
pred_val = model.predict(val[0])
pred_test = model.predict(test[0])
model.evaluate(train[0], train[1],
callbacks=['var_explained', 'mse', 'mae', 'cor'],
datatags=['train'])
mae_val = model.evaluate(val[0], val[1],
callbacks=['var_explained', 'mse', 'mae', 'cor'],
datatags=['val'])
mae_val = mae_val[0]
model.evaluate(test[0], test[1],
callbacks=['var_explained', 'mse', 'mae', 'cor'],
datatags=['test'])
cor_train = np.corrcoef(train[1][:][:, 0], pred_train[:, 0])[0, 1]
cor_val = np.corrcoef(val[1][:][:, 0], pred_val[:, 0])[0, 1]
cor_test = np.corrcoef(test[1][:][:, 0], pred_test[:, 0])[0, 1]
model.summary()
main_logger.info('cor [train/val/test]: {:.2f}/{:.2f}/{:.2f}'.format(
cor_train, cor_val, cor_test))
return {'loss': mae_val, 'status': 'ok', 'all_losses': hist.history,
'cor_train': cor_train,
'cor_val': cor_val,
'cor_test': cor_test,
'model_config': model.kerasmodel.to_json(),
'model_weights': model.kerasmodel.get_weights(),
'concrete_params': params}
# first do an exhaustive grid search
print("#" * 20)
print("Test effect of scanning single or both strands and higher-order motifs")
shared_space = {
'seq_dropout': 0.2,
'dnaflank': 350,
'nmotifs1': 10,
'motiflen': 15,
'pool1': 5,
'nmotifs2': 8,
'hypermotiflen': 5,
'dnaseflank': 200,
'inception': False,
'traincell': 'hepg2',
'trainrep': 'rep1',
'cageflank': 400,
'opt': 'amsgrad',
'epochs': 100,
}
results = {'run':[], 'val_chrom':[], 'inputs':[], 'dnaorder':[], 'strand':[],
'cor':[],
'cor_val':[],
'pretrained': []}
orders = [dnaorder]
strands = ['double']
def write_results(params, res):
results['run'].append(params['run'])
results['val_chrom'].append(params['val_chrom'])
results['dnaorder'].append(params['order'])
results['inputs'].append(params['inputs'])
results['strand'].append(params['stranded'])
results['cor'].append(res['cor_test'])
results['cor_val'].append(res['cor_val'])
results['pretrained'].append('pretrained' if params['pretrained'] else 'randominit')
df = pd.DataFrame(results)
df.to_csv(os.path.join(os.environ['JANGGU_OUTPUT'], "gridsearch_cage_prediction.tsv"), sep='\t')
if not args.evaluate:
run = 0
for val_chrom, order, strand in product(val_chroms, orders, strands):
run += 1
shared_space['run'] = run
shared_space['val_chrom'] = val_chrom
shared_space['order'] = order
shared_space['pretrained'] = False
shared_space['seq_dropout'] = 0.2
if order == 1:
shared_space['seq_dropout'] = 0.0
shared_space['stranded'] = strand
shared_space['inputs'] = 'dna_only'
res = objective(shared_space)
write_results(shared_space, res)
shared_space['inputs'] = 'epi_only'
res = objective(shared_space)
write_results(shared_space, res)
shared_space['inputs'] = 'epi_dna'
shared_space['pretrained'] = True
res = objective(shared_space)
write_results(shared_space, res)
shared_space['inputs'] = 'epi_dna'
shared_space['pretrained'] = False
res = objective(shared_space)
write_results(shared_space, res)
else:
print('no training')
shared_space['val_chrom'] = "chr22"
shared_space['order'] = dnaorder
shared_space['pretrained'] = False
shared_space['seq_dropout'] = 0.2
shared_space['inputs'] = 'epi_dna'
params = shared_space
train_data = get_data(params)
train, test = split_train_test(train_data, [test_chrom])
model = Janggu.create_by_name('cage_promoters_epi_dna')
testpred = model.predict(test[0])
fig, ax = plt.subplots()
ax.scatter(test[1][:], testpred)
ax.set_xlabel('Observed normalized CAGE signal')
ax.set_ylabel('Predicted normalized CAGE signal')
fig.savefig(os.path.join(os.environ['JANGGU_OUTPUT'], 'cage_promoter_testchrom_agreement.png'))
fig, ax = plt.subplots()
ax.scatter(test[1][:], testpred)
ax.set_xlabel('Observed normalized CAGE signal')
ax.set_ylabel('Predicted normalized CAGE signal')
# prepare for linear regression
X = np.ones((len(testpred),2))
X[:,1] = test[1][:][:,0]
y = pd.DataFrame(testpred[:,0], columns=['Observed'])
X_ = pd.DataFrame(X, columns=['Intercept', 'Prediction'])
mod = sm.OLS(y,X_)
res= mod.fit()
w = res.params.values
# add regression line to plot
ax.plot([-1, 3], [np.dot(w,np.array([1., -1])), np.dot(w,np.array([1., 3.]))], color='red')
if res.f_pvalue < 2.2e-16:
ax.text(1, 1.6, 'F-stat={:1.3e}\nP-value<{}'.format(res.fvalue, 2.2e-16))
else:
ax.text(1, 1.6, 'F-stat={:1.3e}\nP-value={}'.format(res.fvalue, res.f_pvalue))
fig.savefig(os.path.join(os.environ['JANGGU_OUTPUT'], 'cage_promoter_testchrom_agreement_annot.png'))
print(res.summary())