[98867e]: / ipynb / sequences to dataframe.ipynb

Download this file

446 lines (445 with data), 25.4 kB

{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "%load_ext autoreload\n",
    "%autoreload 2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "#export\n",
    "import sys\n",
    "sys.path.append(\"..\")\n",
    "from faigen.data import sequence \n",
    "from faigen.data.sequence import regex_filter, count_filter, Dna2VecDataBunch,Dna2VecList, seq_record\n",
    "from functools import partial\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "from sklearn.decomposition import PCA\n",
    "from sklearn import manifold,neighbors\n",
    "from scipy.cluster.hierarchy import dendrogram, linkage  \n",
    "from matplotlib import pyplot as plt\n",
    "import seaborn as sns; sns.set(color_codes=True)\n",
    "import plotly.plotly as py\n",
    "import plotly.graph_objs as go\n",
    "from fastai import *\n",
    "from fastai.data_block import *\n",
    "from fastai.basic_train import *\n",
    "from fastai.layers import *\n",
    "from fastai.metrics import *\n",
    "from fastai.text import *\n",
    "from gensim.models import Word2Vec\n",
    "import torch \n",
    "import torch.nn as nn\n",
    "import torch.nn.functional as F\n",
    "import gc \n",
    "from itertools import islice\n",
    "from tqdm import tqdm\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loading embedding\n"
     ]
    }
   ],
   "source": [
    "#export\n",
    "print(\"Loading embedding\")\n",
    "word_vectors = Word2Vec.load_word2vec_format('/data/genomes/embeddings/dna2vec-20190612-1611-k10to10-100d-10c-4870Mbp-sliding-kPR.w2v') "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "14495"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#export\n",
    "# DB=\"/data/genomes/GenSeq_fastas\"\n",
    "# DB='/home/serge/development/genomes/ncbi-genomes-2019-04-07/bacterial genomes'\n",
    "# DB=\"/home/serge/database/data/genomes/ncbi-genomes-2019-04-07/Bacillus\"\n",
    "DB=\"/home/serge/database/data/genomes/bacillus/ncbi-genomes-2019-06-25\"\n",
    "data, X, dfx = None,None,None\n",
    "bunch=None\n",
    "learner=None\n",
    "gc.collect()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 3964/3964 [06:13<00:00, 15.06it/s]\n",
      "100%|██████████| 3964/3964 [05:12<00:00, 14.89it/s]\n"
     ]
    }
   ],
   "source": [
    "filters=[partial(regex_filter, rx=\"plasmid\", keep=False)]\n",
    "data = sequence.Dna2VecList.from_folder(DB,filters=filters,n_cpus=7,emb=word_vectors,recurse=True)\n",
    "sequence.GSFileProcessor().process(data)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "metadata": {},
   "outputs": [],
   "source": [
    "dfseq = pd.DataFrame.from_dict({\"seq\": list(map(str, data.items)),\n",
    "                                \"description\": data.descriptions, \n",
    "                                \"file\":data.files,\n",
    "                                \"id\":data.ids, \n",
    "                                \"name\":data.names})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "metadata": {},
   "outputs": [],
   "source": [
    "dfseq.to_pickle(\"/home/serge/database/data/genomes/bacillus/ncbi-genomes-2019-06-25/all_sequences-no-plasmid.pkl\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "def k_mers(sequence, k):\n",
    "    it = iter(sequence)\n",
    "    result = tuple(islice(it, k))\n",
    "    if len(result) == k:\n",
    "        yield \"\".join(result)\n",
    "    for elem in it:\n",
    "        result = result[1:] + (elem,)\n",
    "        yield \"\".join(result)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Seq('ATTTCCCATGAAATAGGTTCGGTTCTGTTAGTAAAAAATTCGAAATATAGTAAG...NNN', SingleLetterAlphabet())"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.items[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "mers = np.asarray([word_vectors[x] for x in k_mers(str(data.items[0]), 10) if set(x) == set('ATGC')])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(100,)"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "mers.mean(axis=0).shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [],
   "source": [
    "class Vectorizer:\n",
    "    def __init__(self,texts=None,  ngram=10, skip=0, n_cpus=7, chunksize=1000):\n",
    "        self.texts, self.ngram, self.skip, self.n_cpus, self.chunksize = texts, ngram, skip, n_cpus, chunksize\n",
    "                    \n",
    "    def vectorizer(self, t):\n",
    "        if self.ngram == 1:\n",
    "            toks = list(t)\n",
    "            if self.skip > 0:\n",
    "                toks = toks[::2] if self.skip == 1 else toks[::self.skip]\n",
    "        else:\n",
    "            toks = [t[i:i + self.ngram] for i in range(0, len(t), self.ngram + self.skip) if i+self.ngram < len(t)] \n",
    "        res = np.asarray(word_vectors[filter(lambda x: set(x) == set(\"ACGT\"), toks)]).mean(axis=0)\n",
    "        toks=None\n",
    "        return res\n",
    "\n",
    "    def _process_all_1(self, texts):\n",
