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Background Evaluation Metric

Epigenetics is the study of how the genome is regulated by When designing the RNN, we minimize average perplexity across all tasks and examples: Training & Validation Loss

external mechanisms. Biological experiments have shown that ) 3 118 . . . . . .
subsequences of the human genome are regulated by specific . ] 9 (D1 D) 1,16_\ — vaidation] For the 498 t.asks with at
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sequences. A robust method for modeling the genome can offer
insights on genetic patterns related to health and disease.
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When evaluating the final RNN, we compare the F1 score achieved by the model to the
F1 score achieved by the baseline: a logistic regression (LR) model for each of the 498
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Previous deep learning approaches*>®’ prediction tasks. For the LR model, an input sequence is mapped to a length-1364 |
* Process the input sequence using a convolutional layer feature vector where each feature was the count of a particular k-mer (for k=1, ..., 5). Fpoct
* Incorporate extra information about each input sequence, . _ N o Logistic Regression v. RNN F1 Score
and the information is obtained from tedious experiments. precision-recall ~ ~recision: proportion of correct positive predictions 08 ' ' — ——
. . _ . F =2 — Recall: proportion of positive examples that were _ tmax over all epochs)
This project explores how RNNs can predict information about a precision + recall dicted to b - 0.5} — RNN (best epoch)
sequence without convolutional layers and side information. predicted to be positive ——  Logistic Regression
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Problem Statement Model Architecture w
We explore a sequence classification problem. For each of many Task 1 Task 2 Task K-1 Task K 0.1} ,k
features, we assess an RNN's ability to predict whether a given prediction prediction prediction prediction | 0“
genomic feature will be present based solely on the sequence. %0 100 200 300 300 500
Different RNN architectures will be compared based on e fasks sorted by logistic regression performance
perplexity. The chosen RNN architecture will be evaluated
against a logistic regression baseline using the F1 score. "
; gisticree ; Conclusion
Sequence Predictions We empirically showed that an RNN can predict biological
| Model > p Backwards features about a genetic sequence without outside information.
{A/ GG, T} {O; 1} Ry The RNN model outperforms a LR model on a significant majority
of 498 binary labeling tasks. This confirms how RNNs can
leverage 1) correlation between tasks and 2) large amounts of
D t t data to make more robust predictions. Unlike LR, RNNs require
dlase i significantly more training time.
Forwards . . .
The dataset was collected from experiments reported in the GRU | Extensions: Train on more data (lots available), test an
ENCODE? and Roadmap Epigenomics° data releases. | architecture better suited for very long-range information such
« 80000 sequence-label pairs for the training dataset, . . . L L L as a clockwork RNN?, use genomic word-level RNN

* 8000 pairs for the testing dataset Perform

* 2000 pairs for the validation dataset. embedding
Each sequence has a length of exactly 100 and is a subsequence T T 1‘ T T T Refe ances
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1% of the training examples were positive (498 of the 919 tasks). :
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