|
a |
|
b/deeptrio/make_examples_test.py |
|
|
1 |
# Copyright 2020 Google LLC. |
|
|
2 |
# |
|
|
3 |
# Redistribution and use in source and binary forms, with or without |
|
|
4 |
# modification, are permitted provided that the following conditions |
|
|
5 |
# are met: |
|
|
6 |
# |
|
|
7 |
# 1. Redistributions of source code must retain the above copyright notice, |
|
|
8 |
# this list of conditions and the following disclaimer. |
|
|
9 |
# |
|
|
10 |
# 2. Redistributions in binary form must reproduce the above copyright |
|
|
11 |
# notice, this list of conditions and the following disclaimer in the |
|
|
12 |
# documentation and/or other materials provided with the distribution. |
|
|
13 |
# |
|
|
14 |
# 3. Neither the name of the copyright holder nor the names of its |
|
|
15 |
# contributors may be used to endorse or promote products derived from this |
|
|
16 |
# software without specific prior written permission. |
|
|
17 |
# |
|
|
18 |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
|
19 |
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
|
20 |
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
|
21 |
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
|
|
22 |
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
|
23 |
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
|
24 |
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
|
25 |
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
|
26 |
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
|
27 |
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
|
28 |
# POSSIBILITY OF SUCH DAMAGE. |
|
|
29 |
"""Tests for deeptrio.make_examples.""" |
|
|
30 |
|
|
|
31 |
import errno |
|
|
32 |
import json |
|
|
33 |
import platform |
|
|
34 |
import sys |
|
|
35 |
from unittest import mock |
|
|
36 |
|
|
|
37 |
from absl import flags |
|
|
38 |
from absl import logging |
|
|
39 |
from absl.testing import absltest |
|
|
40 |
from absl.testing import flagsaver |
|
|
41 |
from absl.testing import parameterized |
|
|
42 |
from etils import epath |
|
|
43 |
import numpy as np |
|
|
44 |
|
|
|
45 |
from deeptrio import make_examples |
|
|
46 |
from deeptrio import testdata |
|
|
47 |
from deepvariant import dv_constants |
|
|
48 |
from deepvariant import dv_utils |
|
|
49 |
from deepvariant import make_examples_core |
|
|
50 |
from deepvariant.protos import deepvariant_pb2 |
|
|
51 |
from tensorflow.python.platform import gfile |
|
|
52 |
from third_party.nucleus.io import fasta |
|
|
53 |
from third_party.nucleus.io import sharded_file_utils |
|
|
54 |
from third_party.nucleus.io import tfrecord |
|
|
55 |
from third_party.nucleus.io import vcf |
|
|
56 |
from third_party.nucleus.protos import reference_pb2 |
|
|
57 |
from third_party.nucleus.protos import variants_pb2 |
|
|
58 |
from third_party.nucleus.testing import test_utils |
|
|
59 |
from third_party.nucleus.util import ranges |
|
|
60 |
from third_party.nucleus.util import variant_utils |
|
|
61 |
from third_party.nucleus.util import variantcall_utils |
|
|
62 |
from third_party.nucleus.util import vcf_constants |
|
|
63 |
|
|
|
64 |
FLAGS = flags.FLAGS |
|
|
65 |
|
|
|
66 |
# Dictionary mapping keys to decoders for decode_example function. |
|
|
67 |
_EXAMPLE_DECODERS = { |
|
|
68 |
'locus': dv_utils.example_locus, |
|
|
69 |
'alt_allele_indices/encoded': dv_utils.example_alt_alleles_indices, |
|
|
70 |
'image/encoded': dv_utils.example_encoded_image, |
|
|
71 |
'variant/encoded': dv_utils.example_variant, |
|
|
72 |
'variant_type': dv_utils.example_variant_type, |
|
|
73 |
'label': dv_utils.example_label, |
|
|
74 |
'image/shape': dv_utils.example_image_shape, |
|
|
75 |
'sequencing_type': dv_utils.example_sequencing_type, |
|
|
76 |
'denovo_label': dv_utils.example_denovo_label, |
|
|
77 |
} |
|
|
78 |
|
|
|
79 |
|
|
|
80 |
def decode_example(example): |
|
|
81 |
"""Decodes a tf.Example from DeepVariant into a dict of Pythonic structures. |
|
|
82 |
|
|
|
83 |
Args: |
|
|
84 |
example: tf.Example proto. The example to make into a dictionary. |
|
|
85 |
|
|
|
86 |
Returns: |
|
|
87 |
A python dictionary with key/value pairs for each of the fields of example, |
|
|
88 |
with each value decoded as needed into Python structures like protos, list, |
|
|
89 |
etc. |
|
|
90 |
|
|
|
91 |
Raises: |
|
|
92 |
KeyError: If example contains a feature without a known decoder. |
|
|
93 |
""" |
|
|
94 |
as_dict = {} |
|
|
95 |
for key in example.features.feature: |
|
|
96 |
if key not in _EXAMPLE_DECODERS: |
|
|
97 |
raise KeyError('Unexpected example key', key) |
|
|
98 |
as_dict[key] = _EXAMPLE_DECODERS[key](example) |
|
|
99 |
return as_dict |
|
|
100 |
|
|
|
101 |
|
|
|
102 |
def setUpModule(): |
|
|
103 |
logging.set_verbosity(logging.FATAL) |
|
|
104 |
testdata.init() |
|
|
105 |
|
|
|
106 |
|
|
|
107 |
def _make_contigs(specs): |
|
|
108 |
"""Makes ContigInfo protos from specs. |
|
|
109 |
|
|
|
110 |
Args: |
|
|
111 |
specs: A list of 2- or 3-tuples. All tuples should be of the same length. If |
|
|
112 |
2-element, these should be the name and length in basepairs of each |
|
|
113 |
contig, and their pos_in_fasta will be set to their index in the list. If |
|
|
114 |
the 3-element, the tuple should contain name, length, and pos_in_fasta. |
|
|
115 |
|
|
|
116 |
Returns: |
|
|
117 |
A list of ContigInfo protos, one for each spec in specs. |
|
|
118 |
""" |
|
|
119 |
if specs and len(specs[0]) == 3: |
|
|
120 |
return [ |
|
|
121 |
reference_pb2.ContigInfo(name=name, n_bases=length, pos_in_fasta=i) |
|
|
122 |
for name, length, i in specs |
|
|
123 |
] |
|
|
124 |
else: |
|
|
125 |
return [ |
|
|
126 |
reference_pb2.ContigInfo(name=name, n_bases=length, pos_in_fasta=i) |
|
|
127 |
for i, (name, length) in enumerate(specs) |
|
|
128 |
] |
|
|
129 |
|
|
|
130 |
|
|
|
131 |
def _from_literals_list(literals, contig_map=None): |
|
|
132 |
"""Makes a list of Range objects from literals.""" |
|
|
133 |
return ranges.parse_literals(literals, contig_map) |
|
|
134 |
|
|
|
135 |
|
|
|
136 |
def _from_literals(literals, contig_map=None): |
|
|
137 |
"""Makes a RangeSet of intervals from literals.""" |
|
|
138 |
return ranges.RangeSet.from_regions(literals, contig_map) |
|
|
139 |
|
|
|
140 |
|
|
|
141 |
def _sharded(basename, num_shards=None): |
|
|
142 |
if num_shards: |
|
|
143 |
return basename + '@' + str(num_shards) |
|
|
144 |
else: |
|
|
145 |
return basename |
|
|
146 |
|
|
|
147 |
|
|
|
148 |
class MakeExamplesEnd2EndTest(parameterized.TestCase): |
|
|
149 |
|
|
|
150 |
# Golden sets are created with |
|
|
151 |
# learning/genomics/internal/create_golden_deep_trio.sh |
|
|
152 |
@parameterized.parameters( |
|
|
153 |
# All tests are run with fast_pass_aligner enabled. There are no |
|
|
154 |
# golden sets version for ssw realigner. |
|
|
155 |
dict(mode='calling', num_shards=0), |
|
|
156 |
dict(mode='calling', num_shards=3), |
|
|
157 |
dict(mode='candidate_sweep', num_shards=0), |
|
|
158 |
dict(mode='candidate_sweep', num_shards=3), |
|
|
159 |
dict( |
|
|
160 |
mode='training', num_shards=0, labeler_algorithm='haplotype_labeler' |
|
|
161 |
), |
|
|
162 |
dict( |
|
|
163 |
mode='training', num_shards=3, labeler_algorithm='haplotype_labeler' |
|
|
164 |
), |
|
|
165 |
dict( |
|
|
166 |
mode='training', num_shards=0, labeler_algorithm='positional_labeler' |
|
|
167 |
), |
|
|
168 |
dict( |
|
|
169 |
mode='training', num_shards=3, labeler_algorithm='positional_labeler' |
|
|
170 |
), |
|
|
171 |
) |
|
|
172 |
@flagsaver.flagsaver |
|
|
173 |
def test_make_examples_end2end( |
|
|
174 |
self, mode, num_shards, labeler_algorithm=None, use_fast_pass_aligner=True |
|
|
175 |
): |
|
|
176 |
self.assertIn(mode, {'calling', 'training', 'candidate_sweep'}) |
|
|
177 |
region = ranges.parse_literal('20:10,000,000-10,010,000') |
|
|
178 |
FLAGS.write_run_info = True |
|
|
179 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
180 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
181 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
182 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
183 |
FLAGS.sample_name = 'child' |
|
|
184 |
FLAGS.sample_name_to_train = 'child' |
|
|
185 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
186 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
187 |
FLAGS.candidates = test_utils.test_tmpfile( |
|
|
188 |
_sharded('vsc.tfrecord', num_shards) |
|
|
189 |
) |
|
|
190 |
FLAGS.examples = test_utils.test_tmpfile( |
|
|
191 |
_sharded('examples.tfrecord', num_shards) |
|
|
192 |
) |
|
|
193 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
194 |
child_examples = test_utils.test_tmpfile( |
|
|
195 |
_sharded('examples_child.tfrecord', num_shards) |
|
|
196 |
) |
|
|
197 |
if mode == 'candidate_sweep': |
|
|
198 |
FLAGS.candidate_positions = test_utils.test_tmpfile( |
|
|
199 |
_sharded('candidate_positions', num_shards) |
|
|
200 |
) |
|
|
201 |
