|
a |
|
b/ipynb/sequences to dataframe.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"%load_ext autoreload\n", |
|
|
10 |
"%autoreload 2" |
|
|
11 |
] |
|
|
12 |
}, |
|
|
13 |
{ |
|
|
14 |
"cell_type": "code", |
|
|
15 |
"execution_count": 31, |
|
|
16 |
"metadata": {}, |
|
|
17 |
"outputs": [], |
|
|
18 |
"source": [ |
|
|
19 |
"#export\n", |
|
|
20 |
"import sys\n", |
|
|
21 |
"sys.path.append(\"..\")\n", |
|
|
22 |
"from faigen.data import sequence \n", |
|
|
23 |
"from faigen.data.sequence import regex_filter, count_filter, Dna2VecDataBunch,Dna2VecList, seq_record\n", |
|
|
24 |
"from functools import partial\n", |
|
|
25 |
"import pandas as pd\n", |
|
|
26 |
"import numpy as np\n", |
|
|
27 |
"from sklearn.decomposition import PCA\n", |
|
|
28 |
"from sklearn import manifold,neighbors\n", |
|
|
29 |
"from scipy.cluster.hierarchy import dendrogram, linkage \n", |
|
|
30 |
"from matplotlib import pyplot as plt\n", |
|
|
31 |
"import seaborn as sns; sns.set(color_codes=True)\n", |
|
|
32 |
"import plotly.plotly as py\n", |
|
|
33 |
"import plotly.graph_objs as go\n", |
|
|
34 |
"from fastai import *\n", |
|
|
35 |
"from fastai.data_block import *\n", |
|
|
36 |
"from fastai.basic_train import *\n", |
|
|
37 |
"from fastai.layers import *\n", |
|
|
38 |
"from fastai.metrics import *\n", |
|
|
39 |
"from fastai.text import *\n", |
|
|
40 |
"from gensim.models import Word2Vec\n", |
|
|
41 |
"import torch \n", |
|
|
42 |
"import torch.nn as nn\n", |
|
|
43 |
"import torch.nn.functional as F\n", |
|
|
44 |
"import gc \n", |
|
|
45 |
"from itertools import islice\n", |
|
|
46 |
"from tqdm import tqdm\n" |
|
|
47 |
] |
|
|
48 |
}, |
|
|
49 |
{ |
|
|
50 |
"cell_type": "code", |
|
|
51 |
"execution_count": 4, |
|
|
52 |
"metadata": {}, |
|
|
53 |
"outputs": [ |
|
|
54 |
{ |
|
|
55 |
"name": "stdout", |
|
|
56 |
"output_type": "stream", |
|
|
57 |
"text": [ |
|
|
58 |
"Loading embedding\n" |
|
|
59 |
] |
|
|
60 |
} |
|
|
61 |
], |
|
|
62 |
"source": [ |
|
|
63 |
"#export\n", |
|
|
64 |
"print(\"Loading embedding\")\n", |
|
|
65 |
"word_vectors = Word2Vec.load_word2vec_format('/data/genomes/embeddings/dna2vec-20190612-1611-k10to10-100d-10c-4870Mbp-sliding-kPR.w2v') " |
|
|
66 |
] |
|
|
67 |
}, |
|
|
68 |
{ |
|
|
69 |
"cell_type": "code", |
|
|
70 |
"execution_count": 5, |
|
|
71 |
"metadata": {}, |
|
|
72 |
"outputs": [ |
|
|
73 |
{ |
|
|
74 |
"data": { |
|
|
75 |
"text/plain": [ |
|
|
76 |
"14495" |
|
|
77 |
] |
|
|
78 |
}, |
|
|
79 |
"execution_count": 5, |
|
|
80 |
"metadata": {}, |
|
|
81 |
"output_type": "execute_result" |
|
|
82 |
} |
|
|
83 |
], |
|
|
84 |
"source": [ |
|
|
85 |
"#export\n", |
|
|
86 |
"# DB=\"/data/genomes/GenSeq_fastas\"\n", |
|
|
87 |
"# DB='/home/serge/development/genomes/ncbi-genomes-2019-04-07/bacterial genomes'\n", |
|
|
88 |
"# DB=\"/home/serge/database/data/genomes/ncbi-genomes-2019-04-07/Bacillus\"\n", |
|
|
89 |
"DB=\"/home/serge/database/data/genomes/bacillus/ncbi-genomes-2019-06-25\"\n", |
|
|
90 |
"data, X, dfx = None,None,None\n", |
|
|
91 |
"bunch=None\n", |
|
|
92 |
"learner=None\n", |
|
|
93 |
"gc.collect()" |
|
|
94 |
] |
|
|
95 |
}, |
|
|
96 |
{ |
|
|
97 |
"cell_type": "code", |
|
|
98 |
"execution_count": 6, |
|
|
99 |
"metadata": {}, |
|
|
100 |
"outputs": [ |
|
|
101 |
{ |
|
|
102 |
"name": "stderr", |
|
|
103 |
"output_type": "stream", |
|
|
104 |
"text": [ |
|
|
105 |
"100%|██████████| 3964/3964 [06:13<00:00, 15.06it/s]\n", |
|
