--- a +++ b/ipynb/sequences to dataframe.ipynb @@ -0,0 +1,445 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "#export\n", + "import sys\n", + "sys.path.append(\"..\")\n", + "from faigen.data import sequence \n", + "from faigen.data.sequence import regex_filter, count_filter, Dna2VecDataBunch,Dna2VecList, seq_record\n", + "from functools import partial\n", + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.decomposition import PCA\n", + "from sklearn import manifold,neighbors\n", + "from scipy.cluster.hierarchy import dendrogram, linkage \n", + "from matplotlib import pyplot as plt\n", + "import seaborn as sns; sns.set(color_codes=True)\n", + "import plotly.plotly as py\n", + "import plotly.graph_objs as go\n", + "from fastai import *\n", + "from fastai.data_block import *\n", + "from fastai.basic_train import *\n", + "from fastai.layers import *\n", + "from fastai.metrics import *\n", + "from fastai.text import *\n", + "from gensim.models import Word2Vec\n", + "import torch \n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "import gc \n", + "from itertools import islice\n", + "from tqdm import tqdm\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading embedding\n" + ] + } + ], + "source": [ + "#export\n", + "print(\"Loading embedding\")\n", + "word_vectors = Word2Vec.load_word2vec_format('/data/genomes/embeddings/dna2vec-20190612-1611-k10to10-100d-10c-4870Mbp-sliding-kPR.w2v') " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "14495" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#export\n", + "# DB=\"/data/genomes/GenSeq_fastas\"\n", + "# DB='/home/serge/development/genomes/ncbi-genomes-2019-04-07/bacterial genomes'\n", + "# DB=\"/home/serge/database/data/genomes/ncbi-genomes-2019-04-07/Bacillus\"\n", + "DB=\"/home/serge/database/data/genomes/bacillus/ncbi-genomes-2019-06-25\"\n", + "data, X, dfx = None,None,None\n", + "bunch=None\n", + "learner=None\n", + "gc.collect()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 3964/3964 [06:13<00:00, 15.06it/s]\n", + "100%|██████████| 3964/3964 [05:12<00:00, 14.89it/s]\n" + ] + } + ], + "source": [ + "filters=[partial(regex_filter, rx=\"plasmid\", keep=False)]\n", + "data = sequence.Dna2VecList.from_folder(DB,filters=filters,n_cpus=7,emb=word_vectors,recurse=True)\n", + "sequence.GSFileProcessor().process(data)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [], + "source": [ + "dfseq = pd.DataFrame.from_dict({\"seq\": list(map(str, data.items)),\n", + " \"description\": data.descriptions, \n", + " \"file\":data.files,\n", + " \"id\":data.ids, \n", + " \"name\":data.names})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [], + "source": [ + "dfseq.to_pickle(\"/home/serge/database/data/genomes/bacillus/ncbi-genomes-2019-06-25/all_sequences-no-plasmid.pkl\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def k_mers(sequence, k):\n", + " it = iter(sequence)\n", + " result = tuple(islice(it, k))\n", + " if len(result) == k:\n", + " yield \"\".join(result)\n", + " for elem in it:\n", + " result = result[1:] + (elem,)\n", + " yield \"\".join(result)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Seq('ATTTCCCATGAAATAGGTTCGGTTCTGTTAGTAAAAAATTCGAAATATAGTAAG...NNN', SingleLetterAlphabet())" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.items[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "mers = np.asarray([word_vectors[x] for x in k_mers(str(data.items[0]), 10) if set(x) == set('ATGC')])" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(100,)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mers.mean(axis=0).shape" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "class Vectorizer:\n", + " def __init__(self,texts=None, ngram=10, skip=0, n_cpus=7, chunksize=1000):\n", + " self.texts, self.ngram, self.skip, self.n_cpus, self.chunksize = texts, ngram, skip, n_cpus, chunksize\n", + " \n", + " def vectorizer(self, t):\n", + " if self.ngram == 1:\n", + " toks = list(t)\n", + " if self.skip > 0:\n", + " toks = toks[::2] if self.skip == 1 else toks[::self.skip]\n", + " else:\n", + " toks = [t[i:i + self.ngram] for i in range(0, len(t), self.ngram + self.skip) if i+self.ngram < len(t)] \n", + " res = np.asarray(word_vectors[filter(lambda x: set(x) == set(\"ACGT\"), toks)]).mean(axis=0)\n", + " toks=None\n", + " return res\n", + "\n", + " def _process_all_1(self, texts):\n", + " return [self.vectorizer(str(t)) for t in texts]\n", + "\n", + " def process_all(self, texts):\n", + " if self.n_cpus <= 1: return self._process_all_1(texts)\n", + " with ProcessPoolExecutor(self.n_cpus) as e:\n", + " res = sum(e.map(self._process_all_1, partition_by_cores(texts, self.n_cpus)), [])\n", + " return res\n", + " \n", + " def vectorize(self,texts=None):\n", + " texts = self.texts if self.texts is not None else texts\n", + " vectors = []\n", + " chunks = len(texts) // self.chunksize + 1\n", + " for i in tqdm(range(chunks)):\n", + " advance = min((len(texts) - i * self.chunksize), self.chunksize)\n", + " vectors += self.process_all(texts[i:i + advance])\n", + " return vectors" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "can only concatenate list (not \"int\") to list", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-3-b170b0d83771>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: can only concatenate list (not \"int\") to list" + ] + } + ], + "source": [ + "sum(list([1]),[])" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Object `ProcessPoolExecutor` not found.\n" + ] + } + ], + "source": [ + "ProcessPoolExecutor??" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'partition_by_cores' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-5-9f45c6633e01>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mres\u001b[0m\u001b[0;34m=\u001b[0m \u001b[0mpartition_by_cores\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m7\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'partition_by_cores' is not defined" + ] + } + ], + "source": [ + "res= partition_by_cores(data.items, 7)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(res)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + " 0%| | 0/448 [00:00<?, ?it/s]\u001b[A\u001b[A\u001b[A\u001b[A\u001b[A\u001b[A\u001b[A" + ] + }, + { + "ename": "TypeError", + "evalue": "zip argument #2 must support iteration", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-45-cacfbd0a088c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mvectors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mVectorizer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvectorize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m<ipython-input-44-aef08dea39e1>\u001b[0m