[2108ce]: / tests / test_convertion.py

Download this file

207 lines (164 with data), 8.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import matplotlib
matplotlib.use('AGG')
import numpy as np
import pytest
from keras import backend as K
from keras.layers import Conv2D
from pkg_resources import resource_filename
from janggu import Janggu
from janggu import inputlayer
from janggu import outputconv
from janggu.data import Bioseq
from janggu.data import Cover
from janggu.layers import DnaConv2D
from janggu.layers import LocalAveragePooling2D
@pytest.mark.filterwarnings("ignore:inspect")
@pytest.mark.filterwarnings("ignore:The binary")
def test_create_from_array_whole_genome_true_from_pred(tmpdir):
os.environ['JANGGU_OUTPUT'] = tmpdir.strpath
# load the dataset
# The pseudo genome represents just a concatenation of all sequences
# in sample.fa and sample2.fa. Therefore, the results should be almost
# identically to the models obtained from classify_fasta.py.
REFGENOME = resource_filename('janggu', 'resources/pseudo_genome.fa')
# ROI contains regions spanning positive and negative examples
ROI_FILE = resource_filename('janggu', 'resources/roi_train.bed')
# PEAK_FILE only contains positive examples
PEAK_FILE = resource_filename('janggu', 'resources/scores.bed')
DNA = Bioseq.create_from_refgenome('dna', refgenome=REFGENOME,
roi=ROI_FILE,
binsize=200, stepsize=200,
order=1,
store_whole_genome=True)
LABELS = Cover.create_from_bed('peaks', roi=ROI_FILE,
bedfiles=PEAK_FILE,
binsize=200, stepsize=200,
resolution=200,
store_whole_genome=True)
@inputlayer
@outputconv('sigmoid')
def double_stranded_model_dnaconv(inputs, inp, oup, params):
with inputs.use('dna') as layer:
layer = DnaConv2D(Conv2D(params[0], (params[1], 1),
activation=params[2]))(layer)
output = LocalAveragePooling2D(window_size=layer.shape.as_list()[1],
name='motif')(layer)
return inputs, output
modeltemplate = double_stranded_model_dnaconv
K.clear_session()
# create a new model object
model = Janggu.create(template=modeltemplate,
modelparams=(30, 21, 'relu'),
inputs=DNA,
outputs=LABELS)
model.compile(optimizer='adadelta', loss='binary_crossentropy',
metrics=['acc'])
pred = model.predict(DNA)
cov_out = Cover.create_from_array('BindingProba', pred, LABELS.gindexer,
store_whole_genome=True)
assert pred.shape == cov_out.shape
np.testing.assert_equal(pred, cov_out[:])
assert len(cov_out.gindexer) == len(pred)
assert len(cov_out.garray.handle) == 1
@pytest.mark.filterwarnings("ignore:inspect")
@pytest.mark.filterwarnings("ignore:The binary")
def test_create_from_array_whole_genome_true(tmpdir):
os.environ['JANGGU_OUTPUT'] = tmpdir.strpath
# load the dataset
# The pseudo genome represents just a concatenation of all sequences
# in sample.fa and sample2.fa. Therefore, the results should be almost
# identically to the models obtained from classify_fasta.py.
# ROI contains regions spanning positive and negative examples
ROI_FILE = resource_filename('janggu', 'resources/roi_train.bed')
# PEAK_FILE only contains positive examples
PEAK_FILE = resource_filename('janggu', 'resources/scores.bed')
LABELS = Cover.create_from_bed('peaks', roi=ROI_FILE,
bedfiles=[PEAK_FILE]*5,
binsize=200, stepsize=200,
resolution=200,
store_whole_genome=True)
pred = LABELS[:]
for storage in ['ndarray', 'sparse', 'hdf5']:
print(storage)
cov_out = Cover.create_from_array('BindingProba', pred,
LABELS.gindexer,
cache=True,
storage=storage,
store_whole_genome=True)
np.testing.assert_equal(cov_out[:], LABELS[:])
np.testing.assert_equal(cov_out.shape, LABELS.shape)
@pytest.mark.filterwarnings("ignore:The binary")
def test_create_from_array_whole_genome_false_pred(tmpdir):
os.environ['JANGGU_OUTPUT'] = tmpdir.strpath
# load the dataset
# The pseudo genome represents just a concatenation of all sequences
# in sample.fa and sample2.fa. Therefore, the results should be almost
# identically to the models obtained from classify_fasta.py.
REFGENOME = resource_filename('janggu', 'resources/pseudo_genome.fa')
# ROI contains regions spanning positive and negative examples
ROI_FILE = resource_filename('janggu', 'resources/roi_train.bed')
# PEAK_FILE only contains positive examples
PEAK_FILE = resource_filename('janggu', 'resources/scores.bed')
DNA = Bioseq.create_from_refgenome('dna', refgenome=REFGENOME,
roi=ROI_FILE,
binsize=200, stepsize=200,
order=1,
store_whole_genome=False)
LABELS = Cover.create_from_bed('peaks', roi=ROI_FILE,
bedfiles=PEAK_FILE,
binsize=200, stepsize=200,
resolution=200,
store_whole_genome=False)
@inputlayer
@outputconv('sigmoid')
def double_stranded_model_dnaconv(inputs, inp, oup, params):
with inputs.use('dna') as layer:
layer = DnaConv2D(Conv2D(params[0], (params[1], 1),
activation=params[2]))(layer)
output = LocalAveragePooling2D(window_size=layer.shape.as_list()[1],
name='motif')(layer)
return inputs, output
modeltemplate = double_stranded_model_dnaconv
K.clear_session()
# create a new model object
model = Janggu.create(template=modeltemplate,
modelparams=(30, 21, 'relu'),
inputs=DNA,
outputs=LABELS)
model.compile(optimizer='adadelta', loss='binary_crossentropy',
metrics=['acc'])
pred = model.predict(DNA)
cov_out = Cover.create_from_array('BindingProba', pred, LABELS.gindexer,
store_whole_genome=False)
assert pred.shape == cov_out.shape
np.testing.assert_equal(pred, cov_out[:])
assert len(cov_out.gindexer) == len(pred)
assert len(cov_out.garray.handle['data']) == len(pred)
@pytest.mark.filterwarnings("ignore:inspect")
@pytest.mark.filterwarnings("ignore:The binary")
def test_create_from_array_whole_genome_false(tmpdir):
os.environ['JANGGU_OUTPUT'] = tmpdir.strpath
# load the dataset
# The pseudo genome represents just a concatenation of all sequences
# in sample.fa and sample2.fa. Therefore, the results should be almost
# identically to the models obtained from classify_fasta.py.
# ROI contains regions spanning positive and negative examples
ROI_FILE = resource_filename('janggu', 'resources/roi_train.bed')
# PEAK_FILE only contains positive examples
PEAK_FILE = resource_filename('janggu', 'resources/scores.bed')
LABELS = Cover.create_from_bed('peaks', roi=ROI_FILE,
bedfiles=[PEAK_FILE]*5,
binsize=200, stepsize=200,
resolution=200,
store_whole_genome=False)
pred = LABELS[:]
for storage in ['ndarray', 'sparse', 'hdf5']:
print(storage)
cov_out = Cover.create_from_array('BindingProba', pred,
LABELS.gindexer,
cache=True,
storage=storage,
store_whole_genome=False)
np.testing.assert_equal(cov_out[:], LABELS[:])
np.testing.assert_equal(cov_out.shape, LABELS.shape)