|
106 |
"100%|██████████| 3964/3964 [05:12<00:00, 14.89it/s]\n" |
|
|
107 |
] |
|
|
108 |
} |
|
|
109 |
], |
|
|
110 |
"source": [ |
|
|
111 |
"filters=[partial(regex_filter, rx=\"plasmid\", keep=False)]\n", |
|
|
112 |
"data = sequence.Dna2VecList.from_folder(DB,filters=filters,n_cpus=7,emb=word_vectors,recurse=True)\n", |
|
|
113 |
"sequence.GSFileProcessor().process(data)\n" |
|
|
114 |
] |
|
|
115 |
}, |
|
|
116 |
{ |
|
|
117 |
"cell_type": "code", |
|
|
118 |
"execution_count": null, |
|
|
119 |
"metadata": {}, |
|
|
120 |
"outputs": [], |
|
|
121 |
"source": [] |
|
|
122 |
}, |
|
|
123 |
{ |
|
|
124 |
"cell_type": "code", |
|
|
125 |
"execution_count": 58, |
|
|
126 |
"metadata": {}, |
|
|
127 |
"outputs": [], |
|
|
128 |
"source": [ |
|
|
129 |
"dfseq = pd.DataFrame.from_dict({\"seq\": list(map(str, data.items)),\n", |
|
|
130 |
" \"description\": data.descriptions, \n", |
|
|
131 |
" \"file\":data.files,\n", |
|
|
132 |
" \"id\":data.ids, \n", |
|
|
133 |
" \"name\":data.names})" |
|
|
134 |
] |
|
|
135 |
}, |
|
|
136 |
{ |
|
|
137 |
"cell_type": "code", |
|
|
138 |
"execution_count": null, |
|
|
139 |
"metadata": {}, |
|
|
140 |
"outputs": [], |
|
|
141 |
"source": [] |
|
|
142 |
}, |
|
|
143 |
{ |
|
|
144 |
"cell_type": "code", |
|
|
145 |
"execution_count": 60, |
|
|
146 |
"metadata": {}, |
|
|
147 |
"outputs": [], |
|
|
148 |
"source": [ |
|
|
149 |
"dfseq.to_pickle(\"/home/serge/database/data/genomes/bacillus/ncbi-genomes-2019-06-25/all_sequences-no-plasmid.pkl\")" |
|
|
150 |
] |
|
|
151 |
}, |
|
|
152 |
{ |
|
|
153 |
"cell_type": "code", |
|
|
154 |
"execution_count": 9, |
|
|
155 |
"metadata": {}, |
|
|
156 |
"outputs": [], |
|
|
157 |
"source": [ |
|
|
158 |
"def k_mers(sequence, k):\n", |
|
|
159 |
" it = iter(sequence)\n", |
|
|
160 |
" result = tuple(islice(it, k))\n", |
|
|
161 |
" if len(result) == k:\n", |
|
|
162 |
" yield \"\".join(result)\n", |
|
|
163 |
" for elem in it:\n", |
|
|
164 |
" result = result[1:] + (elem,)\n", |
|
|
165 |
" yield \"\".join(result)" |
|
|
166 |
] |
|
|
167 |
}, |
|
|
168 |
{ |
|
|
169 |
"cell_type": "code", |
|
|
170 |
"execution_count": 7, |
|
|
171 |
"metadata": {}, |
|
|
172 |
"outputs": [ |
|
|
173 |
{ |
|
|
174 |
"data": { |
|
|
175 |
"text/plain": [ |
|
|
176 |
"Seq('ATTTCCCATGAAATAGGTTCGGTTCTGTTAGTAAAAAATTCGAAATATAGTAAG...NNN', SingleLetterAlphabet())" |
|
|
177 |
] |
|
|
178 |
}, |
|
|
179 |
"execution_count": 7, |
|
|
180 |
"metadata": {}, |
|
|
181 |
"output_type": "execute_result" |
|
|
182 |
} |
|
|
183 |
], |
|
|
184 |
"source": [ |
|
|
185 |
"data.items[0]" |
|
|
186 |
] |
|
|
187 |
}, |
|
|
188 |
{ |
|
|
189 |
"cell_type": "code", |
|
|
190 |
"execution_count": 13, |
|
|
191 |
"metadata": { |
|
|
192 |
"scrolled": true |
|
|
193 |
}, |
|
|
194 |
"outputs": [], |
|
|
195 |
"source": [ |
|
|
196 |
"mers = np.asarray([word_vectors[x] for x in k_mers(str(data.items[0]), 10) if set(x) == set('ATGC')])" |
|
|
197 |
] |
|
|
198 |
}, |
|
|
199 |
{ |
|
|
200 |
"cell_type": "code", |
|
|
201 |
"execution_count": 17, |
|
|
202 |
"metadata": {}, |
|
|
203 |
"outputs": [ |
|
|
204 |
{ |
|
|
205 |
"data": { |
|
|
206 |
"text/plain": [ |
|
|
207 |
"(100,)" |
|
|
208 |
] |
|
|
209 |
}, |
|
|
210 |
"execution_count": 17, |
|
|
211 |
"metadata": {}, |
|
|
212 |
"output_type": "execute_result" |
|
|
213 |
} |
|
|
214 |
], |
|
|
215 |
"source": [ |
|
|
216 |
"mers.mean(axis=0).shape" |
|
|
217 |
] |
|
|
218 |
}, |
|
|
219 |