candidate_positions = test_utils.test_tmpfile( |
|
|
202 |
_sharded('candidate_positions', num_shards) |
|
|
203 |
) |
|
|
204 |
FLAGS.regions = [ranges.to_literal(region)] |
|
|
205 |
FLAGS.partition_size = 1000 |
|
|
206 |
FLAGS.mode = mode |
|
|
207 |
FLAGS.gvcf_gq_binsize = 5 |
|
|
208 |
FLAGS.use_fast_pass_aligner = use_fast_pass_aligner |
|
|
209 |
if labeler_algorithm is not None: |
|
|
210 |
FLAGS.labeler_algorithm = labeler_algorithm |
|
|
211 |
|
|
|
212 |
if mode == 'calling': |
|
|
213 |
FLAGS.gvcf = test_utils.test_tmpfile( |
|
|
214 |
_sharded('gvcf.tfrecord', num_shards) |
|
|
215 |
) |
|
|
216 |
child_gvcf = test_utils.test_tmpfile( |
|
|
217 |
_sharded('gvcf_child.tfrecord', num_shards) |
|
|
218 |
) |
|
|
219 |
child_candidates = test_utils.test_tmpfile( |
|
|
220 |
_sharded('vsc_child.tfrecord', num_shards) |
|
|
221 |
) |
|
|
222 |
else: |
|
|
223 |
FLAGS.truth_variants = testdata.TRUTH_VARIANTS_VCF |
|
|
224 |
FLAGS.confident_regions = testdata.CONFIDENT_REGIONS_BED |
|
|
225 |
child_candidates = test_utils.test_tmpfile( |
|
|
226 |
_sharded('vsc.tfrecord', num_shards) |
|
|
227 |
) |
|
|
228 |
|
|
|
229 |
if mode == 'candidate_sweep': |
|
|
230 |
golden_candidate_positions = _sharded( |
|
|
231 |
testdata.GOLDEN_CANDIDATE_POSITIONS, num_shards |
|
|
232 |
) |
|
|
233 |
for task_id in range(max(num_shards, 1)): |
|
|
234 |
FLAGS.task = task_id |
|
|
235 |
options = make_examples.default_options(add_flags=True) |
|
|
236 |
make_examples_core.make_examples_runner(options) |
|
|
237 |
|
|
|
238 |
# Check that our run_info proto contains the basic fields we'd expect: |
|
|
239 |
# (a) our options are written to the run_info.options field. |
|
|
240 |
run_info = make_examples_core.read_make_examples_run_info( |
|
|
241 |
options.run_info_filename |
|
|
242 |
) |
|
|
243 |
self.assertEqual(run_info.options, options) |
|
|
244 |
# (b) run_info.resource_metrics is present and contains our hostname. |
|
|
245 |
self.assertTrue(run_info.HasField('resource_metrics')) |
|
|
246 |
self.assertEqual(run_info.resource_metrics.host_name, platform.node()) |
|
|
247 |
|
|
|
248 |
# For candidate_sweep mode we verify that candidate positions match |
|
|
249 |
# golden set exactly. |
|
|
250 |
if mode == 'candidate_sweep': |
|
|
251 |
_, candidates_path = sharded_file_utils.resolve_filespecs( |
|
|
252 |
task_id, candidate_positions |
|
|
253 |
) |
|
|
254 |
_, gold_candidates_path = sharded_file_utils.resolve_filespecs( |
|
|
255 |
task_id, golden_candidate_positions |
|
|
256 |
) |
|
|
257 |
self.verify_candidate_positions(candidates_path, gold_candidates_path) |
|
|
258 |
|
|
|
259 |
# In candidate_sweep mode the test stops here. |
|
|
260 |
if mode == 'candidate_sweep': |
|
|
261 |
return |
|
|
262 |
|
|
|
263 |
# Test that our candidates are reasonable, calling specific helper functions |
|
|
264 |
# to check lots of properties of the output. |
|
|
265 |
candidates = sorted( |
|
|
266 |
tfrecord.read_tfrecords( |
|
|
267 |
child_candidates, |
|
|
268 |
proto=deepvariant_pb2.DeepVariantCall, |
|
|
269 |
compression_type='GZIP', |
|
|
270 |
), |
|
|
271 |
key=lambda c: variant_utils.variant_range_tuple(c.variant), |
|
|
272 |
) |
|
|
273 |
self.verify_deepvariant_calls(candidates, options) |
|
|
274 |
self.verify_variants( |
|
|
275 |
[call.variant for call in candidates], region, options, is_gvcf=False |
|
|
276 |
) |
|
|
277 |
|
|
|
278 |
# Verify that the variants in the examples are all good. |
|
|
279 |
if mode == 'calling': |
|
|
280 |
examples = self.verify_examples( |
|
|
281 |
child_examples, |
|
|
282 |
region, |
|
|
283 |
options, |
|
|
284 |
verify_labels=False, |
|
|
285 |
examples_filename=FLAGS.examples, |
|
|
286 |
) |
|
|
287 |
if mode == 'training': |
|
|
288 |
examples = self.verify_examples( |
|
|
289 |
FLAGS.examples, region, options, verify_labels=True |
|
|
290 |
) |
|
|
291 |
example_variants = [dv_utils.example_variant(ex) for ex in examples] |
|
|
292 |
self.verify_variants(example_variants, region, options, is_gvcf=False) |
|
|
293 |
|
|
|
294 |
# Verify the integrity of the examples and then check that they match our |
|
|
295 |
# golden labeled examples. Note we expect the order for both training and |
|
|
296 |
# calling modes to produce deterministic order because we fix the random |
|
|
297 |
# seed. |
|
|
298 |
if mode == 'calling': |
|
|
299 |
golden_file = _sharded(testdata.GOLDEN_CALLING_EXAMPLES, num_shards) |
|
|
300 |
else: |
|
|
301 |
golden_file = _sharded(testdata.GOLDEN_TRAINING_EXAMPLES, num_shards) |
|
|
302 |
self.assertDeepVariantExamplesEqual( |
|
|
303 |
examples, |
|
|
304 |
list(tfrecord.read_tfrecords(golden_file, compression_type='GZIP')), |
|
|
305 |
) |
|
|
306 |
|
|
|
307 |
if mode == 'calling': |
|
|
308 |
nist_reader = vcf.VcfReader(testdata.TRUTH_VARIANTS_VCF) |
|
|
309 |
nist_variants = list(nist_reader.query(region)) |
|
|
310 |
self.verify_nist_concordance(example_variants, nist_variants) |
|
|
311 |
|
|
|
312 |
# Check the quality of our generated gvcf file. |
|
|
313 |
gvcfs = variant_utils.sorted_variants( |
|
|
314 |
tfrecord.read_tfrecords( |
|
|
315 |
child_gvcf, proto=variants_pb2.Variant, compression_type='GZIP' |
|
|
316 |
) |
|
|
317 |
) |
|
|
318 |
self.verify_variants(gvcfs, region, options, is_gvcf=True) |
|
|
319 |
self.verify_contiguity(gvcfs, region) |
|
|
320 |
gvcf_golden_file = _sharded( |
|
|
321 |
testdata.GOLDEN_POSTPROCESS_GVCF_INPUT, num_shards |
|
|
322 |
) |
|
|
323 |
expected_gvcfs = list( |
|
|
324 |
tfrecord.read_tfrecords( |
|
|
325 |
gvcf_golden_file, |
|
|
326 |
proto=variants_pb2.Variant, |
|
|
327 |
compression_type='GZIP', |
|
|
328 |
) |
|
|
329 |
) |
|
|
330 |
|
|
|
331 |
|
|
|
332 |
self.assertCountEqual(gvcfs, expected_gvcfs) |
|
|
333 |
|
|
|
334 |
if ( |
|
|
335 |
mode == 'training' |
|
|
336 |
and num_shards == 0 |
|
|
337 |
and labeler_algorithm != 'positional_labeler' |
|
|
338 |
): |
|
|
339 |
# The positional labeler doesn't track metrics, so don't try to read them |
|
|
340 |
# in when that's the mode. |
|
|
341 |
self.assertEqual( |
|
|
342 |
make_examples_core.read_make_examples_run_info( |
|
|
343 |
testdata.GOLDEN_MAKE_EXAMPLES_RUN_INFO |
|
|
344 |
).labeling_metrics, |
|
|
345 |
run_info.labeling_metrics, |
|
|
346 |
) |
|
|
347 |
|
|
|
348 |
@parameterized.parameters( |
|
|
349 |
dict( |
|
|
350 |
denovo_test=False, |
|
|
351 |
expected_denovo_variants=0, |
|
|
352 |
), |
|
|
353 |
dict( |
|
|
354 |
denovo_test=True, |
|
|
355 |
expected_denovo_variants=3, |
|
|
356 |
), |
|
|
357 |
) |
|
|
358 |
@flagsaver.flagsaver |
|
|
359 |
def test_make_examples_ont_end2end( |
|
|
360 |
self, |
|
|
361 |
denovo_test: bool, |
|
|
362 |
expected_denovo_variants: int, |
|
|
363 |
): |
|
|
364 |
"""Test end to end for long ONT reads with phasing enabled. |
|
|
365 |
|
|
|
366 |
Args: |
|
|
367 |
denovo_test: If true, denovo parameters will be set. |
|
|
368 |
expected_denovo_variants: Total number of denovo examples expected. |
|
|
369 |
|
|
|
370 |
This test runs ONT end to end and compares the output with the golden |
|
|
371 |
output. This test is introduced because previously in training mode the |
|
|
372 |
non training sample would not be phased. So this now tests to make sure |
|
|
373 |
all of the training examples are phased correctly. |
|
|
374 |
""" |
|
|
375 |
region = ranges.parse_literal('chr20:5050000-5075000') |
|
|
376 |
FLAGS.write_run_info = True |
|
|
377 |
FLAGS.ref = testdata.GRCH38_CHR0_FASTA |
|
|
378 |
FLAGS.reads = testdata.ONT_HG002_BAM |
|
|
379 |
FLAGS.reads_parent1 = testdata.ONT_HG003_BAM |
|
|
380 |
FLAGS.reads_parent2 = testdata.ONT_HG004_BAM |
|
|
381 |
FLAGS.confident_regions = testdata.HG002_HIGH_CONFIDENCE_BED |
|
|
382 |
FLAGS.truth_variants = testdata.HG002_HIGH_CONFIDENCE_VCF |
|
|
383 |
FLAGS.sample_name = 'HG002' |
|
|
384 |
FLAGS.sample_name_to_train = 'HG002' |
|
|
385 |
FLAGS.sample_name_parent1 = 'HG003' |
|
|
386 |
FLAGS.sample_name_parent2 = 'HG004' |
|
|
387 |
FLAGS.alt_aligned_pileup = 'diff_channels' |
|
|
388 |
FLAGS.min_mapping_quality = 1 |
|
|
389 |
FLAGS.mode = 'training' |
|
|
390 |
FLAGS.parse_sam_aux_fields = True |
|
|
391 |
FLAGS.partition_size = 25000 |
|
|
392 |
FLAGS.phase_reads = True |
|
|
393 |
FLAGS.pileup_image_height_child = 100 |
|
|
394 |
FLAGS.pileup_image_height_parent = 100 |
|
|
395 |
FLAGS.pileup_image_width = 199 |
|
|
396 |
FLAGS.realign_reads = False |
|
|
397 |
FLAGS.skip_parent_calling = True |
|
|
398 |
FLAGS.sort_by_haplotypes = True |
|
|
399 |
FLAGS.track_ref_reads = True |
|
|
400 |
FLAGS.vsc_min_fraction_indels = 0.12 |
|
|
401 |
FLAGS.vsc_min_fraction_snps = 0.1 |
|
|
402 |
num_shards = 0 |
|
|
403 |
FLAGS.examples = test_utils.test_tmpfile( |
|
|
404 |
_sharded('examples.tfrecord', num_shards) |
|
|
405 |
) |
|
|
406 |
FLAGS.channel_list = ','.join( |
|
|
407 |
dv_constants.PILEUP_DEFAULT_CHANNELS + ['haplotype'] |
|
|
408 |
) |
|
|
409 |
