|
a |
|
b/deepvariant/labeler/positional_labeler_test.py |
|
|
1 |
# Copyright 2017 Google LLC. |
|
|
2 |
# |
|
|
3 |
# Redistribution and use in source and binary forms, with or without |
|
|
4 |
# modification, are permitted provided that the following conditions |
|
|
5 |
# are met: |
|
|
6 |
# |
|
|
7 |
# 1. Redistributions of source code must retain the above copyright notice, |
|
|
8 |
# this list of conditions and the following disclaimer. |
|
|
9 |
# |
|
|
10 |
# 2. Redistributions in binary form must reproduce the above copyright |
|
|
11 |
# notice, this list of conditions and the following disclaimer in the |
|
|
12 |
# documentation and/or other materials provided with the distribution. |
|
|
13 |
# |
|
|
14 |
# 3. Neither the name of the copyright holder nor the names of its |
|
|
15 |
# contributors may be used to endorse or promote products derived from this |
|
|
16 |
# software without specific prior written permission. |
|
|
17 |
# |
|
|
18 |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
|
19 |
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
|
20 |
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
|
21 |
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
|
|
22 |
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
|
23 |
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
|
24 |
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
|
25 |
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
|
26 |
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
|
27 |
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
|
28 |
# POSSIBILITY OF SUCH DAMAGE. |
|
|
29 |
"""Tests for deepvariant .variant_labeler.""" |
|
|
30 |
|
|
|
31 |
from absl.testing import absltest |
|
|
32 |
from absl.testing import parameterized |
|
|
33 |
|
|
|
34 |
from third_party.nucleus.io import vcf |
|
|
35 |
from third_party.nucleus.testing import test_utils |
|
|
36 |
from third_party.nucleus.util import ranges |
|
|
37 |
from deepvariant import testdata |
|
|
38 |
from deepvariant.labeler import positional_labeler |
|
|
39 |
|
|
|
40 |
|
|
|
41 |
def setUpModule(): |
|
|
42 |
testdata.init() |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
class PositionalVariantLabelerTest(parameterized.TestCase): |
|
|
46 |
# Confident variants: SNP, deletion, and multi-allelic. |
|
|
47 |
snp = test_utils.make_variant(start=10, alleles=['A', 'C'], gt=[0, 1]) |
|
|
48 |
deletion = test_utils.make_variant(start=20, alleles=['ACG', 'A'], gt=[1, 1]) |
|
|
49 |
multiallelic = test_utils.make_variant( |
|
|
50 |
start=30, alleles=['ACT', 'ACTGT', 'A'], gt=[1, 2] |
|
|
51 |
) |
|
|
52 |
# Outside our confident regions. |
|
|
53 |
non_confident = test_utils.make_variant( |
|
|
54 |
start=200, alleles=['A', 'C'], gt=[0, 1] |
|
|
55 |
) |
|
|
56 |
filtered = test_utils.make_variant(start=40, filters='FAILED', gt=[0, 1]) |
|
|
57 |
|
|
|
58 |
variants = [snp, deletion, multiallelic, non_confident, filtered] |
|
|
59 |
|
|
|
60 |
def _make_labeler(self, variants, confident_regions): |
|
|
61 |
return positional_labeler.PositionalVariantLabeler( |
|
|
62 |
truth_vcf_reader=vcf.InMemoryVcfReader(variants), |
|
|
63 |
confident_regions=confident_regions, |
|
|
64 |
) |
|
|
65 |
|
|
|
66 |
@parameterized.parameters( |
|
|
67 |
# Simple tests: we get back our matching variants in the confident regions |
|
|
68 |
dict(candidate=snp, expected_confident=True, expected_truth=snp), |
|
|
69 |
dict( |
|
|
70 |
candidate=deletion, expected_confident=True, expected_truth=deletion |
|
|
71 |
), |
|
|
72 |
dict( |
|
|
73 |
candidate=multiallelic, |
|
|
74 |
expected_confident=True, |