{ |
|
|
220 |
"cell_type": "code", |
|
|
221 |
"execution_count": 44, |
|
|
222 |
"metadata": {}, |
|
|
223 |
"outputs": [], |
|
|
224 |
"source": [ |
|
|
225 |
"class Vectorizer:\n", |
|
|
226 |
" def __init__(self,texts=None, ngram=10, skip=0, n_cpus=7, chunksize=1000):\n", |
|
|
227 |
" self.texts, self.ngram, self.skip, self.n_cpus, self.chunksize = texts, ngram, skip, n_cpus, chunksize\n", |
|
|
228 |
" \n", |
|
|
229 |
" def vectorizer(self, t):\n", |
|
|
230 |
" if self.ngram == 1:\n", |
|
|
231 |
" toks = list(t)\n", |
|
|
232 |
" if self.skip > 0:\n", |
|
|
233 |
" toks = toks[::2] if self.skip == 1 else toks[::self.skip]\n", |
|
|
234 |
" else:\n", |
|
|
235 |
" toks = [t[i:i + self.ngram] for i in range(0, len(t), self.ngram + self.skip) if i+self.ngram < len(t)] \n", |
|
|
236 |
" res = np.asarray(word_vectors[filter(lambda x: set(x) == set(\"ACGT\"), toks)]).mean(axis=0)\n", |
|
|
237 |
" toks=None\n", |
|
|
238 |
" return res\n", |
|
|
239 |
"\n", |
|
|
240 |
" def _process_all_1(self, texts):\n", |
|
|
241 |
" return [self.vectorizer(str(t)) for t in texts]\n", |
|
|
242 |
"\n", |
|
|
243 |
" def process_all(self, texts):\n", |
|
|
244 |
" if self.n_cpus <= 1: return self._process_all_1(texts)\n", |
|
|
245 |
" with ProcessPoolExecutor(self.n_cpus) as e:\n", |
|
|
246 |
" res = sum(e.map(self._process_all_1, partition_by_cores(texts, self.n_cpus)), [])\n", |
|
|
247 |
" return res\n", |
|
|
248 |
" \n", |
|
|
249 |
" def vectorize(self,texts=None):\n", |
|
|
250 |
" texts = self.texts if self.texts is not None else texts\n", |
|
|
251 |
" vectors = []\n", |
|
|
252 |
" chunks = len(texts) // self.chunksize + 1\n", |
|
|
253 |
" for i in tqdm(range(chunks)):\n", |
|
|
254 |
" advance = min((len(texts) - i * self.chunksize), self.chunksize)\n", |
|
|
255 |
" vectors += self.process_all(texts[i:i + advance])\n", |
|
|
256 |
" return vectors" |
|
|
257 |
] |
|
|
258 |
}, |
|
|
259 |
{ |
|
|
260 |
"cell_type": "code", |
|
|
261 |
"execution_count": 3, |
|
|
262 |
"metadata": {}, |
|
|
263 |
"outputs": [ |
|
|
264 |
{ |
|
|
265 |
"ename": "TypeError", |
|
|
266 |
"evalue": "can only concatenate list (not \"int\") to list", |
|
|
267 |
"output_type": "error", |
|
|
268 |
"traceback": [ |
|
|
269 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
|
|
270 |
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", |
|
|
271 |
"\u001b[0;32m<ipython-input-3-b170b0d83771>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
|
|
272 |
"\u001b[0;31mTypeError\u001b[0m: can only concatenate list (not \"int\") to list" |
|
|
273 |
] |
|
|
274 |
} |
|
|
275 |
], |
|
|
276 |
"source": [ |
|
|
277 |
"sum(list([1]),[])" |
|
|
278 |
] |
|
|
279 |
}, |
|
|
280 |
{ |
|
|
281 |
"cell_type": "code", |
|
|
282 |
"execution_count": 6, |
|
|
283 |
"metadata": {}, |
|
|
284 |
"outputs": [ |
|
|
285 |
{ |
|
|
286 |
"name": "stdout", |
|
|
287 |
"output_type": "stream", |
|
|
288 |
"text": [ |
|
|
289 |
"Object `ProcessPoolExecutor` not found.\n" |
|
|
290 |
] |
|
|
291 |
} |
|
|
292 |
], |
|
|
293 |
"source": [ |
|
|
294 |
"ProcessPoolExecutor??" |
|
|
295 |
] |
|
|
296 |
}, |
|
|
297 |
{ |
|
|
298 |
"cell_type": "code", |
|
|
299 |
"execution_count": 5, |
|
|
300 |
"metadata": {}, |
|
|
301 |
"outputs": [ |
|
|
302 |
{ |
|
|
303 |
"ename": "NameError", |
|
|
304 |
"evalue": "name 'partition_by_cores' is not defined", |
|
|
305 |
"output_type": "error", |
|
|
306 |
"traceback": [ |
|
|