FLAGS.regions = [ranges.to_literal(region)] |
|
|
410 |
golden_file = _sharded(testdata.GOLDEN_ONT_MAKE_EXAMPLES_OUTPUT, num_shards) |
|
|
411 |
FLAGS.denovo_regions = None |
|
|
412 |
if denovo_test: |
|
|
413 |
# If denovo test is enabled, then set the parameters for denovo testing. |
|
|
414 |
golden_file = _sharded( |
|
|
415 |
testdata.GOLDEN_ONT_DENOVO_MAKE_EXAMPLES_OUTPUT, num_shards |
|
|
416 |
) |
|
|
417 |
FLAGS.write_run_info = True |
|
|
418 |
FLAGS.denovo_regions = testdata.HG002_DENOVO_BED |
|
|
419 |
|
|
|
420 |
for task_id in range(max(num_shards, 1)): |
|
|
421 |
FLAGS.task = task_id |
|
|
422 |
options = make_examples.default_options(add_flags=True) |
|
|
423 |
make_examples_core.make_examples_runner(options) |
|
|
424 |
|
|
|
425 |
examples = self.verify_examples( |
|
|
426 |
FLAGS.examples, region, options, verify_labels=True |
|
|
427 |
) |
|
|
428 |
|
|
|
429 |
self.assertDeepVariantExamplesEqual( |
|
|
430 |
examples, |
|
|
431 |
list(tfrecord.read_tfrecords(golden_file, compression_type='GZIP')), |
|
|
432 |
) |
|
|
433 |
if denovo_test: |
|
|
434 |
# Check total number of denovo examples. |
|
|
435 |
total_denovo = sum( |
|
|
436 |
[ |
|
|
437 |
1 |
|
|
438 |
for example in examples |
|
|
439 |
if dv_utils.example_denovo_label(example) |
|
|
440 |
] |
|
|
441 |
) |
|
|
442 |
self.assertEqual( |
|
|
443 |
total_denovo, |
|
|
444 |
expected_denovo_variants, |
|
|
445 |
msg='ONT denovo golden test: denovo variants count.', |
|
|
446 |
) |
|
|
447 |
# Read the runinfo file |
|
|
448 |
runinfo = make_examples_core.read_make_examples_run_info( |
|
|
449 |
FLAGS.examples + '.run_info.pbtxt' |
|
|
450 |
) |
|
|
451 |
golden_runinfo = make_examples_core.read_make_examples_run_info( |
|
|
452 |
testdata.GOLDEN_ONT_DENOVO_MAKE_EXAMPLES_OUTPUT + '.run_info.pbtxt' |
|
|
453 |
) |
|
|
454 |
self.assertEqual( |
|
|
455 |
runinfo.stats.num_examples, |
|
|
456 |
golden_runinfo.stats.num_examples, |
|
|
457 |
msg='ONT denovo golden test: Run info comparison num_examples.', |
|
|
458 |
) |
|
|
459 |
self.assertEqual( |
|
|
460 |
runinfo.stats.num_denovo, |
|
|
461 |
golden_runinfo.stats.num_denovo, |
|
|
462 |
msg='ONT denovo golden test: Run info comparison num_denovo.', |
|
|
463 |
) |
|
|
464 |
self.assertEqual( |
|
|
465 |
runinfo.stats.num_nondenovo, |
|
|
466 |
golden_runinfo.stats.num_nondenovo, |
|
|
467 |
msg='ONT denovo golden test: Run info comparison num_nondenovo.', |
|
|
468 |
) |
|
|
469 |
|
|
|
470 |
# Golden sets are created with learning/genomics/internal/create_golden.sh |
|
|
471 |
@flagsaver.flagsaver |
|
|
472 |
def test_make_examples_training_end2end_with_customized_classes_labeler(self): |
|
|
473 |
FLAGS.labeler_algorithm = 'customized_classes_labeler' |
|
|
474 |
FLAGS.customized_classes_labeler_classes_list = 'ref,class1,class2' |
|
|
475 |
FLAGS.customized_classes_labeler_info_field_name = 'type' |
|
|
476 |
region = ranges.parse_literal('20:10,000,000-10,004,000') |
|
|
477 |
FLAGS.regions = [ranges.to_literal(region)] |
|
|
478 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
479 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
480 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
481 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
482 |
FLAGS.sample_name = 'child' |
|
|
483 |
FLAGS.sample_name_to_train = 'child' |
|
|
484 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
485 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
486 |
FLAGS.candidates = test_utils.test_tmpfile(_sharded('vsc.tfrecord')) |
|
|
487 |
FLAGS.examples = test_utils.test_tmpfile(_sharded('examples.tfrecord')) |
|
|
488 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
489 |
FLAGS.partition_size = 1000 |
|
|
490 |
FLAGS.mode = 'training' |
|
|
491 |
FLAGS.gvcf_gq_binsize = 5 |
|
|
492 |
FLAGS.truth_variants = testdata.TRUTH_VARIANTS_VCF_WITH_TYPES |
|
|
493 |
FLAGS.confident_regions = testdata.CONFIDENT_REGIONS_BED |
|
|
494 |
options = make_examples.default_options(add_flags=True) |
|
|
495 |
make_examples_core.make_examples_runner(options) |
|
|
496 |
golden_file = _sharded(testdata.CUSTOMIZED_CLASSES_GOLDEN_TRAINING_EXAMPLES) |
|
|
497 |
# Verify that the variants in the examples are all good. |
|
|
498 |
examples = self.verify_examples( |
|
|
499 |
FLAGS.examples, region, options, verify_labels=True |
|
|
500 |
) |
|
|
501 |
self.assertDeepVariantExamplesEqual( |
|
|
502 |
examples, |
|
|
503 |
list(tfrecord.read_tfrecords(golden_file, compression_type='GZIP')), |
|
|
504 |
) |
|
|
505 |
|
|
|
506 |
# Golden sets are created with learning/genomics/internal/create_golden.sh |
|
|
507 |
@flagsaver.flagsaver |
|
|
508 |
def test_make_examples_training_end2end_with_alt_aligned_pileup(self): |
|
|
509 |
region = ranges.parse_literal('20:10,000,000-10,010,000') |
|
|
510 |
FLAGS.regions = [ranges.to_literal(region)] |
|
|
511 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
512 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
513 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
514 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
515 |
FLAGS.sample_name = 'child' |
|
|
516 |
FLAGS.sample_name_to_train = 'child' |
|
|
517 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
518 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
519 |
FLAGS.candidates = test_utils.test_tmpfile(_sharded('vsc.tfrecord')) |
|
|
520 |
FLAGS.examples = test_utils.test_tmpfile(_sharded('examples.tfrecord')) |
|
|
521 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_DEFAULT_CHANNELS) |
|
|
522 |
FLAGS.partition_size = 1000 |
|
|
523 |
FLAGS.mode = 'training' |
|
|
524 |
FLAGS.gvcf_gq_binsize = 5 |
|
|
525 |
|
|
|
526 |
# The following 4 lines are added. |
|
|
527 |
FLAGS.alt_aligned_pileup = 'diff_channels' |
|
|
528 |
FLAGS.pileup_image_height_child = 60 |
|
|
529 |
FLAGS.pileup_image_height_parent = 40 |
|
|
530 |
FLAGS.pileup_image_width = 199 |
|
|
531 |
|
|
|
532 |
FLAGS.truth_variants = testdata.TRUTH_VARIANTS_VCF |
|
|
533 |
FLAGS.confident_regions = testdata.CONFIDENT_REGIONS_BED |
|
|
534 |
options = make_examples.default_options(add_flags=True) |
|
|
535 |
make_examples_core.make_examples_runner(options) |
|
|
536 |
golden_file = _sharded(testdata.ALT_ALIGNED_PILEUP_GOLDEN_TRAINING_EXAMPLES) |
|
|
537 |
# Verify that the variants in the examples are all good. |
|
|
538 |
examples = self.verify_examples( |
|
|
539 |
FLAGS.examples, region, options, verify_labels=True |
|
|
540 |
) |
|
|
541 |
self.assertDeepVariantExamplesEqual( |
|
|
542 |
examples, |
|
|
543 |
list(tfrecord.read_tfrecords(golden_file, compression_type='GZIP')), |
|
|
544 |
) |
|
|
545 |
# Pileup image should now have 8 channels. |
|
|
546 |
# Height should be 60 + 40 * 2 = 140. |
|
|
547 |
self.assertEqual(decode_example(examples[0])['image/shape'], [140, 199, 8]) |
|
|
548 |
|
|
|
549 |
@flagsaver.flagsaver |
|
|
550 |
def test_make_examples_compare_realignment_modes(self): |
|
|
551 |
def _run_with_realignment_mode(enable_joint_realignment, name): |
|
|
552 |
FLAGS.enable_joint_realignment = enable_joint_realignment |
|
|
553 |
region = ranges.parse_literal('20:10,000,000-10,010,000') |
|
|
554 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
555 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
556 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
557 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
558 |
FLAGS.sample_name = 'child' |
|
|
559 |
FLAGS.sample_name_to_train = 'child' |
|
|
560 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
561 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
562 |
FLAGS.candidates = test_utils.test_tmpfile(f'{name}.vsc.tfrecord') |
|
|
563 |
FLAGS.examples = test_utils.test_tmpfile(f'{name}.examples.tfrecord') |
|
|
564 |
FLAGS.channel_list = ','.join( |
|
|
565 |
dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE |
|
|
566 |
) |
|
|
567 |
child_examples = test_utils.test_tmpfile( |
|
|
568 |
f'{name}_child.examples.tfrecord' |
|
|
569 |
) |
|
|
570 |
FLAGS.regions = [ranges.to_literal(region)] |
|
|
571 |
FLAGS.partition_size = 1000 |
|
|
572 |
FLAGS.mode = 'calling' |
|
|
573 |
FLAGS.gvcf = test_utils.test_tmpfile(f'{name}.gvcf.tfrecord') |
|
|
574 |
# child_gvcf = test_utils.test_tmpfile(f'{name}.gvcf_child.tfrecord') |
|
|
575 |
# child_candidates = test_utils.test_tmpfile(f'{name}.vsc_child.tfrecord') |
|
|
576 |
options = make_examples.default_options(add_flags=True) |
|
|
577 |
make_examples_core.make_examples_runner(options) |
|
|
578 |
|
|
|
579 |
examples = self.verify_examples( |
|
|
580 |
child_examples, |
|
|
581 |
region, |
|
|
582 |
options, |
|
|
583 |
verify_labels=False, |
|
|
584 |
examples_filename=FLAGS.examples, |
|
|
585 |
) |
|
|
586 |
return examples |
|
|
587 |
|
|
|
588 |
examples1 = _run_with_realignment_mode(False, 'ex1') |
|
|
589 |
examples2 = _run_with_realignment_mode(True, 'ex2') |
|
|
590 |
self.assertNotEmpty(examples1) |
|
