[1c0e03]: / man / create_model_lstm_cnn_multi_input.Rd

Download this file

153 lines (115 with data), 5.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/create_model_set_learning.R
\name{create_model_lstm_cnn_multi_input}
\alias{create_model_lstm_cnn_multi_input}
\title{Create LSTM/CNN network that can process multiple samples for one target}
\usage{
create_model_lstm_cnn_multi_input(
maxlen = 50,
dropout_lstm = 0,
recurrent_dropout_lstm = 0,
layer_lstm = NULL,
layer_dense = c(4),
dropout_dense = NULL,
solver = "adam",
learning_rate = 0.001,
vocabulary_size = 4,
bidirectional = FALSE,
batch_size = NULL,
compile = TRUE,
kernel_size = NULL,
filters = NULL,
strides = NULL,
pool_size = NULL,
padding = "same",
dilation_rate = NULL,
gap_inputs = NULL,
use_bias = TRUE,
zero_mask = FALSE,
label_smoothing = 0,
label_noise_matrix = NULL,
last_layer_activation = "softmax",
loss_fn = "categorical_crossentropy",
auc_metric = FALSE,
f1_metric = FALSE,
bal_acc = FALSE,
samples_per_target,
batch_norm_momentum = 0.99,
aggregation_method = c("sum"),
verbose = TRUE,
model_seed = NULL,
mixed_precision = FALSE,
mirrored_strategy = NULL
)
}
\arguments{
\item{maxlen}{Length of predictor sequence.}
\item{dropout_lstm}{Fraction of the units to drop for inputs.}
\item{recurrent_dropout_lstm}{Fraction of the units to drop for recurrent state.}
\item{layer_lstm}{Number of cells per network layer. Can be a scalar or vector.}
\item{layer_dense}{Vector specifying number of neurons per dense layer after last LSTM or CNN layer (if no LSTM used).}
\item{dropout_dense}{Vector of dropout rates between dense layers. No dropout if \code{NULL}.}
\item{solver}{Optimization method, options are \verb{"adam", "adagrad", "rmsprop"} or \code{"sgd"}.}
\item{learning_rate}{Learning rate for optimizer.}
\item{vocabulary_size}{Number of unique character in vocabulary.}
\item{bidirectional}{Use bidirectional wrapper for lstm layers.}
\item{batch_size}{Number of samples that are used for one network update. Only used if \code{stateful = TRUE}.}
\item{compile}{Whether to compile the model.}
\item{kernel_size}{Size of 1d convolutional layers. For multiple layers, assign a vector. (e.g, \code{rep(3,2)} for two layers and kernel size 3)}
\item{filters}{Number of filters. For multiple layers, assign a vector.}
\item{strides}{Stride values. For multiple layers, assign a vector.}
\item{pool_size}{Integer, size of the max pooling windows. For multiple layers, assign a vector.}
\item{padding}{Padding of CNN layers, e.g. \verb{"same", "valid"} or \code{"causal"}.}
\item{dilation_rate}{Integer, the dilation rate to use for dilated convolution.}
\item{gap_inputs}{Global pooling method to apply. Same options as for \code{flatten_method} argument
in \link{create_model_transformer} function.}
\item{use_bias}{Boolean. Usage of bias for CNN layers.}
\item{zero_mask}{Boolean, whether to apply zero masking before LSTM layer. Only used if model does not use any CNN layers.}
\item{label_smoothing}{Float in [0, 1]. If 0, no smoothing is applied. If > 0, loss between the predicted
labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards 0.5.
The closer the argument is to 1 the more the labels get smoothed.}
\item{label_noise_matrix}{Matrix of label noises. Every row stands for one class and columns for percentage of labels in that class.
If first label contains 5 percent wrong labels and second label no noise, then
\code{label_noise_matrix <- matrix(c(0.95, 0.05, 0, 1), nrow = 2, byrow = TRUE )}}
\item{last_layer_activation}{Activation function of output layer(s). For example \code{"sigmoid"} or \code{"softmax"}.}
\item{loss_fn}{Either \code{"categorical_crossentropy"} or \code{"binary_crossentropy"}. If \code{label_noise_matrix} given, will use custom \code{"noisy_loss"}.}
\item{auc_metric}{Whether to add AUC metric.}
\item{f1_metric}{Whether to add F1 metric.}
\item{bal_acc}{Whether to add balanced accuracy.}
\item{samples_per_target}{Number of samples to combine for one target.}
\item{batch_norm_momentum}{Momentum for the moving mean and the moving variance.}
\item{aggregation_method}{At least one of the options \verb{"sum", "mean", "max"}.}
\item{verbose}{Boolean.}
\item{model_seed}{Set seed for model parameters in tensorflow if not \code{NULL}.}
\item{mixed_precision}{Whether to use mixed precision (https://www.tensorflow.org/guide/mixed_precision).}
\item{mirrored_strategy}{Whether to use distributed mirrored strategy. If NULL, will use distributed mirrored strategy only if >1 GPU available.}
}
\value{
A keras model with multiple input layers. Input goes through shared LSTM/CNN layers.
}
\description{
Creates a network consisting of an arbitrary number of CNN, LSTM and dense layers with multiple
input layers. After LSTM/CNN part all representations get aggregated by summation.
Can be used to make single prediction for combination of multiple input sequences.
Implements approach as described \href{https://arxiv.org/abs/1703.06114}{here}
}
\examples{
\dontshow{if (reticulate::py_module_available("tensorflow")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
# Examples needs keras attached to run
maxlen <- 50
\donttest{
library(keras)
create_model_lstm_cnn_multi_input(
maxlen = maxlen,
vocabulary_size = 4,
samples_per_target = 7,
kernel_size = c(10, 10),
filters = c(64, 128),
pool_size = c(2, 2),
layer_lstm = c(32),
layer_dense = c(64, 2),
aggregation_method = c("max"),
learning_rate = 0.001)
}
\dontshow{\}) # examplesIf}
}