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1 Introduction

In recent years, deep recurrent neural networks (RNNs) have allowed researchers to tackle a variety
of machine learning problems in the domain of natural language processing. Most of these appli-
cations investigate problems such as translation, named entity recognition, and sentiment analysis.
Less work has been done with RNNs on what is perhaps the most natural language: the genome. The
genome is a sequence of four letters (A, C, G, T). While some deep genomic models ([1],[2],[3],[4])
have emerged in the past two years, none of them process the genome as a natural language. The
purpose of this project is to explore how various RNN architectures can be used to learn sequential
patterns in various genomes.

2 Problem Statement

Five genome datasets have been prepared for this project:

1. A length-30,000 repeating genome where the repeated unit is AGCTTGAGGC

2. A length-30,000 random genome

3. The length-4,639,675 genome for E. coli

4. The length-23,264,338 genome for malaria

5. The length-3,137,161,264 genome for humans

Depending on computational resources and time, we hope to tackle a variety of questions. First,
we will explore an RNN’s ability to capture the structure in a given genome. If the ability of an
RNN to predict the next character for a real genome is the same as for a random genome, then we
have no hope of going further. Once we have empirical evidence that an RNN can capture the non-
random structure within a genome, we will explore further classification problems. Decades of wet
lab experiments have allowed biologists to classify certain sequences according to their biological
function (or the type of cell the sequence is more important for), and these results are available
via the ENCODE and Roadmap Epigenomics data releases. We will assess the RNN’s ability to
classify these sequences after finding a distributed representation for its vocabulary. Defining what
this “vocabulary” is will also be a challenge.

3 Technical Approach and Models

Using Google’s TensorFlow Python package, we will test a variety of RNN-based neural network
architectures including gated recurrent units (GRUs) and long-short-term-memory RNNs (LSTMs).
We will experiment with a variety of hyperparameters on multiple datasets in order to assess the
robustness of our models. We will measure the ability of a model to fit a given dataset using the
average perplexity:
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where n is the number of training samples (roughly the length of our genome), |V | is the size of our
vocabulary, ŷ(t)i is the predicted probability of the predicted word at time t being word i, and y(t) is
a one-hot vector describing the actual word at time t.

We start with a simple model where we predict one character at a time based on previous characters.
Once this succeeds, we will play with additional complexity such as bi-directional architecture,
multiple layers, and a more complex vocabulary of n-grams rather than characters. The first goal of
this project is to minimize the perplexity.

4 Preliminary Results

We have successfully ran a simple one directional character-prediction RNN/GRU/LSTM for all the
genomes except human.

Our baselines were the artificial genomes (first two genomes in the list). Any model that does
not perform as expected on these two genomes will not be used on other genomes. We want to
perform better than the random genome, and the repeating genome serves as an empirical lower
bound. For these genomes, we used an LSTM architecture, a dropout keep rate of 1, a batch size
of 50, a sequence length of 50, a learning rate of 0.002, and 10 epochs. The achieved perplexity of
the random genome was 4.003, just as expected. This is the case when the model always assigns
equal probability to each of the 4 possible character A, C, G, T. The achieved perplexity of repeating
genome is 1.002, which was also just as expected. Since the sequence repeats without noise, we
expect the model to be able to put all the probability mass on a single character.

For the E. coli and malaria genomes, we used a dropout keep rate of 1, a batch size of 50, and 1
epoch. We tested the GRU, LSTM, and RNN architectures, learning rates of 0.0001 and 0.0008,
sequence lengths of 50, 100, 500, and 1000, and 2 and 3 layers. Because we have not implemented
the code on a GPU yet, we had to limit the epoch to 1 in order to test every combination of the
above hyperparameters. For both genomes, all combinations of hyperparameters performed about
the same, reaching a perplexity of 3.679 for E. coli and a perplexity of 2.938 for malaria. All training
errors were continuing to decrease after 1 epoch, however, indicating that increasing the epochs will
allow for even smaller perplexities (Figures 1 and 2).

The learning rate of 0.0001 performed worse than the learning rate of 0.0008, but this is likely be-
cause the former is slower at updating. We will use 0.0008 for future experiments. Both 2 and 3
layers worked about the same, and we will go with a 3 layer network as we suspect a deeper network
will benefit more from additional training. Surprisingly, 50 or 100-length sequences perform better
than 500 or 1000-length sequences despite the fact that genomes often involve long-range interac-
tions. This may just be a result of not training for enough epochs. We will continue testing different
sequence lengths. Finally, both RNNs and GRUs appear to outperform LSTMs. This is surprising
to us and we are not sure why RNNs would perform better than LSTMs. We will need to investigate
further after training for additional epochs.
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Figure 1: Perplexity as a function of training batch number for multiple combinations of learning
rates, number of layers, RNN architectures, and sequence lengths. The E. coli genome was used.

Figure 2: Perplexity as a function of training batch number for multiple combinations of learning
rates, number of layers, RNN architectures, and sequence lengths. The malaria genome was used.
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