|
591 |
self.assertNotEmpty(examples2) |
|
|
592 |
# The assumption is just that these two lists of examples should be |
|
|
593 |
# different. In this case, it happens to be that we got different numbers |
|
|
594 |
# of examples: |
|
|
595 |
self.assertNotEmpty(examples1) |
|
|
596 |
self.assertDeepVariantExamplesNotEqual(examples1, examples2) |
|
|
597 |
|
|
|
598 |
@parameterized.parameters( |
|
|
599 |
dict(select_types=None, expected_count=79), |
|
|
600 |
dict(select_types='all', expected_count=79), |
|
|
601 |
dict(select_types='snps', expected_count=64), |
|
|
602 |
dict(select_types='indels', expected_count=12), |
|
|
603 |
dict(select_types='snps indels', expected_count=76), |
|
|
604 |
dict(select_types='multi-allelics', expected_count=3), |
|
|
605 |
dict(select_types=None, keep_legacy_behavior=True, expected_count=79), |
|
|
606 |
dict(select_types='all', keep_legacy_behavior=True, expected_count=79), |
|
|
607 |
dict(select_types='snps', keep_legacy_behavior=True, expected_count=64), |
|
|
608 |
dict(select_types='indels', keep_legacy_behavior=True, expected_count=11), |
|
|
609 |
dict( |
|
|
610 |
select_types='snps indels', |
|
|
611 |
keep_legacy_behavior=True, |
|
|
612 |
expected_count=75, |
|
|
613 |
), |
|
|
614 |
dict( |
|
|
615 |
select_types='multi-allelics', |
|
|
616 |
keep_legacy_behavior=True, |
|
|
617 |
expected_count=4, |
|
|
618 |
), |
|
|
619 |
) |
|
|
620 |
@flagsaver.flagsaver |
|
|
621 |
def test_make_examples_with_variant_selection( |
|
|
622 |
self, select_types, expected_count, keep_legacy_behavior=False |
|
|
623 |
): |
|
|
624 |
if select_types is not None: |
|
|
625 |
FLAGS.select_variant_types = select_types |
|
|
626 |
region = ranges.parse_literal('20:10,000,000-10,010,000') |
|
|
627 |
FLAGS.regions = [ranges.to_literal(region)] |
|
|
628 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
629 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
630 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
631 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
632 |
FLAGS.sample_name = 'child' |
|
|
633 |
FLAGS.sample_name_to_train = 'child' |
|
|
634 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
635 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
636 |
FLAGS.candidates = test_utils.test_tmpfile(_sharded('vsc.tfrecord')) |
|
|
637 |
child_candidates = test_utils.test_tmpfile(_sharded('vsc_child.tfrecord')) |
|
|
638 |
FLAGS.examples = test_utils.test_tmpfile(_sharded('examples.tfrecord')) |
|
|
639 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
640 |
FLAGS.partition_size = 1000 |
|
|
641 |
FLAGS.mode = 'calling' |
|
|
642 |
FLAGS.keep_legacy_allele_counter_behavior = keep_legacy_behavior |
|
|
643 |
|
|
|
644 |
options = make_examples.default_options(add_flags=True) |
|
|
645 |
make_examples_core.make_examples_runner(options) |
|
|
646 |
|
|
|
647 |
candidates = list( |
|
|
648 |
tfrecord.read_tfrecords(child_candidates, compression_type='GZIP') |
|
|
649 |
) |
|
|
650 |
self.assertLen(candidates, expected_count) |
|
|
651 |
|
|
|
652 |
@parameterized.parameters( |
|
|
653 |
dict( |
|
|
654 |
mode='calling', which_parent='parent1', sample_name_to_train='child' |
|
|
655 |
), |
|
|
656 |
dict( |
|
|
657 |
mode='calling', which_parent='parent2', sample_name_to_train='child' |
|
|
658 |
), |
|
|
659 |
dict( |
|
|
660 |
mode='training', which_parent='parent1', sample_name_to_train='child' |
|
|
661 |
), |
|
|
662 |
dict( |
|
|
663 |
mode='training', which_parent='parent2', sample_name_to_train='child' |
|
|
664 |
), |
|
|
665 |
dict( |
|
|
666 |
mode='calling', which_parent='parent1', sample_name_to_train='parent1' |
|
|
667 |
), |
|
|
668 |
dict( |
|
|
669 |
mode='training', |
|
|
670 |
which_parent='parent1', |
|
|
671 |
sample_name_to_train='parent1', |
|
|
672 |
), |
|
|
673 |
# Training on parent2 in a duo is not supported (with a clear error |
|
|
674 |
# message). |
|
|
675 |
) |
|
|
676 |
@flagsaver.flagsaver |
|
|
677 |
def test_make_examples_training_end2end_duos( |
|
|
678 |
self, mode, which_parent, sample_name_to_train |
|
|
679 |
): |
|
|
680 |
region = ranges.parse_literal('20:10,000,000-10,010,000') |
|
|
681 |
FLAGS.regions = [ranges.to_literal(region)] |
|
|
682 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
683 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
684 |
FLAGS.sample_name = 'child' |
|
|
685 |
FLAGS.examples = test_utils.test_tmpfile(_sharded('examples.tfrecord')) |
|
|
686 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
687 |
FLAGS.partition_size = 1000 |
|
|
688 |
|
|
|
689 |
FLAGS.mode = mode |
|
|
690 |
if mode == 'training': |
|
|
691 |
FLAGS.truth_variants = testdata.TRUTH_VARIANTS_VCF |
|
|
692 |
FLAGS.confident_regions = testdata.CONFIDENT_REGIONS_BED |
|
|
693 |
|
|
|
694 |
if which_parent == 'parent1': |
|
|
695 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
696 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
697 |
elif which_parent == 'parent2': |
|
|
698 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
699 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
700 |
else: |
|
|
701 |
raise ValueError('Invalid `which_parent` value in test case.') |
|
|
702 |
FLAGS.sample_name_to_train = sample_name_to_train |
|
|
703 |
|
|
|
704 |
# This is only a simple test that it runs without errors. |
|
|
705 |
options = make_examples.default_options(add_flags=True) |
|
|
706 |
make_examples_core.make_examples_runner(options) |
|
|
707 |
|
|
|
708 |
@parameterized.parameters( |
|
|
709 |
dict(mode='calling'), |
|
|
710 |
dict(mode='training'), |
|
|
711 |
) |
|
|
712 |
@flagsaver.flagsaver |
|
|
713 |
def test_make_examples_end2end_vcf_candidate_importer(self, mode): |
|
|
714 |
FLAGS.variant_caller = 'vcf_candidate_importer' |
|
|
715 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
716 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
717 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
718 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
719 |
FLAGS.sample_name = 'child' |
|
|
720 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
721 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
722 |
FLAGS.pileup_image_height_parent = 40 |
|
|
723 |
FLAGS.pileup_image_height_child = 60 |
|
|
724 |
FLAGS.candidates = test_utils.test_tmpfile( |
|
|
725 |
_sharded('vcf_candidate_importer.candidates.{}.tfrecord'.format(mode)) |
|
|
726 |
) |
|
|
727 |
FLAGS.examples = test_utils.test_tmpfile( |
|
|
728 |
_sharded('vcf_candidate_importer.examples.{}.tfrecord'.format(mode)) |
|
|
729 |
) |
|
|
730 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
731 |
FLAGS.mode = mode |
|
|
732 |
FLAGS.regions = '20:10,000,000-10,010,000' |
|
|
733 |
|
|
|
734 |
if mode == 'calling': |
|
|
735 |
golden_file = _sharded( |
|
|
736 |
testdata.GOLDEN_VCF_CANDIDATE_IMPORTER_CALLING_EXAMPLES_CHILD |
|
|
737 |
) |
|
|
738 |
path_to_output_examples = test_utils.test_tmpfile( |
|
|
739 |
_sharded( |
|
|
740 |
'vcf_candidate_importer_child.examples.{}.tfrecord'.format(mode) |
|
|
741 |
) |
|
|
742 |
) |
|
|
743 |
FLAGS.proposed_variants_child = testdata.TRUTH_VARIANTS_VCF |
|
|
744 |
FLAGS.proposed_variants_parent1 = testdata.TRUTH_VARIANTS_VCF |
|
|
745 |
FLAGS.proposed_variants_parent2 = testdata.TRUTH_VARIANTS_VCF |
|
|
746 |
else: |
|
|
747 |
golden_file = _sharded( |
|
|
748 |
testdata.GOLDEN_VCF_CANDIDATE_IMPORTER_TRAINING_EXAMPLES |
|
|
749 |
) |
|
|
750 |
path_to_output_examples = test_utils.test_tmpfile( |
|
|
751 |
_sharded('vcf_candidate_importer.examples.{}.tfrecord'.format(mode)) |
|
|
752 |
) |
|
|
753 |
FLAGS.truth_variants = testdata.TRUTH_VARIANTS_VCF |
|
|
754 |
FLAGS.confident_regions = testdata.CONFIDENT_REGIONS_BED |
|
|
755 |
|
|
|
756 |
options = make_examples.default_options(add_flags=True) |
|
|
757 |
make_examples_core.make_examples_runner(options) |
|
|
758 |
# Verify that the variants in the examples are all good. |
|
|
759 |
output_examples_to_compare = self.verify_examples( |
|
|
760 |
path_to_output_examples, |
|
|
761 |
None, |
|
|
762 |
options, |
|
|
763 |
verify_labels=mode == 'training', |
|
|
764 |
examples_filename=FLAGS.examples, |
|
|
765 |
) |
|
|
766 |
self.assertDeepVariantExamplesEqual( |
|
|
767 |
output_examples_to_compare, |
|
|
768 |
list(tfrecord.read_tfrecords(golden_file, compression_type='GZIP')), |
|
|
769 |
) |
|
|
770 |
|
|
|
771 |
@parameterized.parameters( |
|
|
772 |
dict( |
|
|
773 |
max_reads_per_partition=1500, |
|
|
774 |
expected_len_examples1=88, |
|
|
775 |
expected_len_examples2=32, |
|
|
776 |
), |
|
|
777 |
dict( |
|
|
778 |
max_reads_per_partition=8, |
|
|
779 |
expected_len_examples1=34, |
|
|
780 |
expected_len_examples2=30, |
|
|
781 |
), |
|
|
782 |
) |
|
|
783 |
@flagsaver.flagsaver |
|
|
784 |
def test_make_examples_with_max_reads_for_dynamic_bases_per_region( |
|
|
785 |
self, |
|
|
786 |
max_reads_per_partition, |
|
|
787 |
