[1c0e03]: / man / generator_initialize.Rd

Download this file

188 lines (150 with data), 9.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/generator_folder_collect.R
\name{generator_initialize}
\alias{generator_initialize}
\title{Initializes generators defined by \code{generator_fasta_label_folder} function}
\usage{
generator_initialize(
directories,
format = "fasta",
batch_size = 256,
maxlen = 250,
max_iter = 10000,
vocabulary = c("a", "c", "g", "t"),
verbose = FALSE,
shuffle_file_order = FALSE,
step = 1,
seed = 1234,
shuffle_input = FALSE,
file_limit = NULL,
path_file_log = NULL,
reverse_complement = FALSE,
reverse_complement_encoding = FALSE,
val = FALSE,
ambiguous_nuc = "zero",
proportion_per_seq = NULL,
target_middle = FALSE,
read_data = FALSE,
use_quality_score = FALSE,
padding = TRUE,
added_label_path = NULL,
add_input_as_seq = NULL,
skip_amb_nuc = NULL,
max_samples = NULL,
file_filter = NULL,
concat_seq = NULL,
use_coverage = NULL,
set_learning = NULL,
proportion_entries = NULL,
sample_by_file_size = FALSE,
n_gram = NULL,
n_gram_stride = 1,
add_noise = NULL,
return_int = FALSE,
reshape_xy = NULL
)
}
\arguments{
\item{directories}{Vector of paths to folder containing fasta files. Files in one folder should belong to one class.}
\item{format}{File format, either \code{"fasta"} or \code{"fastq"}.}
\item{batch_size}{Number of samples in one batch.}
\item{maxlen}{Length of predictor sequence.}
\item{max_iter}{Stop after \code{max_iter} number of iterations failed to produce a new batch.}
\item{vocabulary}{Vector of allowed characters. Characters outside vocabulary get encoded as specified in \code{ambiguous_nuc}.}
\item{verbose}{Whether to show messages.}
\item{shuffle_file_order}{Logical, whether to go through files randomly or sequentially.}
\item{step}{How often to take a sample.}
\item{seed}{Sets seed for \code{set.seed} function for reproducible results.}
\item{shuffle_input}{Whether to shuffle entries in every fasta/fastq file before extracting samples.}
\item{file_limit}{Integer or \code{NULL}. If integer, use only specified number of randomly sampled files for training. Ignored if greater than number of files in \code{path}.}
\item{path_file_log}{Write name of files to csv file if path is specified.}
\item{reverse_complement}{Boolean, for every new file decide randomly to use original data or its reverse complement.}
\item{reverse_complement_encoding}{Whether to use both original sequence and reverse complement as two input sequences.}
\item{val}{Logical, call initialized generator "genY" or "genValY" where Y is an integer between 1 and length of directories.}
\item{ambiguous_nuc}{How to handle nucleotides outside vocabulary, either \code{"zero"}, \code{"discard"}, \code{"empirical"} or \code{"equal"}.
\itemize{
\item If \code{"zero"}, input gets encoded as zero vector.
\item If \code{"equal"}, input is repetition of \code{1/length(vocabulary)}.
\item If \code{"discard"}, samples containing nucleotides outside vocabulary get discarded.
\item If \code{"empirical"}, use nucleotide distribution of current file.
}}
\item{proportion_per_seq}{Numerical value between 0 and 1. Proportion of sequence to take samples from (use random subsequence).}
\item{target_middle}{Split input sequence into two sequences while removing nucleotide in middle. If input is x_1,..., x_(n+1), input gets split into
input_1 = x_1,..., x_m and input_2 = x_(n+1),..., x_(m+2) where m = ceiling((n+1)/2) and n = maxlen. Note that x_(m+1) is not used.}
\item{read_data}{If true the first element of output is a list of length 2, each containing one part of paired read.}
\item{use_quality_score}{Whether to use fastq quality scores. If TRUE input is not one-hot-encoding but corresponds to probabilities.
For example (0.97, 0.01, 0.01, 0.01) instead of (1, 0, 0, 0).}
\item{padding}{Whether to pad sequences too short for one sample with zeros.}
\item{added_label_path}{Path to file with additional input labels. Should be a csv file with one column named "file". Other columns should correspond to labels.}
\item{add_input_as_seq}{Boolean vector specifying for each entry in \code{added_label_path} if rows from csv should be encoded as a sequence or used directly.
If a row in your csv file is a sequence this should be \code{TRUE}. For example you may want to add another sequence, say ACCGT. Then this would correspond to 1,2,2,3,4 in
csv file (if vocabulary = c("A", "C", "G", "T")). If \code{add_input_as_seq} is \code{TRUE}, 12234 gets one-hot encoded, so added input is a 3D tensor. If \code{add_input_as_seq} is
\code{FALSE} this will feed network just raw data (a 2D tensor).}
\item{skip_amb_nuc}{Threshold of ambiguous nucleotides to accept in fasta entry. Complete entry will get discarded otherwise.}
\item{max_samples}{Maximum number of samples to use from one file. If not \code{NULL} and file has more than \code{max_samples} samples, will randomly choose a
subset of \code{max_samples} samples.}
\item{file_filter}{Vector of file names to use from path_corpus.}
\item{concat_seq}{Character string or \code{NULL}. If not \code{NULL} all entries from file get concatenated to one sequence with \code{concat_seq} string between them.