in \u001b[0;36mvectorize\u001b[0;34m(self, texts)\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mchunks\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[0madvance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtexts\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 32\u001b[0;31m \u001b[0mvectors\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprocess_all\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtexts\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mi\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0madvance\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 33\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mvectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m<ipython-input-44-aef08dea39e1>\u001b[0m in \u001b[0;36mprocess_all\u001b[0;34m(self, texts)\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mProcessPoolExecutor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn_cpus\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m res = sum(e.map(self._process_all_1,\n\u001b[0;32m---> 23\u001b[0;31m partition_by_cores(texts, self.n_cpus),5), [])\n\u001b[0m\u001b[1;32m 24\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/bio/lib/python3.6/concurrent/futures/process.py\u001b[0m in \u001b[0;36mmap\u001b[0;34m(self, fn, timeout, chunksize, *iterables)\u001b[0m\n\u001b[1;32m 494\u001b[0m results = super().map(partial(_process_chunk, fn),\n\u001b[1;32m 495\u001b[0m \u001b[0m_get_chunks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchunksize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 496\u001b[0;31m timeout=timeout)\n\u001b[0m\u001b[1;32m 497\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0m_chain_from_iterable_of_lists\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresults\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 498\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/bio/lib/python3.6/concurrent/futures/_base.py\u001b[0m in \u001b[0;36mmap\u001b[0;34m(self, fn, timeout, chunksize, *iterables)\u001b[0m\n\u001b[1;32m 573\u001b[0m \u001b[0mend_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmonotonic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 574\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 575\u001b[0;31m \u001b[0mfs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubmit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0margs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 576\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 577\u001b[0m \u001b[0;31m# Yield must be hidden in closure so that the futures are submitted\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/bio/lib/python3.6/concurrent/futures/_base.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 573\u001b[0m \u001b[0mend_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmonotonic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 574\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 575\u001b[0;31m \u001b[0mfs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubmit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0margs\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 576\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 577\u001b[0m \u001b[0;31m# Yield must be hidden in closure so that the futures are submitted\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/bio/lib/python3.6/concurrent/futures/process.py\u001b[0m in \u001b[0;36m_get_chunks\u001b[0;34m(chunksize, *iterables)\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_get_chunks\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[0;34m\"\"\" Iterates over zip()ed iterables in chunks. \"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 137\u001b[0;31m \u001b[0mit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0miterables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 138\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0mchunk\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitertools\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mislice\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mit\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: zip argument #2 must support iteration" + ] + } + ], + "source": [ + "vectors = Vectorizer().vectorize(data.items)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + " 0%| | 0/447112 [00:00<?, ?it/s]\u001b[A" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-26-1645d2202b3e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mvectors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0msequence\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mmers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mword_vectors\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mk_mers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msequence\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'ATGC'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mvectors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m<ipython-input-26-1645d2202b3e>\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mvectors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0msequence\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mtqdm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mmers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mword_vectors\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mk_mers\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msequence\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'ATGC'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mvectors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m<ipython-input-9-dff9effaec09>\u001b[0m in \u001b[0;36mk_mers\u001b[0;34m(sequence, k)\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0;34m\"\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0melem\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mit\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0melem\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0;34m\"\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "vectors = []\n", + "for sequence in tqdm(data.items):\n", + " mers = np.asarray([word_vectors[x] for x in k_mers(sequence, 10) if set(x) == set('ATGC')])\n", + " vectors.append(mers.mean(axis=0))\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:bio] *", + "language": "python", + "name": "conda-env-bio-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}