expected_len_examples1, |
|
|
788 |
expected_len_examples2, |
|
|
789 |
): |
|
|
790 |
region = ranges.parse_literal('20:10,000,000-10,010,000') |
|
|
791 |
FLAGS.regions = [ranges.to_literal(region)] |
|
|
792 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
793 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
794 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
795 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
796 |
FLAGS.sample_name = 'child' |
|
|
797 |
FLAGS.sample_name_to_train = 'child' |
|
|
798 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
799 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
800 |
FLAGS.examples = test_utils.test_tmpfile(_sharded('ex.tfrecord')) |
|
|
801 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
802 |
child_examples = test_utils.test_tmpfile(_sharded('ex_child.tfrecord')) |
|
|
803 |
FLAGS.partition_size = 1000 |
|
|
804 |
FLAGS.mode = 'calling' |
|
|
805 |
FLAGS.max_reads_per_partition = max_reads_per_partition |
|
|
806 |
|
|
|
807 |
options = make_examples.default_options(add_flags=True) |
|
|
808 |
make_examples_core.make_examples_runner(options) |
|
|
809 |
examples1 = self.verify_examples( |
|
|
810 |
child_examples, |
|
|
811 |
region, |
|
|
812 |
options, |
|
|
813 |
verify_labels=False, |
|
|
814 |
examples_filename=FLAGS.examples, |
|
|
815 |
) |
|
|
816 |
self.assertLen(examples1, expected_len_examples1) |
|
|
817 |
# Now, this is the main part of the test. I want to test the behavior after |
|
|
818 |
# I set max_reads_for_dynamic_bases_per_region. |
|
|
819 |
FLAGS.max_reads_for_dynamic_bases_per_region = 1 |
|
|
820 |
options = make_examples.default_options(add_flags=True) |
|
|
821 |
make_examples_core.make_examples_runner(options) |
|
|
822 |
examples2 = self.verify_examples( |
|
|
823 |
child_examples, |
|
|
824 |
region, |
|
|
825 |
options, |
|
|
826 |
verify_labels=False, |
|
|
827 |
examples_filename=FLAGS.examples, |
|
|
828 |
) |
|
|
829 |
self.assertLen(examples2, expected_len_examples2) |
|
|
830 |
|
|
|
831 |
def verify_nist_concordance(self, candidates, nist_variants): |
|
|
832 |
# Tests that we call almost all of the real variants (according to NIST's |
|
|
833 |
# Genome in a Bottle callset for NA12878) in our candidate callset. |
|
|
834 |
# Tests that we don't have an enormous number of FP calls. We should have |
|
|
835 |
# no more than 5x (arbitrary) more candidate calls than real calls. If we |
|
|
836 |
# have more it's likely due to some major pipeline problem. |
|
|
837 |
self.assertLess(len(candidates), 5 * len(nist_variants)) |
|
|
838 |
tp_count = 0 |
|
|
839 |
for nist_variant in nist_variants: |
|
|
840 |
if self.assertVariantIsPresent(nist_variant, candidates): |
|
|
841 |
tp_count = tp_count + 1 |
|
|
842 |
|
|
|
843 |
self.assertGreater( |
|
|
844 |
tp_count / len(nist_variants), |
|
|
845 |
0.9705, |
|
|
846 |
'Recall must be greater than 0.9705. TP={}, Truth variants={}'.format( |
|
|
847 |
tp_count, len(nist_variants) |
|
|
848 |
), |
|
|
849 |
) |
|
|
850 |
|
|
|
851 |
def assertDeepVariantExamplesEqual(self, actual, expected): |
|
|
852 |
"""Asserts that actual and expected tf.Examples from DeepVariant are equal. |
|
|
853 |
|
|
|
854 |
Args: |
|
|
855 |
actual: iterable of tf.Examples from DeepVariant. DeepVariant examples |
|
|
856 |
that we want to check. |
|
|
857 |
expected: iterable of tf.Examples. Expected results for actual. |
|
|
858 |
""" |
|
|
859 |
self.assertEqual(len(actual), len(expected)) |
|
|
860 |
for i in range(len(actual)): |
|
|
861 |
self.assertEqual(decode_example(actual[i]), decode_example(expected[i])) |
|
|
862 |
|
|
|
863 |
def assertDeepVariantExamplesNotEqual(self, actual, expected): |
|
|
864 |
"""Asserts that actual and expected tf.Examples are not equal. |
|
|
865 |
|
|
|
866 |
Args: |
|
|
867 |
actual: iterable of tf.Examples from DeepVariant. DeepVariant examples |
|
|
868 |
that we want to check. |
|
|
869 |
expected: iterable of tf.Examples. Expected results for actual. |
|
|
870 |
""" |
|
|
871 |
pass_not_equal_check = False |
|
|
872 |
if len(actual) != len(expected): |
|
|
873 |
logging.warning( |
|
|
874 |
( |
|
|
875 |
'In assertDeepVariantExamplesNotEqual: ' |
|
|
876 |
'actual(%d) and expected(%d) has different lengths' |
|
|
877 |
), |
|
|
878 |
len(actual), |
|
|
879 |
len(expected), |
|
|
880 |
) |
|
|
881 |
pass_not_equal_check = True |
|
|
882 |
min_size = min(len(actual), len(expected)) |
|
|
883 |
for i in range(min_size): |
|
|
884 |
if decode_example(actual[i]) != decode_example(expected[i]): |
|
|
885 |
logging.warning( |
|
|
886 |
( |
|
|
887 |
'assertDeepVariantExamplesNotEqual: ' |
|
|
888 |
'actual example[%d] and expected example[%d] ' |
|
|
889 |
'are different' |
|
|
890 |
), |
|
|
891 |
i, |
|
|
892 |
i, |
|
|
893 |
) |
|
|
894 |
pass_not_equal_check = True |
|
|
895 |
self.assertTrue( |
|
|
896 |
pass_not_equal_check, |
|
|
897 |
( |
|
|
898 |
'assertDeepVariantExamplesNotEqual failed - ' |
|
|
899 |
'actual and expected examples are identical.' |
|
|
900 |
), |
|
|
901 |
) |
|
|
902 |
|
|
|
903 |
def assertVariantIsPresent(self, to_find, variants): |
|
|
904 |
def variant_key(v): |
|
|
905 |
return (v.reference_bases, v.start, v.end) |
|
|
906 |
|
|
|
907 |
# Finds a call in our actual call set for each NIST variant, asserting |
|
|
908 |
# that we found exactly one. |
|
|
909 |
matches = [ |
|
|
910 |
variant |
|
|
911 |
for variant in variants |
|
|
912 |
if variant_key(to_find) == variant_key(variant) |
|
|
913 |
] |
|
|
914 |
if not matches: |
|
|
915 |
return False |
|
|
916 |
|
|
|
917 |
# Verify that every alt allele appears in the call (but the call might) |
|
|
918 |
# have more than just those calls. |
|
|
919 |
for alt in to_find.alternate_bases: |
|
|
920 |
if alt not in matches[0].alternate_bases: |
|
|
921 |
return False |
|
|
922 |
|
|
|
923 |
return True |
|
|
924 |
|
|
|
925 |
def verify_candidate_positions( |
|
|
926 |
self, candidate_positions_paths, candidate_positions_golden_set |
|
|
927 |
): |
|
|
928 |
with epath.Path(candidate_positions_golden_set).open('rb') as my_file: |
|
|
929 |
positions_golden = np.frombuffer(my_file.read(), dtype=np.int32) |
|
|
930 |
with epath.Path(candidate_positions_paths).open('rb') as my_file: |
|
|
931 |
positions = np.frombuffer(my_file.read(), dtype=np.int32) |
|
|
932 |
logging.warning( |
|
|
933 |
'%d positions created, %d positions in golden file', |
|
|
934 |
len(positions), |
|
|
935 |
len(positions_golden), |
|
|
936 |
) |
|
|
937 |
self.assertCountEqual(positions, positions_golden) |
|
|
938 |
|
|
|
939 |
def verify_variants(self, variants, region, options, is_gvcf): |
|
|
940 |
# Verifies simple properties of the Variant protos in variants. For example, |
|
|
941 |
# checks that the reference_name() is our expected chromosome. The flag |
|
|
942 |
# is_gvcf determines how we check the VariantCall field of each variant, |
|
|
943 |
# enforcing expectations for gVCF records if true or variant calls if false. |
|
|
944 |
for variant in variants: |
|
|
945 |
if region: |
|
|
946 |
self.assertEqual(variant.reference_name, region.reference_name) |
|
|
947 |
self.assertGreaterEqual(variant.start, region.start) |
|
|
948 |
self.assertLessEqual(variant.start, region.end) |
|
|
949 |
self.assertNotEqual(variant.reference_bases, '') |
|
|
950 |
self.assertNotEmpty(variant.alternate_bases) |
|
|
951 |
self.assertLen(variant.calls, 1) |
|
|
952 |
|
|
|
953 |
call = variant_utils.only_call(variant) |
|
|
954 |
self.assertEqual( |
|
|
955 |
call.call_set_name, |
|
|
956 |
options.sample_options[1].variant_caller_options.sample_name, |
|
|
957 |
) |
|
|
958 |
if is_gvcf: |
|
|
959 |
# GVCF records should have 0/0 or ./. (un-called) genotypes as they are |
|
|
960 |
# reference sites, have genotype likelihoods and a GQ value. |
|
|
961 |
self.assertIn(list(call.genotype), [[0, 0], [-1, -1]]) |
|
|
962 |
self.assertLen(call.genotype_likelihood, 3) |
|
|
963 |
self.assertGreaterEqual(variantcall_utils.get_gq(call), 0) |
|
|
964 |
|
|
|
965 |
def verify_contiguity(self, contiguous_variants, region): |
|
|
966 |
"""Verifies region is fully covered by gvcf records.""" |
|
|
967 |
# We expect that the intervals cover every base, so the first variant should |
|
|
968 |
# be at our interval start and the last one should end at our interval end. |
|
|
969 |
self.assertNotEmpty(contiguous_variants) |
|
|
970 |
self.assertEqual(region.start, contiguous_variants[0].start) |
|
|
971 |
self.assertEqual(region.end, contiguous_variants[-1].end) |
|
|
972 |
|
|
|
973 |
# After this loop completes successfully we know that together the GVCF and |
|
|
974 |
# Variants form a fully contiguous cover of our calling interval, as |
|
|
975 |
# expected. |
|
|
976 |
for v1, v2 in zip(contiguous_variants, contiguous_variants[1:]): |
|
|
977 |
# Sequential variants should be contiguous, meaning that v2.start should |
|
|
978 |