Example: If 1.entry AACC, 2. entry TTTG and \code{concat_seq = "ZZZ"} this becomes AACCZZZTTTG.}
\item{use_coverage}{Integer or \code{NULL}. If not \code{NULL}, use coverage as encoding rather than one-hot encoding and normalize.
Coverage information must be contained in fasta header: there must be a string \code{"cov_n"} in the header, where \code{n} is some integer.}
\item{set_learning}{When you want to assign one label to set of samples. Only implemented for \code{train_type = "label_folder"}.
Input is a list with the following parameters
\itemize{
\item \code{samples_per_target}: how many samples to use for one target.
\item \code{maxlen}: length of one sample.
\item \code{reshape_mode}: \verb{"time_dist", "multi_input"} or \code{"concat"}.
\itemize{
\item
If \code{reshape_mode} is \code{"multi_input"}, generator will produce \code{samples_per_target} separate inputs, each of length \code{maxlen} (model should have
\code{samples_per_target} input layers).
\item If reshape_mode is \code{"time_dist"}, generator will produce a 4D input array. The dimensions correspond to
\verb{(batch_size, samples_per_target, maxlen, length(vocabulary))}.
\item If \code{reshape_mode} is \code{"concat"}, generator will concatenate \code{samples_per_target} sequences
of length \code{maxlen} to one long sequence.
}
\item If \code{reshape_mode} is \code{"concat"}, there is an additional \code{buffer_len}
argument. If \code{buffer_len} is an integer, the subsequences are interspaced with \code{buffer_len} rows. The input length is
(\code{maxlen} \eqn{*} \code{samples_per_target}) + \code{buffer_len} \eqn{*} (\code{samples_per_target} - 1).
}}
\item{proportion_entries}{Proportion of fasta entries to keep. For example, if fasta file has 50 entries and \code{proportion_entries = 0.1},
will randomly select 5 entries.}
\item{sample_by_file_size}{Sample new file weighted by file size (bigger files more likely).}
\item{n_gram}{Integer, encode target not nucleotide wise but combine n nucleotides at once. For example for \verb{n=2, "AA" -> (1, 0,..., 0),}
\verb{"AC" -> (0, 1, 0,..., 0), "TT" -> (0,..., 0, 1)}, where the one-hot vectors have length \code{length(vocabulary)^n}.}
\item{n_gram_stride}{Step size for n-gram encoding. For AACCGGTT with \code{n_gram = 4} and \code{n_gram_stride = 2}, generator encodes
\verb{(AACC), (CCGG), (GGTT)}; for \code{n_gram_stride = 4} generator encodes \verb{(AACC), (GGTT)}.}
\item{add_noise}{\code{NULL} or list of arguments. If not \code{NULL}, list must contain the following arguments: \code{noise_type} can be \code{"normal"} or \code{"uniform"};
optional arguments \code{sd} or \code{mean} if noise_type is \code{"normal"} (default is \code{sd=1} and \code{mean=0}) or \verb{min, max} if \code{noise_type} is \code{"uniform"}
(default is \verb{min=0, max=1}).}
\item{return_int}{Whether to return integer encoding or one-hot encoding.}
\item{reshape_xy}{Can be a list of functions to apply to input and/or target. List elements (containing the reshape functions)
must be called x for input or y for target and each have arguments called x and y. For example:
\code{reshape_xy = list(x = function(x, y) {return(x+1)}, y = function(x, y) {return(x+y)})} .
For rds generator needs to have an additional argument called sw.}
}
\value{
List of generator function.
}
\description{
Initializes generators defined by \code{\link{generator_fasta_label_folder}} function. Targets get encoded in order of directories.
Number of classes is given by length of \code{directories}.
}
\examples{
\dontshow{if (reticulate::py_module_available("tensorflow")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
# create two folders with dummy fasta files
path_input_1 <- tempfile()
dir.create(path_input_1)
create_dummy_data(file_path = path_input_1, num_files = 2, seq_length = 5,
num_seq = 2, vocabulary = c("a", "c", "g", "t"))
path_input_2 <- tempfile()
dir.create(path_input_2)
create_dummy_data(file_path = path_input_2, num_files = 3, seq_length = 7,
num_seq = 5, vocabulary = c("a", "c", "g", "t"))
gen_list <- generator_initialize(directories = c(path_input_1, path_input_1),
batch_size = 4, maxlen = 5)
z1 <- gen_list[[1]]()
z1[[1]]
z1[[2]]
\dontshow{\}) # examplesIf}
}