    "        return [self.vectorizer(str(t)) for t in texts]\n",
    "\n",
    "    def process_all(self, texts):\n",
    "        if self.n_cpus <= 1: return self._process_all_1(texts)\n",
    "        with ProcessPoolExecutor(self.n_cpus) as e:\n",
    "            res = sum(e.map(self._process_all_1, partition_by_cores(texts, self.n_cpus)), [])\n",
    "        return res\n",
    "        \n",
    "    def vectorize(self,texts=None):\n",
    "        texts = self.texts if self.texts is not None else texts\n",
    "        vectors = []\n",
    "        chunks = len(texts) // self.chunksize + 1\n",
    "        for i in tqdm(range(chunks)):\n",
    "            advance = min((len(texts) - i * self.chunksize), self.chunksize)\n",
    "            vectors += self.process_all(texts[i:i + advance])\n",
    "        return vectors"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "ename": "TypeError",
     "evalue": "can only concatenate list (not \"int\") to list",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-3-b170b0d83771>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;31mTypeError\u001b[0m: can only concatenate list (not \"int\") to list"
     ]
    }
   ],
   "source": [
    "sum(list([1]),[])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Object `ProcessPoolExecutor` not found.\n"
     ]
    }
   ],
   "source": [
    "ProcessPoolExecutor??"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'partition_by_cores' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-5-9f45c6633e01>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mres\u001b[0m\u001b[0;34m=\u001b[0m \u001b[0mpartition_by_cores\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m7\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m: name 'partition_by_cores' is not defined"
     ]
    }
   ],
   "source": [
    "res= partition_by_cores(data.items, 7)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "7"
      ]
     },
     "execution_count": 51,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(res)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "\n",
      "  0%|          | 0/448 [00:00<?, ?it/s]\u001b[A\u001b[A\u001b[A\u001b[A\u001b[A\u001b[A\u001b[A"
     ]
    },
    {
     "ename": "TypeError",
     "evalue": "zip argument #2 must support iteration",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-45-cacfbd0a088c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mvectors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mVectorizer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvectorize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;32m<ipython-input-44-aef08dea39e1>\u001b[0m in \u001b[0;36mvectorize\u001b[0;34m(self, texts)\u001b[0m\n\u001b[1;32m     30\u001b[0m         \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchunks\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     31\u001b[0m             \u001b[0madvance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtexts\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 32\u001b[0;31m             \u001b[0mvectors\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprocess_all\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtexts\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mi\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0madvance\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     33\u001b[0m         \u001b[0;32mreturn\u001b[0m \u001b[0mvectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m<ipython-input-44-aef08dea39e1>\u001b[0m in \u001b[0;36mprocess_all\u001b[0;34m(self, texts)\u001b[0m\n\u001b[1;32m     21\u001b[0m         \u001b[0;32mwith\u001b[0m \u001b[0mProcessPoolExecutor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn_cpus\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     22\u001b[0m             res = sum(e.map(self._process_all_1,\n\u001b[0;32m---> 23\u001b[0;31m                              partition_by_cores(texts, self.n_cpus),5), [])\n\u001b[0m\u001b[1;32m     24\u001b[0m         \u001b[0;32mreturn\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     25\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/anaconda3/envs/bio/lib/python3.6/concurrent/futures/process.py\u001b[0m in \u001b[0;36mmap\u001b[0;34m(self, fn, timeout, chunksize, *iterables)\u001b[0m\n\u001b[1;32m    494\u001b[0m         results = super().map(partial(_process_chunk, fn),\n\u001b[1;32m    495\u001b[0m                               \u001b[0m_get_chunks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchunksize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 496\u001b[0;31m                               timeout=timeout)\n\u001b[0m\u001b[1;32m    497\u001b[0m         \u001b[0;32mreturn\u001b[0m \u001b[0m_chain_from_iterable_of_lists\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresults\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    498\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/anaconda3/envs/bio/lib/python3.6/concurrent/futures/_base.py\u001b[0m