# be v1's end, as the end is exclusive and the start is inclusive. |
|
|
979 |
if v1.start == v2.start and v1.end == v2.end: |
|
|
980 |
# Skip duplicates here as we may have multi-allelic variants turning |
|
|
981 |
# into multiple bi-allelic variants at the same site. |
|
|
982 |
continue |
|
|
983 |
# We expect to immediately follow the end of a gvcf record but to occur |
|
|
984 |
# at the base immediately after a variant, since the variant's end can |
|
|
985 |
# span over a larger interval when it's a deletion and we still produce |
|
|
986 |
# gvcf records under the deletion. |
|
|
987 |
expected_start = v1.end if v1.alternate_bases == ['<*>'] else v1.start + 1 |
|
|
988 |
self.assertEqual(v2.start, expected_start) |
|
|
989 |
|
|
|
990 |
def verify_deepvariant_calls(self, dv_calls, options): |
|
|
991 |
# Verifies simple structural properties of the DeepVariantCall objects |
|
|
992 |
# emitted by the VerySensitiveCaller, such as that the AlleleCount and |
|
|
993 |
# Variant both have the same position. |
|
|
994 |
for call in dv_calls: |
|
|
995 |
for alt_allele in call.variant.alternate_bases: |
|
|
996 |
# Skip ref calls. |
|
|
997 |
if alt_allele == vcf_constants.NO_ALT_ALLELE: |
|
|
998 |
continue |
|
|
999 |
# Make sure allele appears in our allele_support field and that at |
|
|
1000 |
# least our min number of reads to call an alt allele are present in |
|
|
1001 |
# the supporting reads list for that allele. |
|
|
1002 |
self.assertIn(alt_allele, list(call.allele_support)) |
|
|
1003 |
self.assertGreaterEqual( |
|
|
1004 |
len(call.allele_support[alt_allele].read_names), |
|
|
1005 |
options.sample_options[1].variant_caller_options.min_count_snps, |
|
|
1006 |
) |
|
|
1007 |
|
|
|
1008 |
def sanity_check_example_info_json(self, example, examples_filename, task_id): |
|
|
1009 |
"""Checks `example_info.json` w/ examples_filename has the right info.""" |
|
|
1010 |
example_info_json = dv_utils.get_example_info_json_filename( |
|
|
1011 |
examples_filename, task_id |
|
|
1012 |
) |
|
|
1013 |
example_info = json.load(gfile.GFile(example_info_json, 'r')) |
|
|
1014 |
self.assertIn('shape', example_info) |
|
|
1015 |
self.assertEqual( |
|
|
1016 |
example_info['shape'], dv_utils.example_image_shape(example) |
|
|
1017 |
) |
|
|
1018 |
self.assertIn('channels', example_info) |
|
|
1019 |
self.assertLen(example_info['channels'], example_info['shape'][2]) |
|
|
1020 |
|
|
|
1021 |
def verify_examples( |
|
|
1022 |
self, |
|
|
1023 |
path_to_output_examples, |
|
|
1024 |
region, |
|
|
1025 |
options, |
|
|
1026 |
verify_labels, |
|
|
1027 |
examples_filename=None, |
|
|
1028 |
): |
|
|
1029 |
# Do some simple structural checks on the tf.Examples in the file. |
|
|
1030 |
expected_features = [ |
|
|
1031 |
'variant/encoded', |
|
|
1032 |
'locus', |
|
|
1033 |
'image/encoded', |
|
|
1034 |
'alt_allele_indices/encoded', |
|
|
1035 |
] |
|
|
1036 |
if verify_labels: |
|
|
1037 |
expected_features += ['label'] |
|
|
1038 |
|
|
|
1039 |
examples = list( |
|
|
1040 |
tfrecord.read_tfrecords( |
|
|
1041 |
path_to_output_examples, compression_type='GZIP' |
|
|
1042 |
) |
|
|
1043 |
) |
|
|
1044 |
for example in examples: |
|
|
1045 |
for label_feature in expected_features: |
|
|
1046 |
self.assertIn(label_feature, example.features.feature) |
|
|
1047 |
# pylint: disable=g-explicit-length-test |
|
|
1048 |
self.assertNotEmpty(dv_utils.example_alt_alleles_indices(example)) |
|
|
1049 |
|
|
|
1050 |
# Check that the variants in the examples are good. |
|
|
1051 |
variants = [dv_utils.example_variant(x) for x in examples] |
|
|
1052 |
self.verify_variants(variants, region, options, is_gvcf=False) |
|
|
1053 |
|
|
|
1054 |
# In DeepTrio, path_to_output_examples can be pointing to the ones with |
|
|
1055 |
# the suffixes (such as _child). In that case, we pass in the original |
|
|
1056 |
# examples path to the `examples_filename` arg. |
|
|
1057 |
# If `examples_filename` arg, directly use `path_to_output_examples`. |
|
|
1058 |
if examples: |
|
|
1059 |
if examples_filename is None: |
|
|
1060 |
examples_filename = path_to_output_examples |
|
|
1061 |
self.sanity_check_example_info_json( |
|
|
1062 |
examples[0], examples_filename, options.task_id |
|
|
1063 |
) |
|
|
1064 |
return examples |
|
|
1065 |
|
|
|
1066 |
|
|
|
1067 |
class MakeExamplesUnitTest(parameterized.TestCase): |
|
|
1068 |
|
|
|
1069 |
def test_read_write_run_info(self): |
|
|
1070 |
def _read_lines(path): |
|
|
1071 |
with open(path) as fin: |
|
|
1072 |
return list(fin.readlines()) |
|
|
1073 |
|
|
|
1074 |
golden_actual = make_examples_core.read_make_examples_run_info( |
|
|
1075 |
testdata.GOLDEN_MAKE_EXAMPLES_RUN_INFO |
|
|
1076 |
) |
|
|
1077 |
# We don't really want to inject too much knowledge about the golden right |
|
|
1078 |
# here, so we only use a minimal test that (a) the run_info_filename is |
|
|
1079 |
# a non-empty string and (b) the number of candidates sites in the labeling |
|
|
1080 |
# metrics field is greater than 0. Any reasonable golden output will have at |
|
|
1081 |
# least one candidate variant, and the reader should have filled in the |
|
|
1082 |
# value. |
|
|
1083 |
self.assertNotEmpty(golden_actual.options.run_info_filename) |
|
|
1084 |
self.assertEqual( |
|
|
1085 |
golden_actual.labeling_metrics.n_candidate_variant_sites, |
|
|
1086 |
testdata.N_GOLDEN_TRAINING_EXAMPLES, |
|
|
1087 |
) |
|
|
1088 |
|
|
|
1089 |
# Check that reading + writing the data produces the same lines: |
|
|
1090 |
tmp_output = test_utils.test_tmpfile('written_run_info.pbtxt') |
|
|
1091 |
make_examples_core.write_make_examples_run_info(golden_actual, tmp_output) |
|
|
1092 |
print('*' * 100) |
|
|
1093 |
print(_read_lines(tmp_output)) |
|
|
1094 |
print('*' * 100) |
|
|
1095 |
self.assertEqual( |
|
|
1096 |
_read_lines(testdata.GOLDEN_MAKE_EXAMPLES_RUN_INFO), |
|
|
1097 |
_read_lines(tmp_output), |
|
|
1098 |
) |
|
|
1099 |
|
|
|
1100 |
@flagsaver.flagsaver |
|
|
1101 |
def test_keep_duplicates(self): |
|
|
1102 |
FLAGS.keep_duplicates = True |
|
|
1103 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
1104 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
1105 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
1106 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
1107 |
FLAGS.sample_name = 'child' |
|
|
1108 |
FLAGS.sample_name_to_train = 'child' |
|
|
1109 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
1110 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
1111 |
FLAGS.truth_variants = testdata.TRUTH_VARIANTS_VCF |
|
|
1112 |
FLAGS.confident_regions = testdata.CONFIDENT_REGIONS_BED |
|
|
1113 |
FLAGS.mode = 'training' |
|
|
1114 |
FLAGS.examples = '' |
|
|
1115 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
1116 |
options = make_examples.default_options(add_flags=True) |
|
|
1117 |
self.assertEqual( |
|
|
1118 |
options.pic_options.read_requirements.keep_duplicates, True |
|
|
1119 |
) |
|
|
1120 |
|
|
|
1121 |
@flagsaver.flagsaver |
|
|
1122 |
def test_keep_supplementary_alignments(self): |
|
|
1123 |
FLAGS.keep_supplementary_alignments = True |
|
|
1124 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
1125 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
1126 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
1127 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
1128 |
FLAGS.sample_name = 'child' |
|
|
1129 |
FLAGS.sample_name_to_train = 'child' |
|
|
1130 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
1131 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
1132 |
FLAGS.truth_variants = testdata.TRUTH_VARIANTS_VCF |
|
|
1133 |
FLAGS.confident_regions = testdata.CONFIDENT_REGIONS_BED |
|
|
1134 |
FLAGS.mode = 'training' |
|
|
1135 |
FLAGS.examples = '' |
|
|
1136 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
1137 |
options = make_examples.default_options(add_flags=True) |
|
|
1138 |
self.assertEqual( |
|
|
1139 |
options.pic_options.read_requirements.keep_supplementary_alignments, |
|
|
1140 |
True, |
|
|
1141 |
) |
|
|
1142 |
|
|
|
1143 |
@flagsaver.flagsaver |
|
|
1144 |
def test_keep_secondary_alignments(self): |
|
|
1145 |
FLAGS.keep_secondary_alignments = True |
|
|
1146 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
1147 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
1148 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
1149 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
1150 |
FLAGS.sample_name = 'child' |
|
|
1151 |
FLAGS.sample_name_to_train = 'child' |
|
|
1152 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
1153 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
1154 |
FLAGS.truth_variants = testdata.TRUTH_VARIANTS_VCF |
|
|
1155 |
FLAGS.confident_regions = testdata.CONFIDENT_REGIONS_BED |
|
|
1156 |
FLAGS.mode = 'training' |
|
|
1157 |
FLAGS.examples = '' |
|
|
1158 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
1159 |