|
|
75 |
expected_truth=multiallelic, |
|
|
76 |
), |
|
|
77 |
# Test the behavior outside of our confident regions. |
|
|
78 |
# If we provide a variant outside the confident regions (non_confident) we |
|
|
79 |
# don't get back any expected_truth variants. |
|
|
80 |
dict( |
|
|
81 |
candidate=non_confident, expected_confident=False, expected_truth=None |
|
|
82 |
), |
|
|
83 |
# No matching variant, so we get a None as well as False. |
|
|
84 |
dict( |
|
|
85 |
candidate=test_utils.make_variant(start=300, alleles=['A', 'C']), |
|
|
86 |
expected_confident=False, |
|
|
87 |
expected_truth=None, |
|
|
88 |
), |
|
|
89 |
# This variant doesn't have any match but we're confident in it. |
|
|
90 |
dict( |
|
|
91 |
candidate=test_utils.make_variant(start=15, alleles=['C', 'A']), |
|
|
92 |
expected_confident=True, |
|
|
93 |
expected_genotype=(0, 0), |
|
|
94 |
expected_truth=test_utils.make_variant( |
|
|
95 |
start=15, alleles=['C', 'A'], gt=[0, 0] |
|
|
96 |
), |
|
|
97 |
), |
|
|
98 |
# These variant start at our SNP but has a different allele. We are |
|
|
99 |
# confident and we get back the true snp variant, despite having the |
|
|
100 |
# different alleles. snp has alleles=['A', 'C'] and gt=[0, 1]. |
|
|
101 |
dict( |
|
|
102 |
candidate=test_utils.make_variant( |
|
|
103 |
start=snp.start, alleles=['A', 'G'] |
|
|
104 |
), |
|
|
105 |
expected_confident=True, |
|
|
106 |
expected_genotype=(0, 0), |
|
|
107 |
expected_truth=snp, |
|
|
108 |
), |
|
|
109 |
dict( |
|
|
110 |
candidate=test_utils.make_variant( |
|
|
111 |
start=snp.start, alleles=['AC', 'C'] |
|
|
112 |
), |
|
|
113 |
expected_confident=True, |
|
|
114 |
expected_genotype=(0, 0), |
|
|
115 |
expected_truth=snp, |
|
|
116 |
), |
|
|
117 |
dict( |
|
|
118 |
candidate=test_utils.make_variant( |
|
|
119 |
start=snp.start, alleles=['A', 'CA'] |
|
|
120 |
), |
|
|
121 |
expected_confident=True, |
|
|
122 |
expected_genotype=(0, 0), |
|
|
123 |
expected_truth=snp, |
|
|
124 |
), |
|
|
125 |
# Checks that we don't match against the filtered truth variant in our |
|
|
126 |
# database. This means that we return not the filtered variant but one |
|
|
127 |
# with a (0, 0) genotype. |
|
|
128 |
dict( |
|
|
129 |
candidate=test_utils.make_variant(start=filtered.start), |
|
|
130 |
expected_confident=True, |
|
|
131 |
expected_genotype=(0, 0), |
|
|
132 |
expected_truth=test_utils.make_variant( |
|
|
133 |
start=filtered.start, gt=(0, 0) |
|
|
134 |
), |
|
|
135 |
), |
|
|
136 |
) |
|
|
137 |
def test_label_variants( |
|
|
138 |
self, |
|
|
139 |
candidate, |
|
|
140 |
expected_confident, |
|
|
141 |
expected_truth, |
|
|
142 |
expected_genotype=None, |
|
|
143 |
): |
|
|
144 |
labeler = self._make_labeler( |
|
|
145 |
self.variants, |
|
|
146 |
ranges.RangeSet([ranges.make_range(self.snp.reference_name, 10, 100)]), |
|
|
147 |
) |
|
|
148 |
|
|
|
149 |
# Call _match so we can compare our expected truth with the actual one. |
|
|
150 |
is_confident, truth_variant = labeler._match(candidate) |
|
|
151 |
self.assertEqual(expected_truth, truth_variant) |
|
|
152 |
self.assertEqual(is_confident, expected_confident) |
|
|
153 |
|
|
|
154 |
# Now call label_variants to exercise the higher-level API. |
|
|
155 |
if expected_genotype is None and expected_truth is not None: |
|
|
156 |
expected_genotype = tuple(expected_truth.calls[0].genotype) |
|
|
157 |
labels = list(labeler.label_variants([candidate])) |
|
|
158 |
self.assertLen(labels, 1) |
|
|
159 |
self.assertEqual(candidate, labels[0].variant) |
|
|
160 |
self.assertEqual(expected_confident, labels[0].is_confident) |
|
|
161 |