in \u001b[0;36mmap\u001b[0;34m(self, fn, timeout, chunksize, *iterables)\u001b[0m\n\u001b[1;32m    573\u001b[0m             \u001b[0mend_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmonotonic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    574\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 575\u001b[0;31m         \u001b[0mfs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubmit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0margs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    576\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    577\u001b[0m         \u001b[0;31m# Yield must be hidden in closure so that the futures are submitted\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/anaconda3/envs/bio/lib/python3.6/concurrent/futures/_base.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m    573\u001b[0m             \u001b[0mend_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmonotonic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    574\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 575\u001b[0;31m         \u001b[0mfs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubmit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0margs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    576\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    577\u001b[0m         \u001b[0;31m# Yield must be hidden in closure so that the futures are submitted\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/anaconda3/envs/bio/lib/python3.6/concurrent/futures/process.py\u001b[0m in \u001b[0;36m_get_chunks\u001b[0;34m(chunksize, *iterables)\u001b[0m\n\u001b[1;32m    135\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_get_chunks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    136\u001b[0m     \u001b[0;34m\"\"\" Iterates over zip()ed iterables in chunks. \"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 137\u001b[0;31m     \u001b[0mit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    138\u001b[0m     \u001b[0;32mwhile\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    139\u001b[0m         \u001b[0mchunk\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitertools\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mislice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mit\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mTypeError\u001b[0m: zip argument #2 must support iteration"
     ]
    }
   ],
   "source": [
    "vectors = Vectorizer().vectorize(data.items)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "collapsed": true
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "  0%|          | 0/447112 [00:00<?, ?it/s]\u001b[A"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-26-1645d2202b3e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0mvectors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0msequence\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m     \u001b[0mmers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mword_vectors\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mk_mers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msequence\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'ATGC'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      4\u001b[0m     \u001b[0mvectors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m<ipython-input-26-1645d2202b3e>\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0mvectors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0msequence\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m     \u001b[0mmers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mword_vectors\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mk_mers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msequence\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'ATGC'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      4\u001b[0m     \u001b[0mvectors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m<ipython-input-9-dff9effaec09>\u001b[0m in \u001b[0;36mk_mers\u001b[0;34m(sequence, k)\u001b[0m\n\u001b[1;32m      5\u001b[0m         \u001b[0;32myield\u001b[0m \u001b[0;34m\"\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      6\u001b[0m     \u001b[0;32mfor\u001b[0m \u001b[0melem\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mit\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m         \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0melem\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      8\u001b[0m         \u001b[0;32myield\u001b[0m \u001b[0;34m\"\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "vectors = []\n",
    "for sequence in tqdm(data.items):\n",
    "    mers = np.asarray([word_vectors[x] for x in k_mers(sequence, 10) if set(x) == set('ATGC')])\n",
    "    vectors.append(mers.mean(axis=0))\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python [conda env:bio] *",
   "language": "python",
   "name": "conda-env-bio-py"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}