307 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
|
|
308 |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", |
|
|
309 |
"\u001b[0;32m<ipython-input-5-9f45c6633e01>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mres\u001b[0m\u001b[0;34m=\u001b[0m \u001b[0mpartition_by_cores\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m7\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
|
|
310 |
"\u001b[0;31mNameError\u001b[0m: name 'partition_by_cores' is not defined" |
|
|
311 |
] |
|
|
312 |
} |
|
|
313 |
], |
|
|
314 |
"source": [ |
|
|
315 |
"res= partition_by_cores(data.items, 7)" |
|
|
316 |
] |
|
|
317 |
}, |
|
|
318 |
{ |
|
|
319 |
"cell_type": "code", |
|
|
320 |
"execution_count": 51, |
|
|
321 |
"metadata": {}, |
|
|
322 |
"outputs": [ |
|
|
323 |
{ |
|
|
324 |
"data": { |
|
|
325 |
"text/plain": [ |
|
|
326 |
"7" |
|
|
327 |
] |
|
|
328 |
}, |
|
|
329 |
"execution_count": 51, |
|
|
330 |
"metadata": {}, |
|
|
331 |
"output_type": "execute_result" |
|
|
332 |
} |
|
|
333 |
], |
|
|
334 |
"source": [ |
|
|
335 |
"len(res)" |
|
|
336 |
] |
|
|
337 |
}, |
|
|
338 |
{ |
|
|
339 |
"cell_type": "code", |
|
|
340 |
"execution_count": 45, |
|
|
341 |
"metadata": {}, |
|
|
342 |
"outputs": [ |
|
|
343 |
{ |
|
|
344 |
"name": "stderr", |
|
|
345 |
"output_type": "stream", |
|
|
346 |
"text": [ |
|
|
347 |
"\n", |
|
|
348 |
"\n", |
|
|
349 |
"\n", |
|
|
350 |
"\n", |
|
|
351 |
"\n", |
|
|
352 |
"\n", |
|
|
353 |
"\n", |
|
|
354 |
" 0%| | 0/448 [00:00<?, ?it/s]\u001b[A\u001b[A\u001b[A\u001b[A\u001b[A\u001b[A\u001b[A" |
|
|
355 |
] |
|
|
356 |
}, |
|
|
357 |
{ |
|
|
358 |
"ename": "TypeError", |
|
|
359 |
"evalue": "zip argument #2 must support iteration", |
|
|
360 |
"output_type": "error", |
|
|
361 |
"traceback": [ |
|
|
362 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
|
|
363 |
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", |
|
|
364 |
"\u001b[0;32m<ipython-input-45-cacfbd0a088c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mvectors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mVectorizer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvectorize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
|
|
365 |
"\u001b[0;32m<ipython-input-44-aef08dea39e1>\u001b[0m in \u001b[0;36mvectorize\u001b[0;34m(self, texts)\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchunks\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[0madvance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtexts\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 32\u001b[0;31m \u001b[0mvectors\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprocess_all\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtexts\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mi\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0madvance\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 33\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mvectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
366 |
"\u001b[0;32m<ipython-input-44-aef08dea39e1>\u001b[0m in \u001b[0;36mprocess_all\u001b[0;34m(self, texts)\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mProcessPoolExecutor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn_cpus\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m res = sum(e.map(self._process_all_1,\n\u001b[0;32m---> 23\u001b[0;31m partition_by_cores(texts, self.n_cpus),5), [])\n\u001b[0m\u001b[1;32m 24\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