self.assertEqual(expected_genotype, labels[0].genotype) |
|
|
162 |
|
|
|
163 |
def test_match_selects_variant_by_start(self): |
|
|
164 |
# Tests that match() selects the variant at the same start even if that |
|
|
165 |
# variant doesn't have the same alleles at candidate and there's an |
|
|
166 |
# overlapping with the same alleles. |
|
|
167 |
overlapping = [ |
|
|
168 |
test_utils.make_variant(start=20, alleles=['CC', 'A'], gt=[1, 1]), |
|
|
169 |
test_utils.make_variant(start=21, alleles=['AAA', 'A'], gt=[0, 1]), |
|
|
170 |
test_utils.make_variant(start=22, alleles=['AA', 'A'], gt=[1, 1]), |
|
|
171 |
] |
|
|
172 |
candidate = test_utils.make_variant(start=21, alleles=['CC', 'A']) |
|
|
173 |
|
|
|
174 |
labeler = self._make_labeler( |
|
|
175 |
overlapping, |
|
|
176 |
ranges.RangeSet( |
|
|
177 |
[ranges.make_range(overlapping[0].reference_name, 0, 100)] |
|
|
178 |
), |
|
|
179 |
) |
|
|
180 |
is_confident, truth_variant = labeler._match(candidate) |
|
|
181 |
self.assertEqual(is_confident, True) |
|
|
182 |
self.assertEqual(truth_variant, overlapping[1]) |
|
|
183 |
|
|
|
184 |
@parameterized.parameters( |
|
|
185 |
dict( |
|
|
186 |
overlapping_variants=[ |
|
|
187 |
test_utils.make_variant(start=20, alleles=['A', 'CC'], gt=[1, 1]), |
|
|
188 |
test_utils.make_variant( |
|
|
189 |
start=20, alleles=['A', 'AAA'], gt=[0, 1] |
|
|
190 |
), |
|
|
191 |
test_utils.make_variant(start=20, alleles=['A', 'AA'], gt=[1, 1]), |
|
|
192 |
], |
|
|
193 |
candidate=test_utils.make_variant(start=20, alleles=['A', 'AAA']), |
|
|
194 |
expected_confident=True, |
|
|
195 |
truth_variant_idx=1, |
|
|
196 |
), |
|
|
197 |
# No candidate variant with matching alt, so use first candidate. |
|
|
198 |
dict( |
|
|
199 |
overlapping_variants=[ |
|
|
200 |
test_utils.make_variant(start=20, alleles=['A', 'CC'], gt=[1, 1]), |
|
|
201 |
test_utils.make_variant( |
|
|
202 |
start=20, alleles=['A', 'AAA'], gt=[0, 1] |
|
|
203 |
), |
|
|
204 |
test_utils.make_variant(start=20, alleles=['A', 'AA'], gt=[1, 1]), |
|
|
205 |
], |
|
|
206 |
candidate=test_utils.make_variant(start=20, alleles=['A', 'TT']), |
|
|
207 |
expected_confident=True, |
|
|
208 |
truth_variant_idx=0, |
|
|
209 |
), |
|
|
210 |
# GAAA->GAA is the same as GA->A (the second one in matches), but if we |
|
|
211 |
# don't simplify the alleles before comparing, there will be no match and |
|
|
212 |
# will incorrectly fall back to the first one. |
|
|
213 |
dict( |
|
|
214 |
overlapping_variants=[ |
|
|
215 |
test_utils.make_variant( |
|
|
216 |
start=20, alleles=['GAA', 'G'], gt=[1, 1] |
|
|
217 |
), |
|
|
218 |
test_utils.make_variant(start=20, alleles=['GA', 'G'], gt=[0, 1]), |
|
|
219 |
], |
|
|
220 |
candidate=test_utils.make_variant(start=20, alleles=['GAAA', 'GAA']), |
|
|
221 |
expected_confident=True, |
|
|
222 |
truth_variant_idx=1, |
|
|
223 |
), |
|
|
224 |
) |
|
|
225 |
def test_match_multiple_matches( |
|
|
226 |
self, |
|
|
227 |
overlapping_variants, |
|
|
228 |
candidate, |
|
|
229 |
expected_confident, |
|
|
230 |
truth_variant_idx, |
|
|
231 |
): |
|
|
232 |
labeler = self._make_labeler( |
|
|
233 |
overlapping_variants, |
|
|
234 |
ranges.RangeSet( |
|
|
235 |
[ranges.make_range(overlapping_variants[0].reference_name, 0, 100)] |
|
|
236 |
), |
|
|
237 |
) |
|
|
238 |
is_confident, variant_match = labeler._match(candidate) |
|
|
239 |
expected_variant = overlapping_variants[truth_variant_idx] |
|
|
240 |
self.assertEqual(is_confident, expected_confident) |
|
|
241 |
self.assertEqual(variant_match, expected_variant) |
|
|
242 |
|
|
|
243 |
|
|
|
244 |
if __name__ == '__main__': |
|
|
245 |
absltest.main() |