% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/generator_utils.R
\name{dataset_from_gen}
\alias{dataset_from_gen}
\title{Collect samples from generator and store in rds or pickle file.}
\usage{
dataset_from_gen(
output_path,
iterations = 10,
train_type = "lm",
output_format = "target_right",
path_corpus,
batch_size = 32,
maxlen = 250,
step = NULL,
vocabulary = c("a", "c", "g", "t"),
shuffle = FALSE,
set_learning = NULL,
seed = NULL,
random_sampling = FALSE,
store_format = "rds",
file_name_start = "batch_",
masked_lm = NULL,
...
)
}
\arguments{
\item{output_path}{Output directory. Output files will be named \code{output_path} + \code{file_name_start} + x + ".rds" or ".pickle", where x is an index (from 1 to
\code{iterations}) and file ending depends on \code{store_format} argument.}
\item{iterations}{Number of batches (output files) to create.}
\item{train_type}{Either \code{"lm"}, \code{"lm_rds"}, \code{"masked_lm"} for language model; \code{"label_header"}, \code{"label_folder"}, \code{"label_csv"}, \code{"label_rds"} for classification or \code{"dummy_gen"}.
\itemize{
\item Language model is trained to predict character(s) in a sequence. \cr
\item \code{"label_header"}/\code{"label_folder"}/\code{"label_csv"} are trained to predict a corresponding class given a sequence as input.
\item If \code{"label_header"}, class will be read from fasta headers.
\item If \code{"label_folder"}, class will be read from folder, i.e. all files in one folder must belong to the same class.
\item If \code{"label_csv"}, targets are read from a csv file. This file should have one column named "file". The targets then correspond to entries in that row (except "file"
column). Example: if we are currently working with a file called "a.fasta" and corresponding label is "label_1", there should be a row in our csv file\tabular{lll}{
file \tab label_1 \tab label_2 \cr
"a.fasta" \tab 1 \tab 0 \cr
}
\item If \code{"label_rds"}, generator will iterate over set of .rds files containing each a list of input and target tensors. Not implemented for model
with multiple inputs.
\item If \code{"lm_rds"}, generator will iterate over set of .rds files and will split tensor according to \code{target_len} argument
(targets are last \code{target_len} nucleotides of each sequence).
\item If \code{"dummy_gen"}, generator creates random data once and repeatedly feeds these to model.
\item If \code{"masked_lm"}, generator maskes some parts of the input. See \code{masked_lm} argument for details.
}}
\item{output_format}{Determines shape of output tensor for language model.
Either \code{"target_right"}, \code{"target_middle_lstm"}, \code{"target_middle_cnn"} or \code{"wavenet"}.
Assume a sequence \code{"AACCGTA"}. Output correspond as follows
\itemize{
\item \verb{"target_right": X = "AACCGT", Y = "A"}
\item \verb{"target_middle_lstm": X = (X_1 = "AAC", X_2 = "ATG"), Y = "C"} (note reversed order of X_2)
\item \verb{"target_middle_cnn": X = "AACGTA", Y = "C"}
\item \verb{"wavenet": X = "AACCGT", Y = "ACCGTA"}
}}
\item{path_corpus}{Input directory where fasta files are located or path to single file ending with fasta or fastq
(as specified in format argument). Can also be a list of directories and/or files.}
\item{batch_size}{Number of samples in one batch.}
\item{maxlen}{Length of predictor sequence.}
\item{step}{How often to take a sample.}
\item{vocabulary}{Vector of allowed characters. Characters outside vocabulary get encoded as specified in \code{ambiguous_nuc}.}
\item{shuffle}{Whether to shuffle samples within each batch.}
\item{set_learning}{When you want to assign one label to set of samples. Only implemented for \code{train_type = "label_folder"}.
Input is a list with the following parameters
\itemize{
\item \code{samples_per_target}: how many samples to use for one target.
\item \code{maxlen}: length of one sample.
\item \code{reshape_mode}: \verb{"time_dist", "multi_input"} or \code{"concat"}.
\itemize{
\item
If \code{reshape_mode} is \code{"multi_input"}, generator will produce \code{samples_per_target} separate inputs, each of length \code{maxlen} (model should have
\code{samples_per_target} input layers).
\item If reshape_mode is \code{"time_dist"}, generator will produce a 4D input array. The dimensions correspond to
\verb{(batch_size, samples_per_target, maxlen, length(vocabulary))}.
\item If \code{reshape_mode} is \code{"concat"}, generator will concatenate \code{samples_per_target} sequences
of length \code{maxlen} to one long sequence.
}
\item If \code{reshape_mode} is \code{"concat"}, there is an additional \code{buffer_len}
argument. If \code{buffer_len} is an integer, the subsequences are interspaced with \code{buffer_len} rows. The input length is
(\code{maxlen} \eqn{*} \code{samples_per_target}) + \code{buffer_len} \eqn{*} (\code{samples_per_target} - 1).
}}
\item{seed}{Sets seed for \code{set.seed} function for reproducible results.}
\item{random_sampling}{Whether samples should be taken from random positions when using \code{max_samples} argument. If \code{FALSE} random
samples are taken from a consecutive subsequence.}
\item{store_format}{Either "rds" or "pickle".}
\item{file_name_start}{Start of output file names.}
\item{masked_lm}{If not \code{NULL}, input and target are equal except some parts of the input are masked or random.
Must be list with the following arguments:
\itemize{
\item \code{mask_rate}: Rate of input to mask (rate of input to replace with mask token).
\item \code{random_rate}: Rate of input to set to random token.
\item \code{identity_rate}: Rate of input where sample weights are applied but input and output are identical.
\item \code{include_sw}: Whether to include sample weights.
\item \code{block_len} (optional): Masked/random/identity regions appear in blocks of size \code{block_len}.
}}
\item{...}{further generator options. See \code{\link{get_generator}}.}
}
\value{
None. Function writes data to files and does not return a value.
}
\description{
Repeatedly generate samples with data generator and store output. Creates a separate rds or pickle file in \code{output_path} for each
batch.
}
\examples{
\dontshow{if (reticulate::py_module_available("tensorflow")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
# create dummy fasta files
temp_dir <- tempfile()
dir.create(temp_dir)
create_dummy_data(file_path = temp_dir,
num_files = 3,
seq_length = 8,
num_seq = 2)
# extract samples
out_dir <- tempfile()
dir.create(out_dir)
dataset_from_gen(output_path = out_dir,
iterations = 10,
train_type = "lm",
output_format = "target_right",
path_corpus = temp_dir,
batch_size = 32,
maxlen = 5,
step = 1,
file_name_start = "batch_")
list.files(out_dir)
\dontshow{\}) # examplesIf}
}