|
a |
|
b/src/examples/classify_fasta.py |
|
|
1 |
import argparse |
|
|
2 |
import os |
|
|
3 |
import numpy as np |
|
|
4 |
import pandas as pd |
|
|
5 |
import pkg_resources |
|
|
6 |
|
|
|
7 |
from keras import backend as K |
|
|
8 |
from keras.layers import Conv2D |
|
|
9 |
from keras.layers import GlobalAveragePooling2D |
|
|
10 |
from keras.layers import Maximum |
|
|
11 |
|
|
|
12 |
from janggu import Janggu |
|
|
13 |
from janggu import Scorer |
|
|
14 |
from janggu import inputlayer |
|
|
15 |
from janggu import outputdense |
|
|
16 |
from janggu.data import Array |
|
|
17 |
from janggu.data import Bioseq |
|
|
18 |
from janggu.layers import Complement |
|
|
19 |
from janggu.layers import DnaConv2D |
|
|
20 |
from janggu.layers import Reverse |
|
|
21 |
from janggu.utils import ExportClustermap |
|
|
22 |
from janggu.utils import ExportTsv |
|
|
23 |
|
|
|
24 |
import matplotlib |
|
|
25 |
matplotlib.use('Agg') |
|
|
26 |
|
|
|
27 |
np.random.seed(1234) |
|
|
28 |
|
|
|
29 |
|
|
|
30 |
# Fetch parser arguments |
|
|
31 |
PARSER = argparse.ArgumentParser(description='Command description.') |
|
|
32 |
PARSER.add_argument('model', choices=['single', 'double', 'dnaconv'], |
|
|
33 |
help="Single or double stranded model.") |
|
|
34 |
PARSER.add_argument('-path', dest='path', |
|
|
35 |
default='tf_results', |
|
|
36 |
help="Output directory for the examples.") |
|
|
37 |
PARSER.add_argument('-order', dest='order', type=int, |
|
|
38 |
default=1, |
|
|
39 |
help="One-hot order.") |
|
|
40 |
|
|
|
41 |
args = PARSER.parse_args() |
|
|
42 |
|
|
|
43 |
os.environ['JANGGU_OUTPUT'] = args.path |
|
|
44 |
|
|
|
45 |
|
|
|
46 |
# helper function |
|
|
47 |
def nseqs(filename): |
|
|
48 |
"""Extract the number of rows in the file. |
|
|
49 |
|
|
|
50 |
Note however, that this is a simplification |
|
|
51 |
that might not always work. In general, one would |
|
|
52 |
need to parse for '>' occurrences. |
|
|
53 |
""" |
|
|
54 |
return sum((1 for line in open(filename) if line[0] == '>')) |
|
|
55 |
|
|
|
56 |
|
|
|
57 |
# load the dataset |
|
|
58 |
DATA_PATH = pkg_resources.resource_filename('janggu', 'resources/') |
|
|
59 |
SAMPLE_1 = os.path.join(DATA_PATH, 'sample.fa') |
|
|
60 |
SAMPLE_2 = os.path.join(DATA_PATH, 'sample2.fa') |
|
|
61 |
|
|
|
62 |
# DNA sequences in one-hot encoding will be used as input |
|
|
63 |
DNA = Bioseq.create_from_seq('dna', fastafile=[SAMPLE_1, SAMPLE_2], |
|
|
64 |
order=args.order, cache=True) |
|
|
65 |
|
|
|
66 |
# An array of 1/0 will be used as labels for training |
|
|
67 |
Y = np.asarray([[1] for line in range(nseqs(SAMPLE_1))] + |
|
|
68 |
[[0] for line in range(nseqs(SAMPLE_2))]) |
|
|
69 |
LABELS = Array('y', Y, conditions=['TF-binding']) |
|
|
70 |
annot = pd.DataFrame(Y[:], columns=LABELS.conditions).applymap( |
|
|
71 |
lambda x: 'Oct4' if x == 1 else 'Mafk').to_dict(orient='list') |
|
|
72 |
|
|
|
73 |
