[214c6e]: / 01_jund_prediction / data_utils.py

Download this file

105 lines (88 with data), 4.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
import os
from janggu.data import Bioseq
from janggu.data import Cover
from janggu.data import ReduceDim
from janggu.data import RandomOrientation
from janggu.data import RandomSignalScale
from janggu.data import split_train_test
inpath = '../data'
# ref genome
REFGENOME = os.path.join(inpath, 'hg38.fa')
# training and test roi
ROI = os.path.join(inpath, 'trim_roi_jund_extended.bed')
# jund peaks (labels)
PEAKS = os.path.join(inpath, 'jund_raw_peaks.bed')
# dnase-seq fold-enrichment
DNASE_STAM_ROADMAP = os.path.join(inpath, 'dnase_stam_roadmap.bam')
DNASE_STAM_ENCODE = os.path.join(inpath, 'dnase_stam_encode.bam')
def get_data(params):
binsize = params['binsize']
# PEAKS
LABELS = ReduceDim(Cover.create_from_bed('peaks',
bedfiles=PEAKS,
roi=ROI,
binsize=binsize,
conditions=['JunD'],
resolution=binsize,
store_whole_genome=True,
storage='sparse',
cache=True), aggregator='max')
# training on chr1, validation on chr2, test on chr3 with swapped Dnase samples
LABELS, LABELS_TEST = split_train_test(LABELS, 'chr3')
LABELS_TRAIN, LABELS_VAL = split_train_test(LABELS, 'chr2')
if params['type'] in ['dna_only', 'dnase_dna']:
dnaflank = params['dnaflank']
order = params['order']
# DNA
DNA = Bioseq.create_from_refgenome('dna', refgenome=REFGENOME,
roi=ROI,
binsize=binsize,
flank=dnaflank,
order=order,
cache=True,
store_whole_genome=True)
DNA, DNA_TEST = split_train_test(DNA, 'chr3')
DNA_TRAIN, DNA_VAL = split_train_test(DNA, 'chr2')
if params['type'] in ['dnase_bam_only', 'dnase_dna']:
dnaseflank = params['dnaseflank']
# ACCESSIBILITY
ACCESS_TEST = Cover.create_from_bam('dnase',
bamfiles=[DNASE_STAM_ENCODE, DNASE_STAM_ROADMAP],
roi=ROI,
binsize=binsize,
conditions=['Encode', 'Roadmap'],
flank=dnaseflank,
resolution=50,
normalizer=params['normalize'],
store_whole_genome=True,
cache=True)
ACCESS = Cover.create_from_bam('dnase', roi=ROI,
bamfiles=[DNASE_STAM_ROADMAP, DNASE_STAM_ENCODE],
binsize=binsize,
conditions=['Roadmap', 'Encode'],
resolution=50,
flank=dnaseflank,
normalizer=params['normalize'],
store_whole_genome=True,
cache=True)
_, ACCESS_TEST = split_train_test(ACCESS_TEST, 'chr3')
ACCESS, _ = split_train_test(ACCESS, 'chr3')
ACCESS_TRAIN, ACCESS_VAL = split_train_test(ACCESS, 'chr2')
if params['type'] in ['dna_dnase', 'dnase_bam_only']:
if params['augment'] == 'orient':
ACCESS_TRAIN = RandomOrientation(ACCESS_TRAIN)
if params['augment'] == 'scale':
ACCESS_TRAIN = RandomSignalScale(ACCESS_TRAIN, 0.1)
if params['augment'] == 'both':
ACCESS_TRAIN = RandomSignalScale(RandomOrientation(ACCESS_TRAIN), 0.1)
if params['type'] == 'dna_only':
return (DNA_TRAIN, LABELS_TRAIN), (DNA_VAL, LABELS_VAL), \
(DNA_TEST, LABELS_TEST)
elif params['type'] == 'dnase_dna':
return ([DNA_TRAIN, ACCESS_TRAIN], LABELS_TRAIN), \
([DNA_VAL, ACCESS_VAL], LABELS_VAL),\
([DNA_TEST, ACCESS_TEST], LABELS_TEST)
elif params['type'] in ['dnase_bam_only']:
return ([ACCESS_TRAIN], LABELS_TRAIN), \
([ACCESS_VAL], LABELS_VAL), \
([ACCESS_TEST], LABELS_TEST)