[de0dc9]: / bin / tuning.py

Download this file

248 lines (221 with data), 7.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env python3
"""CLI module for running raytune tuning experiment."""
import argparse
import logging
import shutil
from pathlib import Path
from typing import Any
import ray
import yaml
from stimulus.data import loaders
from stimulus.learner import raytune_learner, raytune_parser
from stimulus.utils import launch_utils, yaml_data, yaml_model_schema
logger = logging.getLogger(__name__)
def _raise_empty_grid() -> None:
"""Raise an error when grid results are empty."""
raise RuntimeError("Ray Tune returned empty results grid")
def get_args() -> argparse.Namespace:
"""Get the arguments when using from the commandline.
Returns:
Parsed command line arguments.
"""
parser = argparse.ArgumentParser(description="Launch check_model.")
parser.add_argument("-d", "--data", type=str, required=True, metavar="FILE", help="Path to input csv file.")
parser.add_argument("-m", "--model", type=str, required=True, metavar="FILE", help="Path to model file.")
parser.add_argument(
"-e",
"--data_config",
type=str,
required=True,
metavar="FILE",
help="Path to data config file.",
)
parser.add_argument(
"-c",
"--model_config",
type=str,
required=True,
metavar="FILE",
help="Path to yaml config training file.",
)
parser.add_argument(
"-w",
"--initial_weights",
type=str,
required=False,
nargs="?",
const=None,
default=None,
metavar="FILE",
help="The path to the initial weights (optional).",
)
parser.add_argument(
"--ray_results_dirpath",
type=str,
required=False,
nargs="?",
const=None,
default=None,
metavar="DIR_PATH",
help="Location where ray_results output dir should be written. If None, uses ~/ray_results.",
)
parser.add_argument(
"-o",
"--output",
type=str,
required=False,
nargs="?",
const="best_model.pt",
default="best_model.pt",
metavar="FILE",
help="The output file path to write the trained model to",
)
parser.add_argument(
"-bm",
"--best_metrics",
type=str,
required=False,
nargs="?",
const="best_metrics.csv",
default="best_metrics.csv",
metavar="FILE",
help="The path to write the best metrics to",
)
parser.add_argument(
"-bc",
"--best_config",
type=str,
required=False,
nargs="?",
const="best_config.yaml",
default="best_config.yaml",
metavar="FILE",
help="The path to write the best config to",
)
parser.add_argument(
"-bo",
"--best_optimizer",
type=str,
required=False,
nargs="?",
const="best_optimizer.pt",
default="best_optimizer.pt",
metavar="FILE",
help="The path to write the best optimizer to",
)
parser.add_argument(
"--tune_run_name",
type=str,
required=False,
nargs="?",
const=None,
default=None,
metavar="CUSTOM_RUN_NAME",
help=(
"Tells ray tune what the 'experiment_name' (i.e. the given tune_run name) should be. "
"If set, the subdirectory of ray_results is named with this value and its train dir is prefixed accordingly. "
"Default None means that ray will generate such a name on its own."
),
)
parser.add_argument(
"--debug_mode",
action="store_true",
help="Activate debug mode for tuning. Default false, no debug.",
)
return parser.parse_args()
def main(
model_path: str,
data_path: str,
data_config_path: str,
model_config_path: str,
initial_weights: str | None = None, # noqa: ARG001
ray_results_dirpath: str | None = None,
output_path: str | None = None,
best_optimizer_path: str | None = None,
best_metrics_path: str | None = None,
best_config_path: str | None = None,
*,
debug_mode: bool = False,
) -> None:
"""Run the main model checking pipeline.
Args:
data_path: Path to input data file.
model_path: Path to model file.
data_config_path: Path to data config file.
model_config_path: Path to model config file.
initial_weights: Optional path to initial weights.
ray_results_dirpath: Directory for ray results.
debug_mode: Whether to run in debug mode.
output_path: Path to write the best model to.
best_optimizer_path: Path to write the best optimizer to.
best_metrics_path: Path to write the best metrics to.
best_config_path: Path to write the best config to.
"""
# Convert data config to proper type
with open(data_config_path) as file:
data_config_dict: dict[str, Any] = yaml.safe_load(file)
data_config: yaml_data.YamlSubConfigDict = yaml_data.YamlSubConfigDict(**data_config_dict)
with open(model_config_path) as file:
model_config_dict: dict[str, Any] = yaml.safe_load(file)
model_config: yaml_model_schema.Model = yaml_model_schema.Model(**model_config_dict)
encoder_loader = loaders.EncoderLoader()
encoder_loader.initialize_column_encoders_from_config(column_config=data_config.columns)
model_class = launch_utils.import_class_from_file(model_path)
ray_config_loader = yaml_model_schema.YamlRayConfigLoader(model=model_config)
ray_config_model = ray_config_loader.get_config()
tuner = raytune_learner.TuneWrapper(
model_config=ray_config_model,
data_config_path=data_config_path,
model_class=model_class,
data_path=data_path,
encoder_loader=encoder_loader,
seed=42,
ray_results_dir=ray_results_dirpath,
debug=debug_mode,
)
# Ensure output_path is provided
if output_path is None:
raise ValueError("output_path must not be None")
try:
grid_results = tuner.tune()
if not grid_results:
_raise_empty_grid()
# Initialize parser with results
parser = raytune_parser.TuneParser(result=grid_results)
# Ensure output directory exists
Path(output_path).parent.mkdir(parents=True, exist_ok=True)
# Save outputs using proper Result object API
parser.save_best_model(output=output_path)
parser.save_best_optimizer(output=best_optimizer_path)
parser.save_best_metrics_dataframe(output=best_metrics_path)
parser.save_best_config(output=best_config_path)
except RuntimeError:
logger.exception("Tuning failed")
raise
except KeyError:
logger.exception("Missing expected result key")
raise
finally:
if debug_mode:
logger.info("Debug mode - preserving Ray results directory")
#elif ray_results_dirpath:
# shutil.rmtree(ray_results_dirpath, ignore_errors=True)
def run() -> None:
"""Run the model checking script."""
args = get_args()
main(
data_path=args.data,
model_path=args.model,
data_config_path=args.data_config,
model_config_path=args.model_config,
initial_weights=args.initial_weights,
ray_results_dirpath=args.ray_results_dirpath,
output_path=args.output,
best_optimizer_path=args.best_optimizer,
best_metrics_path=args.best_metrics,
best_config_path=args.best_config,
debug_mode=args.debug_mode,
)
if __name__ == "__main__":
ray.init(address="auto", ignore_reinit_error=True)
run()