# Define the model templates |
|
|
74 |
|
|
|
75 |
@inputlayer |
|
|
76 |
@outputdense('sigmoid') |
|
|
77 |
def single_stranded_model(inputs, inp, oup, params): |
|
|
78 |
""" keras model that scans a DNA sequence using |
|
|
79 |
a number of motifs. |
|
|
80 |
|
|
|
81 |
This model only scans one strand for sequence patterns. |
|
|
82 |
""" |
|
|
83 |
with inputs.use('dna') as layer: |
|
|
84 |
# the name in inputs.use() should be the same as the dataset name. |
|
|
85 |
layer = Conv2D(params[0], (params[1], 1), activation=params[2])(layer) |
|
|
86 |
output = GlobalAveragePooling2D(name='motif')(layer) |
|
|
87 |
return inputs, output |
|
|
88 |
|
|
|
89 |
|
|
|
90 |
@inputlayer |
|
|
91 |
@outputdense('sigmoid') |
|
|
92 |
def double_stranded_model(inputs, inp, oup, params): |
|
|
93 |
""" keras model for scanning both DNA strands. |
|
|
94 |
|
|
|
95 |
Sequence patterns may be present on either strand. |
|
|
96 |
By scanning both DNA strands with the same motifs (kernels) |
|
|
97 |
the performance of the model will generally improve. |
|
|
98 |
|
|
|
99 |
In the model below, this is achieved by reverse complementing |
|
|
100 |
the input tensor and keeping the convolution filters fixed. |
|
|
101 |
""" |
|
|
102 |
with inputs.use('dna') as layer: |
|
|
103 |
# the name in inputs.use() should be the same as the dataset name. |
|
|
104 |
forward = layer |
|
|
105 |
convlayer = Conv2D(params[0], (params[1], 1), activation=params[2]) |
|
|
106 |
revcomp = Reverse()(forward) |
|
|
107 |
revcomp = Complement()(revcomp) |
|
|
108 |
|
|
|
109 |
forward = convlayer(forward) |
|
|
110 |
revcomp = convlayer(revcomp) |
|
|
111 |
revcomp = Reverse()(revcomp) |
|
|
112 |
layer = Maximum()([forward, revcomp]) |
|
|
113 |
output = GlobalAveragePooling2D(name='motif')(layer) |
|
|
114 |
return inputs, output |
|
|
115 |
|
|
|
116 |
|
|
|
117 |
@inputlayer |
|
|
118 |
@outputdense('sigmoid') |
|
|
119 |
def double_stranded_model_dnaconv(inputs, inp, oup, params): |
|
|
120 |
""" keras model for scanning both DNA strands. |
|
|
121 |
|
|
|
122 |
A more elegant way of scanning both strands for motif occurrences |
|
|
123 |
is achieved by the DnaConv2D layer wrapper, which internally |
|
|
124 |
performs the convolution operation with the normal kernel weights |
|
|
125 |
and the reverse complemented weights. |
|
|
126 |
""" |
|
|
127 |
with inputs.use('dna') as layer: |
|
|
128 |
# the name in inputs.use() should be the same as the dataset name. |
|
|
129 |
conv = DnaConv2D(Conv2D(params[0], |
|
|
130 |
(params[1], 1), |
|
|
131 |
activation=params[2]), name='conv1')(layer) |
|
|
132 |
|
|
|
133 |
output = GlobalAveragePooling2D(name='motif')(conv) |
|
|
134 |
return inputs, output |
|
|
135 |
|
|
|
136 |
|
|
|
137 |
if args.model == 'single': |
|
|
138 |
modeltemplate = single_stranded_model |
|
|
139 |
elif args.model == 'double': |
|
|
140 |