367 |
"\u001b[0;32m~/anaconda3/envs/bio/lib/python3.6/concurrent/futures/process.py\u001b[0m in \u001b[0;36mmap\u001b[0;34m(self, fn, timeout, chunksize, *iterables)\u001b[0m\n\u001b[1;32m 494\u001b[0m results = super().map(partial(_process_chunk, fn),\n\u001b[1;32m 495\u001b[0m \u001b[0m_get_chunks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchunksize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 496\u001b[0;31m timeout=timeout)\n\u001b[0m\u001b[1;32m 497\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0m_chain_from_iterable_of_lists\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresults\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 498\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
368 |
"\u001b[0;32m~/anaconda3/envs/bio/lib/python3.6/concurrent/futures/_base.py\u001b[0m in \u001b[0;36mmap\u001b[0;34m(self, fn, timeout, chunksize, *iterables)\u001b[0m\n\u001b[1;32m 573\u001b[0m \u001b[0mend_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmonotonic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 574\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 575\u001b[0;31m \u001b[0mfs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubmit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0margs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 576\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 577\u001b[0m \u001b[0;31m# Yield must be hidden in closure so that the futures are submitted\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
369 |
"\u001b[0;32m~/anaconda3/envs/bio/lib/python3.6/concurrent/futures/_base.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 573\u001b[0m \u001b[0mend_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmonotonic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 574\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 575\u001b[0;31m \u001b[0mfs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubmit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0margs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 576\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 577\u001b[0m \u001b[0;31m# Yield must be hidden in closure so that the futures are submitted\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
370 |
"\u001b[0;32m~/anaconda3/envs/bio/lib/python3.6/concurrent/futures/process.py\u001b[0m in \u001b[0;36m_get_chunks\u001b[0;34m(chunksize, *iterables)\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_get_chunks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[0;34m\"\"\" Iterates over zip()ed iterables in chunks. \"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 137\u001b[0;31m \u001b[0mit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 138\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0mchunk\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitertools\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mislice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mit\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
371 |
"\u001b[0;31mTypeError\u001b[0m: zip argument #2 must support iteration" |
|
|
372 |
] |
|
|
373 |
} |
|
|
374 |
], |
|
|
375 |
"source": [ |
|
|
376 |
"vectors = Vectorizer().vectorize(data.items)" |
|
|
377 |
] |
|
|
378 |
}, |
|
|
379 |
{ |
|
|
380 |
"cell_type": "code", |
|
|
381 |
"execution_count": 26, |
|
|
382 |
"metadata": { |
|
|
383 |
"collapsed": true |
|