options = make_examples.default_options(add_flags=True) |
|
|
1160 |
self.assertEqual( |
|
|
1161 |
options.pic_options.read_requirements.keep_secondary_alignments, True |
|
|
1162 |
) |
|
|
1163 |
|
|
|
1164 |
@flagsaver.flagsaver |
|
|
1165 |
def test_min_base_quality(self): |
|
|
1166 |
FLAGS.min_base_quality = 5 |
|
|
1167 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
1168 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
1169 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
1170 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
1171 |
FLAGS.sample_name = 'child' |
|
|
1172 |
FLAGS.sample_name_to_train = 'child' |
|
|
1173 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
1174 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
1175 |
FLAGS.truth_variants = testdata.TRUTH_VARIANTS_VCF |
|
|
1176 |
FLAGS.confident_regions = testdata.CONFIDENT_REGIONS_BED |
|
|
1177 |
FLAGS.mode = 'training' |
|
|
1178 |
FLAGS.examples = '' |
|
|
1179 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
1180 |
options = make_examples.default_options(add_flags=True) |
|
|
1181 |
self.assertEqual(options.pic_options.read_requirements.min_base_quality, 5) |
|
|
1182 |
|
|
|
1183 |
@flagsaver.flagsaver |
|
|
1184 |
def test_min_mapping_quality(self): |
|
|
1185 |
FLAGS.min_mapping_quality = 15 |
|
|
1186 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
1187 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
1188 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
1189 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
1190 |
FLAGS.sample_name = 'child' |
|
|
1191 |
FLAGS.sample_name_to_train = 'child' |
|
|
1192 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
1193 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
1194 |
FLAGS.truth_variants = testdata.TRUTH_VARIANTS_VCF |
|
|
1195 |
FLAGS.confident_regions = testdata.CONFIDENT_REGIONS_BED |
|
|
1196 |
FLAGS.mode = 'training' |
|
|
1197 |
FLAGS.examples = '' |
|
|
1198 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
1199 |
options = make_examples.default_options(add_flags=True) |
|
|
1200 |
self.assertEqual( |
|
|
1201 |
options.pic_options.read_requirements.min_mapping_quality, 15 |
|
|
1202 |
) |
|
|
1203 |
|
|
|
1204 |
@flagsaver.flagsaver |
|
|
1205 |
def test_default_options_with_training_random_emit_ref_sites(self): |
|
|
1206 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
1207 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
1208 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
1209 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
1210 |
FLAGS.sample_name = 'child' |
|
|
1211 |
FLAGS.sample_name_to_train = 'child' |
|
|
1212 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
1213 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
1214 |
FLAGS.truth_variants = testdata.TRUTH_VARIANTS_VCF |
|
|
1215 |
FLAGS.confident_regions = testdata.CONFIDENT_REGIONS_BED |
|
|
1216 |
FLAGS.mode = 'training' |
|
|
1217 |
FLAGS.examples = '' |
|
|
1218 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
1219 |
|
|
|
1220 |
FLAGS.training_random_emit_ref_sites = 0.3 |
|
|
1221 |
options = make_examples.default_options(add_flags=True) |
|
|
1222 |
self.assertAlmostEqual( |
|
|
1223 |
options.sample_options[ |
|
|
1224 |
1 |
|
|
1225 |
].variant_caller_options.fraction_reference_sites_to_emit, |
|
|
1226 |
0.3, |
|
|
1227 |
) |
|
|
1228 |
|
|
|
1229 |
@flagsaver.flagsaver |
|
|
1230 |
def test_default_options_without_training_random_emit_ref_sites(self): |
|
|
1231 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
1232 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
1233 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
1234 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
1235 |
FLAGS.sample_name = 'child' |
|
|
1236 |
FLAGS.sample_name_to_train = 'child' |
|
|
1237 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
1238 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
1239 |
FLAGS.truth_variants = testdata.TRUTH_VARIANTS_VCF |
|
|
1240 |
FLAGS.confident_regions = testdata.CONFIDENT_REGIONS_BED |
|
|
1241 |
FLAGS.mode = 'training' |
|
|
1242 |
FLAGS.examples = '' |
|
|
1243 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
1244 |
|
|
|
1245 |
options = make_examples.default_options(add_flags=True) |
|
|
1246 |
# In proto3, there is no way to check presence of scalar field: |
|
|
1247 |
# redacted |
|
|
1248 |
# As an approximation, we directly check that the value should be exactly 0. |
|
|
1249 |
self.assertEqual( |
|
|
1250 |
options.sample_options[ |
|
|
1251 |
1 |
|
|
1252 |
].variant_caller_options.fraction_reference_sites_to_emit, |
|
|
1253 |
0.0, |
|
|
1254 |
) |
|
|
1255 |
|
|
|
1256 |
@flagsaver.flagsaver |
|
|
1257 |
def test_confident_regions(self): |
|
|
1258 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
1259 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
1260 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
1261 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
1262 |
FLAGS.sample_name = 'child' |
|
|
1263 |
FLAGS.sample_name_to_train = 'child' |
|
|
1264 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
1265 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
1266 |
FLAGS.truth_variants = testdata.TRUTH_VARIANTS_VCF |
|
|
1267 |
FLAGS.confident_regions = testdata.CONFIDENT_REGIONS_BED |
|
|
1268 |
FLAGS.mode = 'training' |
|
|
1269 |
FLAGS.examples = '' |
|
|
1270 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
1271 |
|
|
|
1272 |
options = make_examples.default_options(add_flags=True) |
|
|
1273 |
confident_regions = make_examples_core.read_confident_regions(options) |
|
|
1274 |
|
|
|
1275 |
# Our expected intervals, inlined from CONFIDENT_REGIONS_BED. |
|
|
1276 |
expected = _from_literals_list([ |
|
|
1277 |
'20:10000847-10002407', |
|
|
1278 |
'20:10002521-10004171', |
|
|
1279 |
'20:10004274-10004964', |
|
|
1280 |
'20:10004995-10006386', |
|
|
1281 |
'20:10006410-10007800', |
|
|
1282 |
'20:10007825-10008018', |
|
|
1283 |
'20:10008044-10008079', |
|
|
1284 |
'20:10008101-10008707', |
|
|
1285 |
'20:10008809-10008897', |
|
|
1286 |
'20:10009003-10009791', |
|
|
1287 |
'20:10009934-10010531', |
|
|
1288 |
]) |
|
|
1289 |
# Our confident regions should be exactly those found in the BED file. |
|
|
1290 |
self.assertCountEqual(expected, list(confident_regions)) |
|
|
1291 |
|
|
|
1292 |
@parameterized.parameters( |
|
|
1293 |
({'examples': ('foo', 'foo')},), |
|
|
1294 |
({'examples': ('foo', 'foo'), 'gvcf': ('bar', 'bar')},), |
|
|
1295 |
({'examples': ('foo@10', 'foo-00000-of-00010')},), |
|
|
1296 |
({'task': (0, 0), 'examples': ('foo@10', 'foo-00000-of-00010')},), |
|
|
1297 |
({'task': (1, 1), 'examples': ('foo@10', 'foo-00001-of-00010')},), |
|
|
1298 |
( |
|
|
1299 |
{ |
|
|
1300 |
'task': (1, 1), |
|
|
1301 |
'examples': ('foo@10', 'foo-00001-of-00010'), |
|
|
1302 |
'gvcf': ('bar@10', 'bar-00001-of-00010'), |
|
|
1303 |
}, |
|
|
1304 |
), |
|
|
1305 |
( |
|
|
1306 |
{ |
|
|
1307 |
'task': (1, 1), |
|
|
1308 |
'examples': ('foo@10', 'foo-00001-of-00010'), |
|
|
1309 |
'gvcf': ('bar@10', 'bar-00001-of-00010'), |
|
|
1310 |
'candidates': ('baz@10', 'baz-00001-of-00010'), |
|
|
1311 |
}, |
|
|
1312 |
), |
|
|
1313 |
) |
|
|
1314 |
@flagsaver.flagsaver |
|
|
1315 |
def test_sharded_outputs1(self, settings): |
|
|
1316 |
# Set all of the requested flag values. |
|
|
1317 |
for name, (flag_val, _) in settings.items(): |
|
|
1318 |
setattr(FLAGS, name, flag_val) |
|
|
1319 |
|
|
|
1320 |
FLAGS.mode = 'training' |
|
|
1321 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
1322 |
FLAGS.reads = '' |
|
|
1323 |
FLAGS.ref = '' |
|
|
1324 |
options = make_examples.default_options(add_flags=True) |
|
|
1325 |
|
|
|
1326 |
# Check all of the flags. |
|
|
1327 |
for name, option_val in [ |
|
|
1328 |
('examples', options.examples_filename), |
|
|
1329 |
('candidates', options.candidates_filename), |
|
|
1330 |
('gvcf', options.gvcf_filename), |
|
|
1331 |
]: |
|
|
1332 |
expected = settings[name][1] if name in settings else '' |
|
|
1333 |
self.assertEqual(expected, option_val) |
|
|
1334 |
|
|
|
1335 |
def test_catches_bad_argv(self): |
|
|
1336 |
with ( |
|
|
1337 |
mock.patch.object(logging, 'error') as mock_logging, |
|
|
1338 |
mock.patch.object(sys, 'exit') as mock_exit, |
|
|
1339 |
): |
|
|
1340 |
make_examples.main(['make_examples.py', 'extra_arg']) |
|
|
1341 |
mock_logging.assert_called_once_with( |
|
|
1342 |
'Command line parsing failure: make_examples does not accept ' |
|
|
1343 |
'positional arguments but some are present on the command line: ' |
|
|
1344 |
"\"['make_examples.py', 'extra_arg']\"." |
|
|
1345 |
) |
|
|
1346 |
mock_exit.assert_called_once_with(errno.ENOENT) |
|
|
1347 |
|
|
|
1348 |
@flagsaver.flagsaver |
|
|
1349 |
def test_catches_bad_flags(self): |
|
|
1350 |
# Set all of the requested flag values. |
|
|
1351 |