modeltemplate = double_stranded_model |
|
|
141 |
else: |
|
|
142 |
modeltemplate = double_stranded_model_dnaconv |
|
|
143 |
|
|
|
144 |
K.clear_session() |
|
|
145 |
|
|
|
146 |
# create a new model object |
|
|
147 |
model = Janggu.create(template=modeltemplate, |
|
|
148 |
modelparams=(30, 21, 'relu'), |
|
|
149 |
inputs=DNA, |
|
|
150 |
outputs=LABELS, |
|
|
151 |
name='fasta_seqs_m{}_o{}'.format(args.model, args.order)) |
|
|
152 |
|
|
|
153 |
model.compile(optimizer='adadelta', loss='binary_crossentropy', |
|
|
154 |
metrics=['acc']) |
|
|
155 |
model.summary() |
|
|
156 |
|
|
|
157 |
# fit the model |
|
|
158 |
hist = model.fit(DNA, LABELS, epochs=100) |
|
|
159 |
|
|
|
160 |
print('#' * 40) |
|
|
161 |
print('loss: {}, acc: {}'.format(hist.history['loss'][-1], |
|
|
162 |
hist.history['acc'][-1])) |
|
|
163 |
print('#' * 40) |
|
|
164 |
|
|
|
165 |
# load test data |
|
|
166 |
SAMPLE_1 = os.path.join(DATA_PATH, 'sample_test.fa') |
|
|
167 |
SAMPLE_2 = os.path.join(DATA_PATH, 'sample2_test.fa') |
|
|
168 |
|
|
|
169 |
DNA_TEST = Bioseq.create_from_seq('dna', fastafile=[SAMPLE_1, SAMPLE_2], |
|
|
170 |
order=args.order, cache=True) |
|
|
171 |
|
|
|
172 |
Y = np.asarray([[1] for _ in range(nseqs(SAMPLE_1))] + |
|
|
173 |
[[0] for _ in range(nseqs(SAMPLE_2))]) |
|
|
174 |
LABELS_TEST = Array('y', Y, conditions=['TF-binding']) |
|
|
175 |
annot_test = pd.DataFrame(Y[:], columns=LABELS_TEST.conditions).applymap( |
|
|
176 |
lambda x: 'Oct4' if x == 1 else 'Mafk').to_dict(orient='list') |
|
|
177 |
|
|
|
178 |
# clustering plots based on hidden features |
|
|
179 |
heatmap_eval = Scorer('heatmap', exporter=ExportClustermap(annot=annot_test, |
|
|
180 |
z_score=1.)) |
|
|
181 |
|
|
|
182 |
# output the predictions as tables or json files |
|
|
183 |
pred_tsv = Scorer('pred', exporter=ExportTsv(annot=annot_test, |
|
|
184 |
row_names=DNA_TEST.gindexer.chrs)) |
|
|
185 |
|
|
|
186 |
# do the evaluation on the independent test data |
|
|
187 |
# after the evaluation and prediction has been performed, |
|
|
188 |
# the callbacks further process the results allowing |
|
|
189 |
# to automatically generate summary statistics or figures |
|
|
190 |
# into the JANGGU_OUTPUT directory. |
|
|
191 |
model.evaluate(DNA_TEST, LABELS_TEST, datatags=['test'], |
|
|
192 |
callbacks=['auc', 'auprc', 'roc', 'auroc']) |
|
|
193 |
|
|
|
194 |
pred = model.predict(DNA_TEST, datatags=['test'], |
|
|
195 |
callbacks=[pred_tsv, heatmap_eval], |
|
|
196 |
layername='motif') |
|
|
197 |
|
|
|
198 |
pred = model.predict(DNA_TEST) |
|
|
199 |
print('Oct4 predictions scores should be greater than Mafk scores:') |
|
|
200 |
print('Prediction score examples for Oct4') |
|
|
201 |
for i in range(4): |
|
|
202 |
print('{}.: {}'.format(i, pred[i])) |
|
|
203 |
print('Prediction score examples for Mafk') |
|
|
204 |
for i in range(1, 5): |
|
|
205 |
print('{}.: {}'.format(i, pred[-i])) |
|
|
206 |
|