|
384 |
}, |
|
|
385 |
"outputs": [ |
|
|
386 |
{ |
|
|
387 |
"name": "stderr", |
|
|
388 |
"output_type": "stream", |
|
|
389 |
"text": [ |
|
|
390 |
"\n", |
|
|
391 |
" 0%| | 0/447112 [00:00<?, ?it/s]\u001b[A" |
|
|
392 |
] |
|
|
393 |
}, |
|
|
394 |
{ |
|
|
395 |
"ename": "KeyboardInterrupt", |
|
|
396 |
"evalue": "", |
|
|
397 |
"output_type": "error", |
|
|
398 |
"traceback": [ |
|
|
399 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
|
|
400 |
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", |
|
|
401 |
"\u001b[0;32m<ipython-input-26-1645d2202b3e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mvectors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0msequence\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mmers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mword_vectors\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mk_mers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msequence\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'ATGC'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mvectors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
402 |
"\u001b[0;32m<ipython-input-26-1645d2202b3e>\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mvectors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0msequence\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mmers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mword_vectors\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mk_mers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msequence\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'ATGC'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mvectors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
403 |
"\u001b[0;32m<ipython-input-9-dff9effaec09>\u001b[0m in \u001b[0;36mk_mers\u001b[0;34m(sequence, k)\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0;34m\"\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0melem\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mit\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0melem\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0;34m\"\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
|
|
404 |
"\u001b[0;31mKeyboardInterrupt\u001b[0m: " |
|
|
405 |
] |
|
|
406 |
} |
|
|
407 |
], |
|
|
408 |
"source": [ |
|
|
409 |
"vectors = []\n", |
|
|
410 |
"for sequence in tqdm(data.items):\n", |
|
|
411 |
" mers = np.asarray([word_vectors[x] for x in k_mers(sequence, 10) if set(x) == set('ATGC')])\n", |
|
|
412 |
" vectors.append(mers.mean(axis=0))\n", |
|
|
413 |
" " |
|
|
414 |
] |
|
|
415 |
}, |
|
|
416 |
{ |
|
|
417 |
"cell_type": "code", |
|
|
418 |
"execution_count": null, |
|
|
419 |
"metadata": {}, |
|
|
420 |
"outputs": [], |
|
|
421 |
"source": [] |
|
|
422 |
} |
|
|
423 |
], |
|
|
424 |
"metadata": { |
|
|
425 |
"kernelspec": { |
|
|
426 |
"display_name": "Python [conda env:bio] *", |
|
|
427 |
"language": "python", |
|
|
428 |
"name": "conda-env-bio-py" |
|
|
429 |
}, |
|
|
430 |
"language_info": { |
|
|
431 |
"codemirror_mode": { |
|
|
432 |
"name": "ipython", |
|
|
433 |
"version": 3 |
|
|
434 |
}, |
|
|
435 |
"file_extension": ".py", |
|
|
436 |
"mimetype": "text/x-python", |
|
|
437 |
"name": "python", |
|
|
438 |
"nbconvert_exporter": "python", |
|
|
439 |
"pygments_lexer": "ipython3", |
|
|
440 |
"version": "3.6.8" |
|
|
441 |
} |
|
|
442 |
}, |
|
|
443 |
"nbformat": 4, |
|
|
444 |
"nbformat_minor": 2 |
|
|
445 |
} |