region = ranges.parse_literal('20:10,000,000-10,010,000') |
|
|
1352 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
1353 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
1354 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
1355 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
1356 |
FLAGS.sample_name = 'child' |
|
|
1357 |
FLAGS.sample_name_to_train = 'child' |
|
|
1358 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
1359 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
1360 |
FLAGS.candidates = test_utils.test_tmpfile('vsc.tfrecord') |
|
|
1361 |
FLAGS.examples = test_utils.test_tmpfile('examples.tfrecord') |
|
|
1362 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
1363 |
FLAGS.regions = [ranges.to_literal(region)] |
|
|
1364 |
FLAGS.partition_size = 1000 |
|
|
1365 |
FLAGS.mode = 'training' |
|
|
1366 |
FLAGS.truth_variants = testdata.TRUTH_VARIANTS_VCF |
|
|
1367 |
# This is the bad flag. |
|
|
1368 |
FLAGS.confident_regions = '' |
|
|
1369 |
|
|
|
1370 |
with ( |
|
|
1371 |
mock.patch.object(logging, 'error') as mock_logging, |
|
|
1372 |
mock.patch.object(sys, 'exit') as mock_exit, |
|
|
1373 |
): |
|
|
1374 |
make_examples.main(['make_examples.py']) |
|
|
1375 |
mock_logging.assert_called_once_with( |
|
|
1376 |
'confident_regions is required when in training mode.' |
|
|
1377 |
) |
|
|
1378 |
mock_exit.assert_called_once_with(errno.ENOENT) |
|
|
1379 |
|
|
|
1380 |
@flagsaver.flagsaver |
|
|
1381 |
def test_regions_and_exclude_regions_flags_with_trio_options(self): |
|
|
1382 |
FLAGS.mode = 'calling' |
|
|
1383 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
1384 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
1385 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
1386 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
1387 |
FLAGS.sample_name = 'child' |
|
|
1388 |
FLAGS.sample_name_to_train = 'child' |
|
|
1389 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
1390 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
1391 |
FLAGS.regions = '20:10,000,000-11,000,000' |
|
|
1392 |
FLAGS.examples = 'examples.tfrecord' |
|
|
1393 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
1394 |
FLAGS.exclude_regions = '20:10,010,000-10,100,000' |
|
|
1395 |
|
|
|
1396 |
options = make_examples.default_options(add_flags=True) |
|
|
1397 |
_, regions_from_options = ( |
|
|
1398 |
make_examples_core.processing_regions_from_options(options) |
|
|
1399 |
) |
|
|
1400 |
self.assertCountEqual( |
|
|
1401 |
list(ranges.RangeSet(regions_from_options)), |
|
|
1402 |
_from_literals_list( |
|
|
1403 |
['20:10,000,000-10,009,999', '20:10,100,001-11,000,000'] |
|
|
1404 |
), |
|
|
1405 |
) |
|
|
1406 |
|
|
|
1407 |
@flagsaver.flagsaver |
|
|
1408 |
def test_incorrect_empty_regions_with_trio_options(self): |
|
|
1409 |
FLAGS.mode = 'calling' |
|
|
1410 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
1411 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
1412 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
1413 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
1414 |
FLAGS.sample_name = 'child' |
|
|
1415 |
FLAGS.sample_name_to_train = 'child' |
|
|
1416 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
1417 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
1418 |
# Deliberately incorrect contig name. |
|
|
1419 |
FLAGS.regions = 'xxx20:10,000,000-11,000,000' |
|
|
1420 |
FLAGS.examples = 'examples.tfrecord' |
|
|
1421 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
1422 |
|
|
|
1423 |
options = make_examples.default_options(add_flags=True) |
|
|
1424 |
with self.assertRaisesRegex(ValueError, 'The regions to call is empty.'): |
|
|
1425 |
make_examples_core.processing_regions_from_options(options) |
|
|
1426 |
|
|
|
1427 |
|
|
|
1428 |
class RegionProcessorTest(parameterized.TestCase): |
|
|
1429 |
|
|
|
1430 |
def setUp(self): |
|
|
1431 |
super(RegionProcessorTest, self).setUp() |
|
|
1432 |
self.region = ranges.parse_literal('20:10,000,000-10,000,100') |
|
|
1433 |
|
|
|
1434 |
FLAGS.reads = '' |
|
|
1435 |
self.options = make_examples.default_options(add_flags=False) |
|
|
1436 |
self.options.reference_filename = testdata.CHR20_FASTA |
|
|
1437 |
self.options.truth_variants_filename = testdata.TRUTH_VARIANTS_VCF |
|
|
1438 |
self.options.mode = deepvariant_pb2.MakeExamplesOptions.TRAINING |
|
|
1439 |
|
|
|
1440 |
self.ref_reader = fasta.IndexedFastaReader(self.options.reference_filename) |
|
|
1441 |
self.default_shape = [5, 5, 7] |
|
|
1442 |
self.processor = make_examples_core.RegionProcessor(self.options) |
|
|
1443 |
self.mock_init = self.add_mock('_initialize') |
|
|
1444 |
for sample in self.processor.samples: |
|
|
1445 |
sample.in_memory_sam_reader = mock.Mock() |
|
|
1446 |
|
|
|
1447 |
def add_mock(self, name, retval='dontadd', side_effect='dontadd'): |
|
|
1448 |
patcher = mock.patch.object(self.processor, name, autospec=True) |
|
|
1449 |
self.addCleanup(patcher.stop) |
|
|
1450 |
mocked = patcher.start() |
|
|
1451 |
if retval != 'dontadd': |
|
|
1452 |
mocked.return_value = retval |
|
|
1453 |
if side_effect != 'dontadd': |
|
|
1454 |
mocked.side_effect = side_effect |
|
|
1455 |
return mocked |
|
|
1456 |
|
|
|
1457 |
@parameterized.parameters([ |
|
|
1458 |
deepvariant_pb2.MakeExamplesOptions.TRAINING, |
|
|
1459 |
deepvariant_pb2.MakeExamplesOptions.CALLING, |
|
|
1460 |
]) |
|
|
1461 |
def test_process_keeps_ordering_of_candidates_and_examples(self, mode): |
|
|
1462 |
self.processor.options.mode = mode |
|
|
1463 |
|
|
|
1464 |
r1, r2 = mock.Mock(), mock.Mock() |
|
|
1465 |
c1, c2 = mock.Mock(), mock.Mock() |
|
|
1466 |
self.add_mock('region_reads_norealign', retval=[r1, r2]) |
|
|
1467 |
self.add_mock('candidates_in_region', retval=({'child': [c1, c2]}, {}, {})) |
|
|
1468 |
candidates_dict, gvcfs_dict, runtimes, read_phases = self.processor.process( |
|
|
1469 |
self.region |
|
|
1470 |
) |
|
|
1471 |
self.assertEqual({'child': [c1, c2]}, candidates_dict) |
|
|
1472 |
self.assertEqual({}, gvcfs_dict) |
|
|
1473 |
self.assertEqual({}, read_phases) |
|
|
1474 |
self.assertIsInstance(runtimes, dict) |
|
|
1475 |
|
|
|
1476 |
in_memory_sam_reader = self.processor.samples[1].in_memory_sam_reader |
|
|
1477 |
in_memory_sam_reader.replace_reads.assert_called_once_with([r1, r2]) |
|
|
1478 |
|
|
|
1479 |
@flagsaver.flagsaver |
|
|
1480 |
def test_use_original_quality_scores_without_parse_sam_aux_fields(self): |
|
|
1481 |
FLAGS.mode = 'calling' |
|
|
1482 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
1483 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
1484 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
1485 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
1486 |
FLAGS.sample_name = 'child' |
|
|
1487 |
FLAGS.sample_name_to_train = 'child' |
|
|
1488 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
1489 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
1490 |
FLAGS.examples = 'examples.tfrecord' |
|
|
1491 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
1492 |
FLAGS.use_original_quality_scores = True |
|
|
1493 |
FLAGS.parse_sam_aux_fields = False |
|
|
1494 |
|
|
|
1495 |
with self.assertRaisesRegex( |
|
|
1496 |
Exception, |
|
|
1497 |
( |
|
|
1498 |
'If --use_original_quality_scores is set then ' |
|
|
1499 |
'--parse_sam_aux_fields must be set too.' |
|
|
1500 |
), |
|
|
1501 |
): |
|
|
1502 |
make_examples.default_options(add_flags=True) |
|
|
1503 |
|
|
|
1504 |
@parameterized.parameters( |
|
|
1505 |
dict(height_parent=10, height_child=9), |
|
|
1506 |
dict(height_parent=9, height_child=10), |
|
|
1507 |
dict(height_parent=150, height_child=101), |
|
|
1508 |
dict(height_parent=101, height_child=170), |
|
|
1509 |
) |
|
|
1510 |
@flagsaver.flagsaver |
|
|
1511 |
def test_image_heights(self, height_parent, height_child): |
|
|
1512 |
FLAGS.pileup_image_height_parent = height_parent |
|
|
1513 |
FLAGS.pileup_image_height_child = height_child |
|
|
1514 |
FLAGS.mode = 'calling' |
|
|
1515 |
FLAGS.ref = testdata.CHR20_FASTA |
|
|
1516 |
FLAGS.reads = testdata.HG001_CHR20_BAM |
|
|
1517 |
FLAGS.reads_parent1 = testdata.NA12891_CHR20_BAM |
|
|
1518 |
FLAGS.reads_parent2 = testdata.NA12892_CHR20_BAM |
|
|
1519 |
FLAGS.sample_name = 'child' |
|
|
1520 |
FLAGS.sample_name_to_train = 'child' |
|
|
1521 |
FLAGS.sample_name_parent1 = 'parent1' |
|
|
1522 |
FLAGS.sample_name_parent2 = 'parent2' |
|
|
1523 |
FLAGS.examples = 'examples.tfrecord' |
|
|
1524 |
FLAGS.channel_list = ','.join(dv_constants.PILEUP_CHANNELS_WITH_INSERT_SIZE) |
|
|
1525 |
|
|
|
1526 |
options = make_examples.default_options(add_flags=True) |
|
|
1527 |
with self.assertRaisesRegex( |
|
|
1528 |
Exception, 'Total pileup image heights must be between 75-362.' |
|
|
1529 |
): |
|
|
1530 |
make_examples.check_options_are_valid(options) |
|
|
1531 |
|
|
|
1532 |
|
|
|
1533 |
if __name__ == '__main__': |
|
|
1534 |
absltest.main() |